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Abstract— Gradient-based approaches in reinforcement
learning (RL) have achieved tremendous success in learning
policies for continuous control problems. While the perfor-
mance of these approaches warrants real-world adoption in
domains, such as in autonomous driving and robotics, these
policies lack interpretability, limiting deployability in safety-
critical and legally-regulated domains. Such domains require
interpretable and verifiable control policies that maintain high
performance. We propose Interpretable Continuous Control
Trees (ICCTs), a tree-based model that can be optimized
via modern, gradient-based, RL approaches to produce high-
performing, interpretable policies. The key to our approach
is a procedure for allowing direct optimization in a sparse
decision-tree-like representation. We validate ICCTs against
baselines across six domains, showing that ICCTs are capable
of learning interpretable policy representations that parity or
outperform baselines by up to 33% in autonomous driving
scenarios while achieving a 300x-600x reduction in the number
of policy parameters against deep learning baselines. We release
our codebase at https://github.com/CORE-Robotics-Lab/ICCT.

I. INTRODUCTION

Reinforcement learning (RL) with deep function approx-
imators has enabled the generation of high-performance
continuous control policies across a variety of complex
domains, from robotics [1] and autonomous driving [2] to
protein folding [3] and traffic regulation [4]. While the
performance of these policies opens up the possibility of
real-world adoption in domains such as autonomous driving
and robotics, the conventional deep-RL policies used in prior
work [1], [2], [4] lack interpretability, limiting deployability
in safety-critical and legally-regulated domains [5], [6], [7],
[8]. White-box approaches, as opposed to typical black-box
models (e.g., deep neural nets) used in deep-RL, model
decision processes in a human-readable representation. Such
approaches afford interpretability, allowing users to gain
insight into the model’s decision-making behavior. Utilizing
white-box approaches within machine learning can help to
build trust, ensure safety, and enable end-users to inspect
policies before deploying them to the real world [9], [10],
[11]. In this work, we present a novel tree-based architec-
ture that affords gradient-based optimization with modern
RL techniques to produce high-performance, interpretable
policies for continuous control problems.

Prior work [9], [12], [10] has attempted to approximate
interpretability via explainability, a practice that can have
severe consequences [13]. While the explanations produced
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in prior work can help to partially explain the behavior
of a control policy, the explanations are not guaranteed to
be accurate or generally applicable across the state-space,
leading to erroneous conclusions and a lack of accountability
of predictive models [13]. In contrast to local explana-
tions, an interpretable model provides a transparent global
representation of a policy’s behavior. This model can be
understood directly by its structure and parameters [14]
(e.g., linear models, decision trees, and our ICCTs), offering
verifiability and guarantees that are not afforded by post-
hoc explainability frameworks. Few works have attempted
to learn an interpretable model directly; rather, prior work
has attempted policy distillation to a decision tree [15],
[16], [17] or imitation learning via a decision tree across
trajectories generated via a deep model [18], leaving much
to be desired. Interpretable RL remains an open challenge
[19]. In this work, we directly produce high-performance, in-
terpretable policies represented by a minimalistic tree-based
architecture augmented with low-fidelity linear controllers
via RL, providing a novel interpretable RL architecture. Our
Interpretable Continuous Control Trees are human-readable,
allow for closed-form verification (associated with safety
guarantees), and parity or outperform baselines by up to 33%
in autonomous driving scenarios.

II. METHOD

In this section, we introduce our ICCTs, a novel in-
terpretable reinforcement learning architecture. We provide
several extensions to prior DDT frameworks (detailed in
Section V) within our proposed architecture including 1)
a differentiable crispification procedure allowing for opti-
mization in a sparse decision-tree like representation, and
2) the addition of sparse linear leaf controllers to increase
expressivity while maintaining legibility.

A. ICCT Architecture

Our ICCTs are initialized to be a symmetric decision tree
with nl decision leaves (red nodes in Figure 1) and nl − 1
decision nodes (blue nodes in Figure 1). The tree depth is
given by log2(nl). Each decision leaf is represented by a
linear sparse controller that is operated on x⃗. Decisions are
routed via decision nodes towards a leaf controller, which
is then used to produce the continuous control output (e.g.,
acceleration or steering wheel angle).

