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Abstract— The need for opponent modeling and tracking
arises in several real-world scenarios, such as professional
sports, video game design, and drug-trafficking interdiction.
In this work, we present Graph based Adversarial Modeling
with Mutual Information (GrAMMI) for modeling the behavior
of an adversarial opponent agent. GrAMMI is a novel graph
neural network (GNN) based approach that uses mutual in-
formation maximization as an auxiliary objective to predict
the current and future states of an adversarial opponent with
partial observability. To evaluate GrAMMI, we design two
large-scale, pursuit-evasion domains inspired by real-world
scenarios, where a team of heterogeneous agents is tasked with
tracking and interdicting a single adversarial agent, and the
adversarial agent must evade detection while achieving its own
objectives. With the mutual information formulation, GrAMMI
outperforms all baselines in both domains and achieves 31.68%
higher log-likelihood on average for future adversarial state
predictions across both domains.

I. INTRODUCTION

Opponent modeling is the ability to use prior knowledge to
predict an opponent’s behavior, whose internal states are not
fully observable. The need for opponent modeling can arise
in several real-world scenarios, such as search-and-rescue,
border patrol, professional sports, or military surveillance,
where an intelligent, evasive target must be monitored under
partial observability [16] by a team of surveilling agents.

In our work, we address opponent modeling in the settings
of military surveillance and drug trafficking interdiction.
To safeguard the health and well-being of people across
the globe, it is imperative to develop advanced adversarial
tracking and interdiction strategies to aid law enforcement.
In this work, we propose a novel deep learning framework
GrAMMI (Graph based Adversarial Modeling with Mutal
Information) for opponent modeling in challenging, large-
scale domains inspired by various real-world scenarios.

Opponent modeling and tracking involve two key syner-
gistic components: 1) the use of prior observations to infer
a model of the opponent’s behavior and 2) leveraging this
model to observe and track the opponent actively, aiming
to gather more observations of the opponent’s behavior.
This is a highly challenging problem as we only have
access to a limited number of observations of the adversary
currently being tracked (dependent on our tracking ability),
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Fig. 1. Narco-Traffic Interdiction: An adversarial opponent (red vessel) is
tracked by a team of heterogeneous pursuit agents (shown in green) under
partial observability. The trajectory forecast T steps in the future is shown
via multi-colored 2D Gaussians

partial information is provided upon observation of an ad-
versary (e.g., the adversary’s latent intentions are hidden
information), and an intelligent adversary will change its
behavior upon detection to minimize future detection. As
adversaries may have multiple possible destinations, latent
preferences across destinations, and adapt such preferences
upon detection, uncertainties across a large state-space must
be effectively maintained and updated during observation
and lack-of observation. The ability to maintain a multi-
hypothesis belief over the adversary is pivotal for effective
opponent models.

Traditionally, target tracking (adversarial and otherwise)
has been dominated by classical filtering methods such as
Kalman Filters [4], [14] and Particle Filters [7], [12], [20],
where a dynamic motion model of the target is assumed to be
known [21]. Such model-based filtering approaches require
the target’s perspective (i.e., access to true target states) and
tend to work well only if the dynamics model of the target is
known or can be estimated accurately. In our work, we focus
on domains that do not have access to the true states of the
opponent nor the opponent’s true motion model, and hence
we choose not to rely on model-based approaches. Inspired
by the recent success of model-free approaches for agent
modeling problems in domains such as visual tracking and
trajectory forecasting [11], [27], we develop a graph-based,
model-free approach, GrAMMI, that uses an auxiliary mutual
information objective for tracking multiple hypotheses of the
opponent’s states under partial observability.

