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ABSTRACT
As robots and digital assistants are deployed in the real world,
these agents must be able to communicate their decision-making
criteria to build trust, improve human-robot teaming, and enable
collaboration. While the field of explainable artificial intelligence
has made great strides in building a set of mechanisms to enable
such communication, these advancements often assume that one
approach is ideally suited to one or more problems (e.g., decision
trees are best for explaining how to triage patients in an emergency
room), failing to recognize that individual users may have different
past experiences or preferences for interaction modalities. In this
work, we present the design and results of a user study in a virtual
self-driving car domain, in which the car presents navigational
assistance to the human and uses varying explanation modalities
to justify its suggestions. We find significant differences between
explanation baselines for subjective ranking preferences (𝑝 < 0.01)
and objective performance with respect to incorrect compliance
(𝑝 < 0.05). However, we find that some participants have strong
preferences that go against our population-level findings, which
makes suggesting the majority-preference an inappropriate solu-
tion. Our analysis shows that personalization is crucial to maximize
the subjective and objective benefits of explanations with diverse
users.

CCS CONCEPTS
• Information systems→ Personalization; •Human-centered
computing → User studies.
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explainability, user studies, personalization
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1 INTRODUCTION
As robots and digital assistants are deployed to the real world,
these agents must be able to communicate their decision-making
criteria to build trust, improve human-robot teaming, and enable
collaboration [2, 15]. Researchers have identified explainability as a
necessary component of high-quality human-robot interactions in
many domains [5, 18].While numerous approaches to explainability
are under active investigation (e.g., natural language explanations
[4], decision-tree extraction [21], counterfactual presentation [12],

LEAP-HRI ’23, 2023,
2023.

or saliency-based explanations [17, 23]), we hypothesize that some
explainability mechanisms may be better suited to certain problems
and individuals than others in contrast to the “one-size-fits-all”
approach of current research. Individual dispositional preferences
and expertise can have an impact on the success of an explanation
both in terms of subjective satisfaction and objective utility [24].

Explainable AI is not a domainwherein the “accuracy” can simply
be measured by the explanations interpretability of the underlying
algorithm. If explanations do not carefully consider an individual’s
human expertise or expectations, the simple act of showing an
explanation can cause humans to blindly trust an agent’s advice,
leading to adverse effects on performance and trust[16, 22]. While
explainability may seem to be a useful tool to deploy alongside an
imperfect decision-making aid, this counter-intuitive result presents
a key problem: explanations encourage inappropriate compliance.
If some users see explanations and defer to robots without critically
examining the explanation or robot suggestion, a natural follow-up
question is: Can we understand the relationship between a user’s
preferences for usability of an explanation with their compliance?
By attaining an understanding of the factors which influence in-
napropriate complaince, we can counter the potential elicitation of
unwarranted trust in a system [6, 8, 19].

We aim to understand the diverse preferences of untrained hu-
man users with potentially-faulty assistants that use explanations.
In our study, participants interact with a virtual self-driving car
to navigate through a foreign environment, where an agent pro-
vides navigational assistance to help guide the user, reflecting a
potentially common future use case. Crucially, this advice is not
always correct, and incorrect advice is signalled by the inclusion of
red-herring features (e.g., we designed the study such that using
“weather” in an explanation signals an error). Users must decide
whether to accept or reject the advice by examining the agent’s
explanations, which hold clues as to whether or not the agent is
offering incorrect advice. Our results demonstrate that, while there
are significantly different preferences for explanation modality at
a population level (𝑝 < 0.01), individual users were not always
reflective of this trend. Through our novel study, we show that
personalization in the context of explainability with human users
is crucial by showing that preferences at an individual or group
level vary from global population differences.

2 STUDY DESIGN
In this section, we detail the design of our study, set in the domain
of navigating through an unknown city with the assistance of a
virtual XAI agent. A visual overview of the study is in Figure 1.
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Figure 1: A visual walkthrough of our study cycle, (entry and
exit surveys omitted for simplicity). As the agent provides
suggestions and explanations to participants, participants
continue to direct the virtual car based on navigation sugges-
tions and explanations. Participants complete eleven naviga-
tion tasks in each study session before completing post-study
surveys and providing qualitative feedback.