Each decision node, i, has an activation steepness weight,
α, associated weights, w⃗i, with cardinality, m, matching that
of the input feature vector, x⃗, and a scalar bias term, bi,
similar to that of Equation 7. Each leaf node, ld, where
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Fig. 1: The ICCT framework (left) displays decision nodes, both in their fuzzy form (orange blocks) and crisp form (blue
blocks), and sparse linear leaf controllers with pointers to sections discussing our contributions. A learned representation
of a high-performing ICCT policy in Lunar Lander (right) displays the interpretability of our ICCTs. Each decision node
is conditioned upon only a single feature and the sparse linear controllers (to control the main engine throttle and left/right
thrusters) are set to have only one active feature.

d ∈ {1, . . . , nl}, contains per-leaf weights, β⃗d ∈ Rm, per-
leaf selector weights that learn the relative importance of
candidate features, θ⃗d ∈ Rm, per-leaf bias terms, ϕ⃗d ∈ Rm,
and per-leaf scalar standard deviations, γd. We note that
if the action space is multi-dimensional, then only the leaf
controllers (and associated weights) are expanded across |A|
dimensions, where |A| is the cardinality of the action space.
For each action dimension, the mean of the output action
distribution is represented by the linear controller, ld.

ld ≜ (u⃗ ◦ β⃗d)
T (u⃗ ◦ x⃗)− u⃗T ϕ⃗d = β⃗T

d x⃗− u⃗T ϕ⃗d (1)

Before enforcing leaf node sparsity (Section II-B.3), u⃗ =
[1, ..., 1]T is an all-ones vector, representing a selection of
all input features for the leaf node. The output action can be
determined via sampling (a ∼ N (β⃗T

d x⃗ − u⃗T ϕ⃗d, γd)) during
training and directly via the mean during runtime. We term
decision nodes that are represented as Equation 7 as fuzzy
decision nodes, displayed by the orange rectangles within
the left-hand side of Figure 1. Similarly, we term the leaf
node, ld, which is represented in the dense representation of
β⃗T
d x⃗ − u⃗T ϕ⃗d, as a fuzzy leaf node. It is worth noting that

we parameterize the bias term as a vector ϕ⃗d instead of a
scalar to provide a corresponding bias for each feature and
facilitate feature-wise optimization for the bias.

Utilizing a novel differentiable crispification procedure
to convert fuzzy decision nodes into crisp decision nodes
and fuzzy leaf nodes into sparse leaf nodes, our model
representation follows that of a decision tree with sparse
linear controllers at the leafs (shown on the right-hand side of
Figure 1). We further discuss our differentiable crispification
procedure in Sections II-B.1 and II-B.2 and leaf controller
sparsification procedure in Section II-B.3.

B. ICCT Key Elements

In this section, we discuss our ICCT’s interpretable pro-
cedure for determining an action given an input feature. In
Algorithm 1, we provide general pseudocode representing
our ICCT’s decision-making process. At each timestep, the
ICCT model, I(·), receives a state feature, x⃗. To determine
an action in an interpretable form, in Steps 1 and 2 of

Algorithm 1, we start by applying the differentiable crispi-
fication approaches of NODE CRISP and OUTCOME CRISP
to decision nodes so that each decision node is only con-
ditioned upon a single variable (Section II-B.1), and the
evaluation of a decision node results in a Boolean (Section
II-B.2). Once the operations are completed, in Step 3,
we can utilize the input feature, x⃗, and logically evaluate
each decision node until arrival at a linear leaf controller
(INTERPRETABLE NODE ROUTING). The linear leaf con-
troller is then modified, in Step 4, to only condition upon
e features, where e is a sparsity parameter specified a priori
(Section II-B.3). Finally, an action can be determined via
sampling from a Gaussian distribution conditioned upon
the mean generated via the input-parameterized sparse leaf
controller, l∗d, and scalar variance maintained within the leaf,
γd, (Step 6) during training or directly through the outputted
mean (Step 8) during runtime.