While most prior works in opponent modeling have been
restricted to small grid worlds [23], we seek to perform



adversarial opponent tracking in large state spaces, 100×
the size of those considered in prior work. Hence, we create
two novel, open-source domains – Narco Traffic Interdic-
tion and Prison Escape, inspired by real-world scenarios.
Narco Traffic Interdiction is designed to address illegal drug
trafficking by sea (mainly in shipping containers), which
is estimated to be rapidly growing and accounted for over
90 percent of cocaine seized globally in 2021 [2]. Prison
Escape is designed as a complex pursuit-evasion domain
inspired by military surveillance problems, where a highly
intelligent adversary is capable of adapting its behaviors
to evade the tracking agents. Each domain is designed as
a grid-world environment with a grid size in the order
of ∼ 103 × 103. The state space within each domain is
large: O((m × n)k), where m × n is the grid size, and
k is the total number of agents in the environment. In
both domains, a single adversarial opponent is pursued by
a team of heterogeneous tracker agents (i.e., agents with
different capabilities, such as speed and detection accuracy),
and these agents must utilize their heterogeneous capabilities
to coordinate and best track the adversary. Furthermore, the
detection ability of the tracker agents can degrade across the
terrain, e.g., denser forest results in lower detection ability.
Despite the challenges posed in these domains, we show
that our proposed approach GrAMMI can outperform all
baselines across various evaluation metrics for both domains
on varying levels of difficulty.

Contributions: Our key contributions are two-fold.
• First, we propose GrAMMI, a deep-learning architec-

ture that predicts the present and future states of an
adversarial agent using a mutual information formula-
tion and multi-agent graph communication. Our results
demonstrate that incorporating a mutual information
maximization objective improves the estimation of an
adversary’s location by disentangling latent embed-
dings to account for multimodal hypotheses explicitly.
GrAMMI achieves 40.54% and 18.39% higher log-
likelihood on average across all baselines for the Prison
Escape scenario and Narco Traffic Interdiction domains,
respectively.

• Second, we introduce two new adversarial domains with
continuous action spaces, where an intelligent adversary
is pursued by a team of heterogeneous agents. We open-
source these domains at https://github.com/
CORE-Robotics-Lab/Opponent-Modeling to
motivate further research in opponent modeling.

II. RELATED WORKS

Reasoning about the goals, beliefs, and behaviors of op-
ponents can enable agents to develop effective strategies for
succeeding in opponent modeling settings. In this work, we
propose to use neural networks to learn the representations of
opponents. Most prior works in opponent modeling assume
constant access to opponent states or observations during
both training and inference to learn predictive models of
opponent behavior [8], [10], [19]. Such an assumption is un-
realistic due to the fact that the opponent is non-cooperative

and that each agent is only equipped with a limited field of
view. Thus, the agents may not know the true location of the
opponent at all times. Only recent work by Papoudakis et al.
forgoes this assumption by eliminating access to opponent
information during inference [18]. However, they simply use
the latent representation from the variational autoencoder
(trained with full state information) for downstream RL
tasks. Further, prior works are limited to predicting opponent
behavior over a short horizon in small domains [8], [18]. To
the best of our knowledge, we are the first to look at opponent
modeling under partial and limited observability (i.e., with
no access to opponent information for model inputs) for
complex, large-scale domains. Furthermore, we evaluate the
performance of our proposed approach in predicting the
future states of an adversarial opponent for both short and
long horizons.

Adversarial Opponent Modeling can be framed as a Par-
tially Observable Markov Game (POMG), where we utilize
limited observations from a set of tracking agents to predict
opponent behavior. This is highly similar to the problem
of imitation learning, where observations or states can be
used to infer a mapping from user states/observations to
actions. Multimodality in opponent modeling may arise from
an adversary’s latent preferences, a lack of observations
resulting in an expansion across possible locations over time,
or due to the adversary employing multimodal evasive be-
haviors. Prior work in multimodal imitation learning address
heterogeneity [9], [15], [17], [24] and suboptimality [3], [22],
[25] of expert demonstrations (state-action pairs), by typi-
cally employing deep generative models such as Generative
Adversarial Networks (GANs) or Variational Autoencoders
(VAEs) to discover salient latent factors that can account
for multimodality. Such approaches utilize the full state
information of the agent that they are modeling. In contrast,
we aim to learn multimodal predictions for adversary states
under partial and limited observability, i.e., we only have
access to sparse, intermittent observations of the opponent.