2.1 Navigation Tasks
Our study consists of eleven navigation tasks, in which the partici-
pant must navigate through the city to a goal location by directing a
self-driving agent through intersections in a city.We build our study
in the AirSim simulator [20], shown in Figure 3. For each task, the
user is moved to a new starting location, and the objective is moved
to new goal location, mitigating any learning effects or ability to
memorize the same routes. Furthermore, the environment contains
obstacles that force the car to turn around, obstructing navigation
and constraining possible paths. This encourages reliance on the
agent’s navigational suggestions and discourages participants from
attempting to self-navigate, as the agent knows the positions of all
obstacles, but participants do not.

The environment is a set of city blocks joined by four- and three-
way intersections. At each intersection, the car comes to a full stop
and asks the participant to select the next direction (straight, right,
or left). The participant is shown a directional suggestion from the
navigation agent, as well as an explanation for the given suggestion.
Finally, the participant also has access to a mini-map that shows
their position and heading, as well as the goal position. This helps
participants to feel better oriented in the map, and gives them the
ability to navigate independently. However, as they do not know the
positions of obstacles scattered throughout the city, participants are
still heavily reliant on the agent’s assistance to reach the objective
in an optimal number of turns.

For all but the first task, 30% of explanations and suggestions
are incorrect. Suggestions in the first task are all correct to allow
participants time to become accustomed to the domain and the
agent. Each task in the main body of the study is completed with
only one explainability mechanism, and we rotate which mecha-
nism is used after each task. Tasks have a fixed number of incorrect
explanations, which are shown at random times. Participants are
warned that their assistant will occasionally make mistakes during

the navigation tasks, and that mistakes are signaled by the inclusion
of a “red-herring” feature, including things such as the “time of
day, radio station, rush hour traffic,” and several other features (e.g.,
“We should turn left because it’s near noon.”). All explanations are
scripted via Wizard-of-Oz, allowing us to control for differing levels
of sophistication in state-of-the-art explainability research.

2.2 Explanation Modalities
In our study, compare explanations using three different mecha-
nisms, that have been widely utilized in prior work on explainable
AI [7, 11, 15]:

(1) Natural Langugage: Explanations are offered in natural
language, describing the decision and the justification.

(2) Decision Tree: A decision tree describing the car’s logic,
with relevant nodes highlighted.

(3) Salience Map: A feature-importance heatmap, highlighting
objects in the scene that may be relevant for a decision.

2.3 Research Questions and Metrics
Our primary research questions in this study are:

• RQ1 – Preferences: Will one explanation modality be
significantly more preferred than the others?

• RQ2 – Performance: Will one explanation modality lead
to significantly better performance than the others?

• RQ3 – Alignment: Will participants prefer to use the
modality that gives them the best performance?

Finally, for all of our research questions, we are interested in both
population and individual-level data. Our study will signal a need
for personalization if we show that many individuals in our popula-
tion do not adhere to the trends found across the broader population
(i.e., we cannot simply apply the significant majority preference if
it means that many users will be left behind).

We propose to measure XAI modality rankings (RQ1), partic-
ipant rankings of explainability mechanisms (where rank 1 is best
and rank 3 is worst), and inappropriate compliance (RQ2), the
number of times that participants accept faulty advice.

2.4 Study Timeline
Upon arrival to the onsite location, participants complete consent
forms and are briefed on their task. Participants are introduced
to each of the explanation mechanisms employed in the study,
the interface for directing the car, and a mini-map that will as-
sist them for each task. After completing NARS[14] and “Big-Five”
personality[13] surveys to control for the effects of personality
or comfort with robots on our results and being briefed on the
study tasks, participants begin the eleven navigation tasks in our
study. The first two tasks are both practice, allowing the users to
become acquainted with the simulator, controls, and explanations.
We arrived at two tasks after pilot studies revealed that very little
experience was required to learn the navigation task. In this practice
phase, explanations are randomly sampled from any of the three
mechanisms used in our study (Section 2.2). After completing the
practice phase, participants begin the main body of the study, which
consists of 9 tasks. We then conclude the study by administering
two final surveys to our participants. First, we have participants
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(a) Preference Rank Results (b) Inappropriate Compliance Results for All Participants

Figure 2: Visualized results for preference rankings (a) and objective performancemetrics (b). Lower is better for both. Preference
ranks are the summation over five questions, in which modalities are ranked one to three (i.e., scoring five is the best possible
rank, scoring fifteen is the worst possible rank).

rank their preferred explanation modality according to which was
their favorite, which they felt was their most/least preferred, which
was the fastest, the slowest, the easiest to use, and the hardest to
use. Finally, participants complete a Likert scale measuring their
desire to personalize explanations (Section 6).