Algorithm 1 ICCT Action Determination
Input: ICCT I(·), state feature x⃗ ∈ S, controller sparsity e,
training flag t ∈ {TRUE, FALSE}
Output: action a ∈ R

1: NODE CRISP(σ(α(w⃗T
i x⃗− bi))) → σ(α(wk

i x
k − bi))

2: OUTCOME CRISP(σ(α(wk
i x

k−bi)))→ 1(α(wk
i x

k−bi) > 0)

3: ld ← INTERPRETABLE NODE ROUTING(x⃗)
4: l∗d ← ENFORCE CONTROLLER SPARSITY(e, ld)
5: if t then
6: a ∼ N (l∗d(x⃗), γd)
7: else
8: a← l∗d(x⃗)
9: end if

1) Decision Node Crispification: The NODE CRISP pro-
cedure in Algorithm 1 recasts each decision node to split
upon a single dimension of x⃗ to achieve sparsity while main-
taining differentiable. Instead of using a non-differentiable
argument max function as in [20] to determine the most
impactful feature dimension, we utilize a softmax function,
also known as softargmax [21], described by Equation 2.
In this equation, we denote the softmax function as f(·),
which takes as input a set of class weights and produces class
probabilities. Here, w⃗i represents a categorical distribution



with class weights, individually denoted by wj
i , and τ is the

temperature, determining the steepness of f(·).

f(w⃗i)k =
exp

(wk
i

τ

)
∑m

j exp
(wj

i

τ

) (2)

We utilize a differentiable one hot function, g(·), which
produces a one-hot vector with the element associated with
the highest-weighted class set to one and all other elements
set to zero, as shown in in Equation 3.

z⃗i = g(f(|w⃗i|)) (3)

Here, |w⃗i| represents a vector with absolute elements within
w⃗i. We maintain differentiability in the procedure described
in Equation 3 by a differentiable argument max function (Al-
gorithm 4) which utilizes the straight-through trick [22]. We
provide an algorithm detailing the NODE CRISP procedure
within the Appendix (Section VI-A).

2) Decision Outcome Crispification: Here, we describe
the second piece of our online differentiable crispifica-
tion procedure, noted as OUTCOME CRISP in Algorithm 1.
OUTCOME CRISP translates the outcome of a decision node
so that the outcome is a Boolean decision rather than a
set of probabilities generated via a sigmoid function (i.e.,
p = yi for True/Left Branch and q = 1− yi for False/Right
Branch). We start by creating a soft vector representation of
the decision node output v⃗i = [α(wk

i x
k − bi), 0], for the ith

decision node. Placing v⃗i through a softmax operation, we
can produce the probability of tracing down the left branch or
right. We can then apply the differentiable one-hot function,
g(·), to produce a hard decision of whether to branch left or
right, denoted by yi and described by Equation 4. Essentially,
the decision node will evaluate to TRUE if α(wk

i x
k−bi) > 0

and right otherwise. This process can be expressed as an
indicator function 1(α(wk

i x
k − bi) > 0).

(yi, 1− yi) = g(f(v⃗i)) (4)

We provide an algorithm detailing the OUTCOME CRISP
procedure within Section VI-B.

3) Sparse Linear Leaf Controllers: After applying the
decision node and outcome crispification to all decision
nodes and outcomes, the decision can be routed to leaf
node (Step 3). This section describes the procedure to
translate a linear leaf controller to condition upon e fea-
tures (ENFORCE CONTROLLER SPARSITY procedure in Al-
gorithm 1), enforcing sparsity within the leaf controller and
thereby, enhancing ICCT interpretability.

Equation 5 displays the procedure for determining a k hot
encoding, u⃗d, that represents the k (or in our case, e) most
impactful selection weights within a leaf’s linear controller.
The differentiable k hot function, denoted by h(·), takes
as input a vector of class weights and returns an equal-
dimensional vector with k elements set to one. The indexes
associated with the elements set to one match the k highest-
weighted elements within the input feature.

u⃗d = h(f(|θ⃗d|)) (5)

Here, |θ⃗d| represents a vector with absolute elements within
θ⃗d. We maintain differentiability and formulate a differen-
tiable top-k function in Equation 5 by iteratively applying
the differentiable argument max function (Algorithm 4) for
k times. In Equation 6, we transform a fuzzy leaf node, for
leaf, ld (Equation 1), into a sparse linear sub-controller, l∗d,
with the sparse feature selection vector, u⃗d.

l∗d ≜ (u⃗d ◦ β⃗d)
T (u⃗d ◦ x⃗) + u⃗T

d ϕ⃗d (6)

A depiction of the sparse sub-models can be seen at the
bottom of Figure 1, where the sparsity of the sub-controllers,
e, is set to 1 and the dimension of the action space is 2.