III. BACKGROUND

A. Partially Observable Markov Game

We define the opponent modeling problem as a Partially
Observable Markov Game (POMG), which consists of a set
of states S, a set of private agent observations Oi, a set
of actions Ai, i ∈ {1, · · ·N} for N-agents with transition
function T : S × A1 × . . . × AN 7→ S . At each time step
t, each agent i receives an observation Ot

i ∈ Oi, chooses an
action ati ∈ Ai, and receives a reward rti based on the reward
function R : S × Ai 7→ R. The initial state is drawn from
an initial state distribution ρ. Opponent modeling involves
two teams – tracking agents (A+) and adversaries (A−). In
both our domains, we have a single adversary being tracked
by a team of heterogeneous agents. Thus, our approach,
GrAMMI, learns a mapping from a history of observations of
the tracker agents, Ot−H:t

i∈A+ to the future state of the adversary,
St+Ti∈A− , where H refers to a length of history and T refers
to a timepoint in the future.

https://github.com/CORE-Robotics-Lab/Opponent-Modeling
https://github.com/CORE-Robotics-Lab/Opponent-Modeling


B. Graph Neural Networks

Graph Neural Networks (GNNs) allow deep learning
approaches to learn from data with graph structures [26].
Graphs are represented as G = (V,E), where V is the set
of nodes and E is the set of edges. For every edge eij ∈ E,
eij = (vi, vj) where vi is the start node and vj is the end
node. Graphs may contain both node and edge features where
each node vi ∈ V has a corresponding vector of xvi ∈ RD.

GNN layers utilize message passing to aggregate feature
vectors from neighboring nodes in the graph. The update rule
for learning node representations in GNNs is described by
Equation (1)

h
(l)
i = σ

∑
j∈Ni

1√
didj

(h
(l−1)
j W (l))

 (1)

In Equation (1), h
(l)
i represents the features of vi at layer

l. Ni is the set of neighboring nodes for vi, di = |Ni| is
the degree of node vi, W (l) is a learned weight parameter
for layer l, and σ(·) is a non-linear activation function. We
utilize GNNs to model team interaction across tracker agents
in our domains.

IV. METHOD

A. Problem Formulation

In this work, we aim to generate the current and future
state distributions for a dynamic adversarial opponent, from
the observations of a team of N heterogeneous tracker agents
{Ai, i ∈ A+}, each of which has a semantic type Ci (for
instance, camera, search party, helicopter). We refer to the
team of tracker agents as the blue team (A+), and the red
team (A−) refers to the adversarial opponent being tracked.
We may use the terms blue team for tracker agents and red
team for the adversarial opponent interchangeably.

We model the predicted states of the adversarial agent as
a multimodal probability distribution over the space of the
map to account for the possibility of multiple distinct futures
for the adversary, given that we only have access to limited,
partial observations of the adversary from the blue agents.

At time t, each blue agent Ai’s state Sti ∈ RD consists
of its current location (xti, y

t
i ), a one-hot encoding for the

agent’s semantic type Ci, and the current timestep t in the
episode. Each blue agent’s observation Ot

i ∈ R3 consists of a
flag to denote whether or not the blue agent detected the ad-
versary and the detected location of the adversary (bti, x̂

t
i, ŷ

t
i ),

We assume a centralized communication framework, where
all blue team agents can communicate their observations to
each other at every timestep and, thus, maintain a common
opponent detection history {dj}Nd

j=1, where Nd is the number
of detections from the start of the episode, and dj is the
detected location of the opponent (i.e., (x̂t, ŷt)) at time t = j
by any agent in A+. Further, we assume that all detections
of the opponent are accurate, i.e., there is no discordance in
the opponent’s estimated location when multiple blue team
agents observe the opponent.

Given a history of blue team states for the previous
H timesteps, S

(t−H:t)
A+ ∈ R(H+1)×N×D, and the shared

detection history, {dj}Nd
j=1, our goal is to perform filter-

ing (T = 0) and prediction (T > 0) of the adversary
Yt = S

(t+T )
A− = {x(t+T )

A− , y
(t+T )
A− } ∈ R2. We represent

our probabilistic model as the distribution p(Yt|X t), where
X t = (S

(t−H:t)
A+ , {dj}Nd

j=1). For the rest of the paper, we will
drop the time t for brevity.