2.5 Sample Population
We gathered data from 17 participants (14 Males, 3 Females) be-
tween 18-35. Our participants reported a small to medium degree
of experience with computer science.

3 RESULTS
We performed a repeated-measures multivariate analysis to com-
pute the effect of each condition on explanation modality ranking
and on inappropriate compliance. The explanation modality was
modelled as a fixed-effect covariate, and the participant id was a
random effects covariate. We utilized the AIC metric to determine
which covariates to include in our linear model. We then applied an
analysis of variance (ANOVA) to identify significance across base-
lines, and further employed a Tukey-HSD post-hoc test to measure
pairwise significance. For our linear regression model, we tested
for the normality of residuals and homoscedasticity assumptions
and found that the assumptions all passed for the explanation rank-
ing model; however, the residuals of the inappropriate compliance
model were not found to be normally distributed. In prior work, it
has been shown that an F-test is robust to non-normality [1, 3, 9, 10].
Therefore, we choose to proceed with a linear regression analysis.

Firstly, our ANOVA for explanation modality rankings yielded a
significant difference across baselines (𝐹 (2, 45) = 27.994, 𝑝 < 0.001).
A Tukey post-hoc test showed a pairwise difference between each
pair of explanation modalities included in this study. We observed
that language ranked significantly higher than saliency maps (𝑝 <

0.01) and decision trees (𝑝 < 0.001), and saliency maps were ranked
significantly higher than decision trees (𝑝 < 0.001). A comparison
of means of all preference rankings is shown in Figure 2a.

An ANOVA on inappropriate compliance yielded significant
difference across conditions (𝐹 (2, 32) = 4.3593, 𝑝 < 0.05). A Tukey
post-hoc revealed that language explanations significantly reduced
inappropriate compliance relative to saliency maps (𝑝 < 0.01).
Inappropriate compliance counts for individual participants in the
study are given in Figure 2b, where we see that over a quarter of
all participants (13-17) exhibit their highest performance with a
modality other than language.

4 DISCUSSION
RQ1 – Our results identify significant preferences across our pop-
ulation of participants, i.e. language » saliency » decision tree.
However, we find that these significant differences are not always
reflected at an individual level. For example, while our population
level differences suggest that saliency map explanations are sig-
nificantly more preferred than decision tree explanations, we find
that 20% of our participants report the exact opposite. This finding
signals a need for personalization to individual users, as naively as-
signing the modality with the highest average rankings could lead
to increases in innapropriate compliance. Upon completion of our
data collection process, we plan to conduct correlation analysis, and
other similar analyses, on various sub-groupings of users within
the data to identify relevant XAI insights to for these groupings.

RQ2 – Our results for participant performance with each expla-
nation modality are more nuanced than our preference results. We
observe a statistically significant difference between language and
saliency modalities, showing that language is a superior explana-
tion modality for participants to determine when an explanation
may be faulty. However, we observe that over a quarter of our
participants show equal or better performance with a modality
other than language (as shown by participants 10-17 in Figure 2. In
other words, while the majority of our population exhibits superior
performance with language, a non-trivial minority shows improved
performance with decision trees or saliency maps. Our performance
results reinforce the need for personalization because there is no
globally superior explanation modality for all participants.

3



349

350

351

352

353

354

355

356

357

358

359

360

361

362

363

364

365

366

367

368

369

370

371

372

373

374

375

376

377

378

379

380

381

382

383

384

385

386

387

388

389

390

391

392

393

394

395

396

397

398

399

400

401

402

403

404

405

406

LEAP-HRI ’23, 2023, Trovato and Tobin, et al.

407

408

409

410

411

412

413

414

415

416

417

418

419

420

421

422

423

424

425

426

427

428

429

430

431

432

433

434

435

436

437

438

439

440

441

442

443

444

445

446

447

448

449

450

451

452

453

454

455

456

457

458

459

460

461

462

463

464

(a) (b)

(c)

Figure 3: At each intersection, each participant is shown a mini-map of the city (a), in order to assist them in their decision
making. The mini-map provides the location and heading of the car, as well as the location of the goal. Participants select a
direction from a pop-up to direct the car. In this example, the pop-up includes a language explanation.