III. EXPERIMENTS

A. Environments

We evaluated our proposed methods and baselines across
six domains, including two common continuous control
environments: Inverted Pendulum [23] and Lunar Lander
[24], [25], and four autonomous driving scenarios: Lane-
Keeping provided by [26] and Single-Lane Ring, Multi-Lane
Ring, and Figure-8 all provided by the Flow [2]. We provide
additional details within Section XII-B.

B. Baselines

We compare our methods against interpretable models,
black-box models, and models that can be converted post-
hoc into an interpretable form. We also include the number of
parameters1 for each method, shown in Table I. The details of
the baselines and the calculation of the number of parameters
are presented in Section XII-A in the appendix.

C. Results and Discussion

We present the results of our trained policies in Table I.
We provide the performance of each method alongside the
associated complexity of each benchmark in Table I across
three sections, with the top section representing interpretable
approaches that maintain static distributions at their leaves,
the middle section containing interpretable approaches that
maintain linear controllers at their leaves, and the bottom
section containing black-box methods.

Static Leaf Distributions (Top): The frameworks of DT,
DT w\ DAgger, CDDT-Crisp, ICCT-static maintain similar
representations and are equal in terms of interpretability
given that the approaches have the same depth. We see
that across three of the six domains, ICCT-static is able to
widely outperform both the DT and CDDT-Crisp models.
In the remaining three domains, ICCT-static outperforms
CDDT-Crisp by a large margin, and achieves competitive
performance compared to DTs, even without accessing any
superior expert policy.

Controller Leaf Distributions (Middle): Here, we rank
frameworks (top-down) by their relative interpretability. As
the sparsity of the sub-controller decreases, the interpretabil-
ity diminishes. We see that most approaches are able to

1We only consider the active parameters involved during the deployment
of the trained model.



TABLE I: In this table, we display the results of our evaluation. For each evaluation, we report the mean (± standard error)
and the complexity of the model required to generate such a result. Our table is broken into three segments, the first containing
equally interpretable approaches that utilize static distributions at their leaves. The second segment contains interpretable
approaches that maintain linear controllers at their leaves. The ordering of methods denotes the relative interpretability. The
third segments displays black-box approaches. We bold the highest-performing method in each segment, and break ties in
performance by model complexity. We color table elements in association with the number of parameters and performance.
Reddish colors relate to a larger number of policy parameters and lower average reward. All presented results are averaged
over 5 seeds.

Worst to Best:
Method Common Continuous Control Problems Autonomous Driving Problems

Inverted Pendulum Lunar Lander Lane Keeping Single-Lane Ring Multi-Lane Ring Figure-8

DT 155.0± 0.9 −285.5± 15.6 −359.0± 11.0 123.2 ± 0.03 503.2± 24.8 831.1± 1.1
256 leaves (766 params) 256 leaves (1022 params) 256 leaves (766 params) 32 leaves (94 params) 256 leaves (1022 params) 256 leaves (766 params)

DT w\ DAgger 776.6± 54.2 184.7± 17.3 395.2 ± 13.8 121.5 ± 0.01 1249.4± 3.4 1113.8 ± 9.5
32 leaves (94 params) 32 leaves (126 params) 16 leaves (46 params) 16 leaves (46 params) 31 leaves (122 params) 16 leaves (46 params)

CDDT-Crisp 5.0± 0.0 −451.6± 97.3 −43526.0± 15905.0 68.1± 18.7 664.5± 192.6 322.9± 47.1
2 leaves (5 params) 8 leaves (37 params) 16 leaves (61 params) 16 leaves (61 params) 16 leaves (77 params) 16 leaves (61 params)

ICCT-static 984.0 ± 10.4 192.4 ± 10.7 374.2±55.8 120.5± 0.5 1271.7 ± 4.1 1003.8±27.2
32 leaves (125 params) 32 leaves (157 params) 16 leaves (61 params) 16 leaves (61 params) 16 leaves (77 params) 16 leaves (61 params)

ICCT-1-feature 1000.0± 0.0 190.1± 13.7 437.6± 7.0 121.6± 0.5 1269.6± 10.7 1072.4± 37.1
8 leaves (45 params) 8 leaves (69 params) 16 leaves (93 params) 16 leaves (93 params) 16 leaves (141 params) 16 leaves (93 params)