B. Network Architecture

In this section, we describe our model (Figure 2) for
predicting the current and future states of an adversary given
a history of observations for the blue team agents – p(Y|X ).
Our approach utilizes a combination of mutual information
maximization to parameterize the components of a Gaussian
mixture model. The architecture consists of four components,
1) encoding the past history of detections (fθ), 2) encoding
the agent positions through a graph neural network (gθ), 3)
mixture of Gaussians decoder (pψ) and 4) mutual information
network (qϕ). Below, we discuss how fθ and gθ are used
to produce an encoded embedding, e, and how we enable
prediction of adversary location via pψ and gθ.

1) Encoding Detection History: First, the shared detection
history {dj}Nd

j=1 is encoded in network fθ. The history
of detections does not include agent information, as we
design this network to focus solely on detections by any
agent. Agent positions are passed through network gθ, which
consists of a combination of an LSTM and Homogeneous
GNN and outputs a joint embedding encoding all agent
location history. The LSTM network is used to encode the
timeseries information of the blue agent locations, while the
GNN is utilized to combine the embeddings from separate
agents together through two rounds of message passing. We
concatenate the embeddings from the detection network fθ
and agent position network gθ as our encoder embedding e.

We compare our models both with and without the agent
position network, gθ, as agent tracks may not always be
available. For example, in the narcotics domain, we may
receive detection information from other countries but they
may not be willing to share how the information was
gathered or disclose the locations of their assets at all times.

2) Accounting for Multimodality: Traditionally, multi-
hypothesis tracking is difficult as there is a combinatoric
growth for the search space, making it computationally
expensive to track all hypotheses [13]. To account for this,
we use an end-to-end approach to learn the parameters of
a Gaussian Mixture Model to capture the multimodalities
within the tracks. The adversary can be going to a number
of locations and the model must account for this uncertainty.
Gaussian mixture models are usually paramaterized such
that the network learns multiple outputs for each mixture
component, comprising πk, µk, and σ2

k, where k ∈ G. Here,
G denotes the number of Gaussians, and πk corresponds to
the mixing coefficients. We instead learn a network, pψ that
uses a single output for each component, and the mixture
component is parameterized by a categorical variable, ω to
produce a bi-variate Gaussian, Y ∼ N (µ,Σ) and a weight,



Fig. 2. Our proposed architecture GrAMMI uses graph neural networks with mutual information maximization of Gaussian components to predict the
location of an adversarial target for large-scale domains with partial observability. The data buffer consists of trajectories collected by online interaction
within our two domains.

wk ∈ W . We utilize a softmax over the output weights
W to produce the mixing coefficients πk for the mixture.
A bi-variate Gaussian is used to capture both the x and y
dimension of the opponent’s location. We show empirically
that this formulation 1) generalizes better to account for the
uncertainty and 2) allows us to utilize a mutual information
maximization term to regularize the mixture components.
Finally, the posterior mutual information network qϕ takes
as input the bi-variate Gaussian output Y, e and predicts a
categorical distribution over the categorical variable used to
parameterize the decoder. We discuss how this network qϕ
is trained in the next section.

C. Loss Function

The total loss function used for training our network is the
weighted sum of log-likelihood loss for the tracking of the
adversary and the mutual information maximization term.

L = E[log pθ(Y|X )]− λI(ω; z,Y). (2)

In information theory, the mutual information (MI) be-
tween X and Y , denoted as I(X;Y ), measures the amount
of shared information learned from one variable with knowl-
edge of the other. This can be defined in terms of the
difference in entropy between the two distributions:

I(X;Y ) ≜ H(X)−H(X|Y ) = H(Y )−H(Y |X) (3)

Mutual information maximization has been used in In-
foGAN [5] to produce latent codes that disentangle hidden
characteristics within generated images in GANs, and in In-
foGAIL [15], where latent embeddings were used to capture
different demonstration styles in an imitation learning setting.

Our novel approach utilizes mutual information maximiza-
tion to regulate the components of a Gaussian mixture model
distribution. We show that this auxiliary objective conditions
the mixture model to better account for the uncertainty and
capture the different modalities within trajectories.