RQ3 – Finally, considering the alignment between participant’s
preferences and efficiency, we find that there are often discrepan-
cies between a participant’s preferred explanation modality and
the one that maximizes their task performance, and there are sev-
eral instances in which a participants preferred modality is the
worst for their performance. Again, there are no statistically signif-
icant results across the entire population– rather, each individual
participant presents a unique combination of prior experiences
and preferences that inform their performance and ranking for
each explanation modality during the study. Without the ability
to personalize to individual’s preferences or to intelligently bal-
ance between performance and preference, we will not be able to
optimize performance or satisfaction in human-robot teams.

Summary – In summary, our results underscore the need for per-
sonalization in the context of explainability with human users of
autonomous systems. Naively applying the explanation that fits the
average user will lead to increases in inappropriate compliance in
a non-negligible section of the population of end-users. Similarly,
simply accepting a user’s request to use their preferred ex-
planation modality could result in sub-optimal performance,
as preferences and performance do not always align. To maxi-
mize a human’s efficiency and satisfaction with an XAI system, we
must develop agents that rapidly personalize to users, balancing
between maximizing efficiency and accommodating preferences.

5 IMPLICATIONS AND FUTUREWORK
Personalization within explainability stands as a key challenge to be
solved in order to improve adoption and utilization of XAI systems

by stakeholders in the real-world. Unlike prior work, our study
explicitly models incorrect compliance. Incorrect compliance in
safety-critical domains such as self-driving cars and healthcare, can
be extremely problematic, and our proposed study and analysis will
provide some useful insights to understand these problems.

Our results suggest that personalization is crucial to the usabil-
ity of widespread explainable AI, as individuals present personal
preferences that are not simply matched to the population average.
This finding presents two interesting areas for further exploration:
(1) which personalization mechanism to use (e.g., using language
instead of saliency maps) and (2) personalizing explanations within
one mechanism (e.g., refining the phrasing of a language explana-
tion to conform to a user’s expectations).

6 CONCLUSION
As machine learning and robotics are deployed to the real world, it
is imperative that the research community maintains an accurate
understanding of how such technologies are received and used by
human users. We have presented the design and early results of a
user study that targets explanation and personalization in machine
learningwith humans. Our study design enables us to gather data on
the unique preferences of individual users presented with the same
set of explanation mechanisms, and our results build a strong case
for the need for personalized machine learning. We conclude with
directions for future work, including research into personalizing
what types of explanations are given to different users and research
into how we can further refine individual explanations to meet a
user’s personal knowledge base, expertise, and preferences.
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EXAMPLES OF EXPLANATION MODALITIES
Here, we show examples of the two visual explanation modalities
in our study. In Figure 4, we show a saliency map explanation. Here,
the agent highlights various components of the scene, signifying
that they are relevant to the decision, and the agent also highlights
directions that it may move. In Figure 5, we show the decision
tree explanation. The tree is consistent in all explanations, and
shows various criteria that may be reflected in the environment.
Red nodes indicate that the decision criteria are not met (i.e., the
node evaluates to “False”), and the final decision is highlighted in
green.

PERSONALIZATION LIKERT SCALE
Here, we include the items in our personalized XAI Likert scale. All
items are rated on a seven-point scale from “Strongly Disagree” to
“Strongly Agree.”

(1) I would like to be able to interactively personalize the types
of explanations I receive

(2) I would like to be able to provide feedback regarding the
suitability of the explanations to me.

(3) I would like to work with an explainable agent where I
could provide feedback regarding the suitability of the ex-
planation.

(4) It would be detrimental if the explainable agent did not
consider the circumstances or my personal preferences
while generating explanations

(5) I only care about how accurately the explanation describes
the behavior of the agent

(6) I don’t care if it takes me a long time to understand/parse
the explanation

(7) I care more about accuracy of an explanation rather than
its ease-of-understanding to me

(8) I need an explanation which explains every aspect of the
underlying AI algorithm

(9) The type (e.g. feature importance, language, etc.) of expla-
nation I receive does not matter to me

(10) I can work with any type of explanation
(11) I do not need an explanation personalized to me
(12) I am satisfied as long as I receive an explanation
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Figure 4: An example of the saliency map explanation from our study.

Figure 5: An example of the decision tree explanation in our study.
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