We derive an objective function to maximize mutual
information by determining a lower-bound below:

I(ω; e,Y) = H(ω)−H(ω|e,Y)

= Eω∼P (ω),Y∼f(z,ω)[logP (ω|e,Y)]] +H(ω)

= EY∼f(z,ω)[DKL(P (ω|e,Y)||Q(ω̂|e,Y))]+

Eω∼P (ω),Y∼f(z,ω)[log(qϕ(ω|e,Y)] +H(ω)

≥ Eω∼P (ω),Y∼f(z,ω)[log(qϕ(ω|e,Y)] +H(ω)
(4)

We parameterize P (ω) as a uniform categorical
distribution where each component (ωk) is represented
as a one-hot categorical variable. The term
Eω∼P (ω),Y∼f(z,ω)[log(qϕ(ω|e,Y)] then reduces to∑
k∈G p(ω)log(qϕ(ωk|e,Y). This can also be interpreted as

the cross entropy loss between the predicted ω̂k and true ωk
used to generate Y .

Other researchers have utilized variational inference mod-
els such as variational autoencoders and conditional varia-
tional autoencoders to learn a latent space of which a gen-
erative model can be used to produce multi-modal outputs.
However, we find that due to the partially observable nature
of our domain, the process of sampling the latent variable and
minimizing the log probability of the ground truth location
is insufficient for capturing the dynamics of the game. We
therefore require a method for the loss function to explicitly
reason about all latent hypotheses rather than sampling.

V. EVALUATION

In this section, we describe our contributed novel oppo-
nent modeling domains, the datasets and baselines used to
compare our proposed approach, and the metrics used in
evaluating the performance of all models.

A. Domains

We create two challenging multi-agent coordination do-
mains called Narco Traffic Interdiction and Prison Escape,
inspired by real-world scenarios, for assessing our proposed
approach. These environments are partially observable, and
several orders of magnitude larger than previous multi-
agent Predator-Prey games [23]. We utilize these two diverse



domains to show the generalizability of our approach to
different opponent modeling problems.

In both domains, a single adversarial opponent is pursued
by a team of heterogeneous tracker agents. The goal of
the adversary is to reach a hideout or goal location while
avoiding detection by the tracker agents. The adversary will
actively change its path to the goal or the goal itself to
evade the tracking agents when detected. The goal of the
tracker agents is to continuously track and predict the future
locations of the adversary. We assume centralized knowledge
across agents on the same team, i.e., all tracker agents
have knowledge of the other agents and share the adversary
detection history. Further, the ability to track the adversary
depends on the tracking agent type (e.g., an aircraft has a
larger detection radius compared to other tracker agents) and
is also terrain-dependent.

1) Narco Traffic Interdiction: This domain simulates ille-
gal maritime drug trafficking on a 7884×3538 grid along the
Central American Pacific Coastline. The adversary, a drug
smuggler, is pursued by a team of heterogeneous tracker
agents comprising airplanes and marine vessels. Airplanes
have a greater search radius and speed than marine vessels,
but only the vessels can capture the smuggler. Smugglers
must first reach certain rendezvous points before heading
to the hideouts, representing drug handoffs at sea. The
locations of hideouts and rendezvous points are unknown
to the tracking team. Episodes start after the team learns
one location of the smuggler and end when the smuggler
reaches a hideout or is captured by law enforcement (similar
to other predator-prey environments [23]). Future work may
incorporate real-time wave data [1].

2) Prison Escape: In this task, a heterogeneous team of
cameras, search parties, and helicopters (blue team) must
coordinate to track an escaped prisoner (red team). The game
is played on a 2428×2428 map with varying terrains where
each cell on the grid represents the (x, y) location. This
domain is motivated by scenarios in military surveillance and
border patrol, where there is a need to track and intercept
adversarial targets to ensure safety of the general population.

Unlike the Narco domain, where the tracking team has
no knowledge of hideout locations, we assume that the
blue team has knowledge of a subset of hideouts a priori
in the Prison Escape scenario. However, the hideouts are
sampled at random without replacement from a fixed set for
every rollout. We design the Prison Escape scenario to be
more challenging than the Narco domain by including more
complex evasive behaviors for the prisoner and a fog-of-
war that reduces the detection range of the tracking agents.
To analyze long horizon predictions, the tracking agents can
only track but not capture the prisoner. The episode only
terminates when either the prisoner has reached a hideout or
after maximum timesteps (T = 72 hours = 4320 steps).

3) Agent Policies: We create heuristic policies for both
the adversarial agent and also the blue team to collect pairs
of blue team observation and adversary states (X t,Yt) to
test our prediction algorithms.
Adversary Policy: We create a challenging adversarial pol-

Fig. 3. Prisoner Escape Scenario: (Left) We show a subset of trajectories
taken by the adversarial opponent to go to different hideouts. The darker
regions on the map indicate the low visibility range (fog-of-war). (Right)
The Mixture of Gaussians for opponent state estimation from GrAMMI for
different prediction horizons

icy that attempts to avoid the blue agents and go to unknown
hideouts as discretely as possible. The adversary has two
main modes of travel 1) traveling to an unknown hideout and
2) active evasion of blue agents. In 1), if the adversary has not
detected any of the blue agents nearby, it follows an A-Star
path planning algorithm to an unknown hideout. The A-Star
algorithm minimizes the cost of both the shortest distance to
the goal and also the densest forest regions to evade detection
from the blue team. In 2), the adversary has detected at least
one of the active blue agents. To avoid further detection, the
adversary plans a path to the nearest dark forest to attempt to
lose track of the blue team. If unsuccessful for a set amount
of time, the adversary plans a path to a known hideout.
Blue Team Policy: We also create blue team policies that
attempt to track and follow the adversary. The blue team has
four main modes of tracking 1) converging at a detection
point, 2) intercepting along a velocity vector, 3) executing a
spiral search pattern, and finally 4) going towards a random
location. If there has been a single detection point thus far,
all the blue agents will travel from their current location to
the detected point. If more detection arrive during this time,
the agents will travel along the vector inferred from the last
two detections. Finally, if the blue agents did not receive any
additional detections, they perform a local search around the
last detected location to attempt to find the prisoner.

B. Datasets

We evaluate GrAMMI on two Narco Traffic Interdiction
datasets - Smuggler-Low, Smuggler-High with opponent de-
tection rates, 13.8% and 31.5%, and three Prison Escape
datasets - Prisoner-Low, Prisoner-Medium, Prisoner-High
with opponent detection rates, 12.9%, 44.0% and 63.1%
respectively. The detection rates are adapted by changing the
detection radius of the pursuit agents. For each dataset, we
collect 450 rollouts, initialized by different random seeds,
and split into train, validation, and test sets as 66.7% −
22.2% − 11.1% respectively. All metrics reported in Tables
I and II are evaluated on the held-out test set after training
each baseline for 100 epochs with three seeds.



C. Baselines

We compare our proposed model against various recurrent
neural network configurations with and without a mutual
information objective. We implement our method and base-
lines and report performance after training for 100 epochs
averaged over three random seeds. We note that we do not
use other imitation learning baselines such as InfoGAIL as
the sparsity of observations makes it difficult to learn a policy
for the adversary.

1) LSTM: We test a standard Long-Short Term Memory
module where the input is a vector holding all past
agent detections. The output is a Gaussian mixture
model parameterized such that each component has its
own output.

2) Variational Autoencoder (VAE): We utilize a modified
VAE approach inspired by prior work in opponent
modeling [18]. We modify the approach to only in-
clude partial observations of the pursuit team as input
(comparable to our other baselines).

3) Variational Recurrent Neural Networks (VRNN): The
VRNN was first used for modeling sequential data such
as natural speech and handwriting [6]. Here, VRNN
is used as a generative baseline for comparison. The
VRNN contains a Variational Autoencoder (VAE) at
every timestep to model the dependencies between
latent random variables across subsequent timesteps.
The VRNN utilizes a conditional prior distribution zt
and approximate posterior that are both dependent on
the prior hidden state ht−1.

D. Metrics

For all the datasets, we assume access to the ground truth
(GT) locations of the adversary for evaluation.

1) Log-Likelihood (LL): The mean LL of the GT adver-
sary location under the multi-modal output distribution
generated by the model.

2) Average Displacement Error (ADE): The mean l2
distance between the GT and the predicted adversary
location.

3) Confidence Threshold (CTδ): The fraction of time
steps for which the model predicts that the opponent
is within a distance δ from the GT location with
probability greater than some threshold (say p ≥ 0.5).

VI. RESULTS AND DISCUSSIONS

We evaluate the performance of GrAMMI on the two
domains: Narco Traffic Interdiction and Prison Escape. We
benchmark our approach against several state-estimation
baselines including 1) VRNNs [6] and 2) Opponent VAEs
[18]. We also provide ablations for our model with and with-
out 1) mutual information maximization, 2) agent position
GNN encoder, and 3) structure of a categorical variable for
the Gaussian mixture model. We train models with three
random seeds for every condition and time horizon and
average the results. We show our results in Table I and II
for the two domains, spanning three different time horizons
and five different detection rates along with visualizations

of the prediction output in Figure 3. The time horizon of
0 min indicates the estimation of the adversary location at
the current timestep. We find that our models (ablations with
and without MI and GNN) outperform all baselines on log
likelihood, ADE, and confidence threshold. We denote the
way we parameterize the mixture of Gaussians as ωMM for
ω Mixture Model.

A. Mutual Information Impact

We find that mutual information posterior (MI) increases
the log-likelihood and confidence threshold while lowering
the ADE, especially for short prediction horizons. The mu-
tual information term has a smaller effect when predicting
further into the future, likely because of the problem’s in-
creased difficulty. Our models outperform variational models
because they explicitly account for mixture components in
the negative log-likelihood loss, limiting the number of
possible outputs the decoder can use and reasoning over
the multi-modal hypothesis space better. Variational methods
have worked well in high-density, fully observable filtering
and prediction domains, but we find in our domains that
these sparse detections do not provide enough information
to create a useful posterior distribution.

B. Ablation Study

1) Utilizing a Categorical Variable for the Mixture of
Gaussians: In this ablation, we compare the LSTM model to
our model without mutual information and the GNN (Ours
w/o GNN & MI). These two models have the same agent
history detection encoder but different parameterizations for
the Gaussian mixture model. The LSTM model utilizes
multiple outputs for each mixture component, while our
model uses a single output for multiple mixture components.
We find that even with the same loss function, our model
drastically outperforms the LSTM model. We theorize that
this formulation may lead to better performance due to the
shared parameters used within the decoder.

2) Agent Position Encoder: We analyze how the GNN
encoder affects the model (Ours vs Ours w/o GNN). We
compare results with and without agent tracks, as agent
tracks may not always be available to the observers. We hy-
pothesized that encoding a history of tracking agent locations
can help the models generalize, as this information informs
the models where the opponent has not been in previous
timesteps. We find that including the agent tracks produces
better results for the Smuggler-High domain on predicting all
timestep horizons, but results are mixed regarding the other
datasets where the agent encoder improves the log-likelihood
on some of the higher detection-rate datasets (Prisoner-Mod,
Prisoner-High). Since our domains have such a large search
space, the amount of information gained from paths where
no detection has occurred is small. In smaller domains,
the information gained by occupying a state and viewing
surrounding states is a much larger percentage. This may be
the reason why the datasets with higher detection radii in
Prisoner-Mod and Prisoner-High achieve better performance
with the agent encoder.



Prisoner-Low

Log-Likelihood ADE CTδ

GNN ωMM MI 0 min 30 min 60 min 0 min 30 min 60 min 0 min 30 min 60 min

LSTM - - - 4.901 4.135 2.843 0.069 0.090 0.136 0.910 0.844 0.728
VRNN Seq - - - 4.421 4.217 3.850 0.106 0.093 0.119 0.738 0.677 0.610
VAE Opponent - - - 5.121 3.973 3.685 0.085 0.095 0.119 0.723 0.600 0.561
Ours (w/o GNN & MI) - ✓ - 5.784 5.504 4.460 0.060 0.083 0.109 0.958 0.916 0.891
Ours (w/o GNN) - ✓ ✓ 6.381 5.606 4.702 0.060 0.080 0.110 0.960 0.925 0.902

Includes Agent Position
Ours (w/o MI) ✓ ✓ - 4.609 5.071 4.117 0.062 0.082 0.112 0.960 0.926 0.876
Ours ✓ ✓ ✓ 5.230 4.845 4.789 0.061 0.081 0.107 0.957 0.931 0.857

Prisoner-Medium

Log-Likelihood ADE CTδ

GNN ωMM MI 0 min 30 min 60 min 0 min 30 min 60 min 0 min 30 min 60 min

LSTM - - - 5.858 4.091 2.836 0.066 0.088 0.125 0.918 0.830 0.618
VRNN Seq - - - 3.732 4.214 3.599 0.172 0.086 0.110 0.495 0.666 0.553
VAE Opponent - - - 5.432 4.372 3.281 0.063 0.080 0.117 0.734 0.665 0.445
Ours (w/o GNN & MI) - ✓ - 7.214 5.065 4.256 0.047 0.078 0.110 0.973 0.939 0.883
Ours (w/o GNN) - ✓ ✓ 7.981 5.288 4.385 0.049 0.077 0.110 0.965 0.952 0.901

Includes Agent Position
Ours (w/o MI) ✓ ✓ - 7.026 4.970 4.109 0.048 0.078 0.113 0.969 0.922 0.882
Ours ✓ ✓ ✓ 8.406 5.270 4.059 0.049 0.073 0.113 0.972 0.943 0.898

Prisoner-High

Log-Likelihood ADE CTδ

GNN ωMM MI 0 min 30 min 60 min 0 min 30 min 60 min 0 min 30 min 60 min

LSTM - - - 6.955 4.110 2.555 0.042 0.059 0.111 0.946 0.823 0.528
VRNN Seq - - - 5.037 4.345 2.967 0.105 0.059 0.100 0.714 0.731 0.538
VAE Opponent - - - 2.991 4.172 2.754 0.200 0.054 0.123 0.528 0.657 0.382
Ours (w/o GNN & MI) - ✓ - 8.515 4.422 3.297 0.016 0.057 0.095 0.965 0.923 0.803
Ours (w/o GNN) - ✓ ✓ 10.862 4.535 3.221 0.015 0.056 0.092 0.953 0.932 0.801

Includes Agent Position
Ours (w/o MI) ✓ ✓ - 8.346 4.518 3.147 0.018 0.049 0.098 0.965 0.892 0.753
Ours ✓ ✓ ✓ 11.094 4.389 3.202 0.015 0.046 0.092 0.970 0.910 0.795

TABLE I
PRISON ESCAPE ENVIRONMENT RESULTS FOR DIFFERENT PREDICTION HORIZONS. UNDERLINED AND BOLDED INDICATE THE BEST MODELS WITH

AND WITHOUT AGENT POSITIONS, RESPECTIVELY

VII. LIMITATIONS AND FUTURE WORK

Our work has several limitations: We are currently unable
to generate predictions for multiple time horizons. Addi-
tionally, more advanced agent heuristics could be used to
represent a distribution of strategies to make the filtering
and prediction tasks harder and further evaluate the efficacy
of our model. Reinforcement learning could be used to
provide new evasive behaviors covering a wider range of
strategies. Future work includes encoding the terrain in-
formation regarding detection ranges to better capture the
evasive behaviors of the adversary, and investigating the
generalizability of our approach to changing domains and/or
changing behaviors of the adversary. We can additionally
account for the error uncertainty in sensors with sensor fusion
for the adversary’s state estimation.

VIII. CONCLUSION

In conclusion, our proposed approach, GrAMMI, for ad-
versarial opponent tracking in large state spaces, utilizes a

deep learning architecture that predicts the present and future
states of an adversarial agent from partial observations of its
trajectory. Our approach shows significant improvement over
variational methods and demonstrates its generalizability
through two contributed open-source domains, Narco Traffic
Interdiction and Prison Escape.
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