ICCT-2-feature 1000.0± 0.0 258.4± 7.0 458.5± 6.3 121.9 ± 0.5 1280.4±7.3 1088.6 ± 21.6
4 leaves (29 params) 8 leaves (101 params) 16 leaves (125 params) 16 leaves (125 params) 16 leaves (205 params) 16 leaves (125 params)

ICCT-3-feature 1000.0 ± 0.0 275.8± 1.5 448.8± 3.0 120.8± 0.5 1280.8 ± 7.7 1048.7± 46.7
2 leaves (17 params) 8 leaves (133 params) 16 leaves (157 params) 16 leaves (157 params) 16 leaves (269 params) 16 leaves (157 params)

ICCT-L1-sparse 1000.0± 0.0 265.2± 4.3 465.5± 4.3 121.5± 0.3 1275.3± 6.7 993.2± 14.6
4 leaves (29 params) 8 leaves (165 params) 16 leaves (253 params) 16 leaves (765 params) 16 leaves (2189 params) 16 leaves (509 params)

ICCT-complete 1000.0± 0.0 300.5 ± 1.2 476.6 ± 3.1 120.7± 0.5 1248.6± 3.6 994.1± 29.1
2 leaves (13 params) 8 leaves (165 params) 16 leaves (253 params) 16 leaves (765 params) 16 leaves (2189 params) 16 leaves (509 params)

CDDT-controllers Crisp 84.0± 10.4 −126.6± 53.5 −39826.4± 21230.0 97.9± 12.0 639.62± 160.4 245.5± 48.5
2 leaves (13 params) 8 leaves (165 params) 16 leaves (253 params) 16 leaves (765 params) 16 leaves (2189 params) 16 leaves (509 params)

MLP-Lower 1000.0± 0.0 231.6± 49.8 474.7± 5.8 121.8 ± 0.6 646.4± 151.2 868.4± 100.9
79 params 110 params 127 params 151 params 221 params 103 params

MLP-Upper 1000.0± 0.0 288.7± 2.8 467.9± 8.5 121.8± 0.3 1239.5± 4.2 1077.7± 31.1
121 params 222 params 407 params 709 params 3266 params 1021 params

MLP-Max 1000.0± 0.0 298.5 ± 0.7 478.2 ± 6.7 121.7± 0.4 1011.9± 141.3 1104.3 ± 9.4
67329 params 68610 params 69377 params 77569 params 83458 params 73473 params

CDDT 1000.0 ± 0.0 226.4± 44.5 464.7± 5.4 120.9± 0.5 1248.0 ± 6.4 1033.2± 24.1
2 leaves (8 params) 8 leaves (86 params) 16 leaves (226 params) 16 leaves (706 params) 16 leaves (1036 params) 16 leaves (466 params)

CDDT-controllers 1000.0± 0.0 289.0± 2.4 469.7± 11.1 120.1± 0.3 1243.8± 3.6 1010.9± 25.7
2 leaves (16 params) 8 leaves (214 params) 16 leaves (418 params) 16 leaves (1410 params) 16 leaves (2092 params) 16 leaves (914 params)

achieve the maximum performance in the simple domain
of Inverted Pendulum. However, CDDT-controllers-crisp en-
counters an inconsistency issue from the crispification pro-
cedure of [20], [27] and achieves very low performance. We
provide additional results within Section VIII-B that provide
deeper insight into the interpretability-performance tradeoff.

Black-Box Approaches (Bottom): MLP-based ap-
proaches and fuzzy DDTs are not interpretable. While the
associated approaches perform well across many of the
six domains, the lack of interpretability limits the utility
of such frameworks in real-world applications such as au-
tonomous driving. We see that in half the domains, highly-
parameterized architectures with over 65,000 parameters are
required to learn effective policies (denoted by the dark
orange shade).
Comparison Across All Approaches: We see that across
all continuous control domains, CDDT-Crisp and CDDT-
controllers Crisp typically are the lowest-performing models.
This displays the drawbacks of the crispification procedure
of [20], [27] and the resultant performance inconsistency.
Comparing our ICCTs to black-box models, we see that in all
domains, we parity or outperform deep highly-parameterized

models in performance while reducing the number of param-
eters required by orders of magnitude. In the difficult Multi-
Lane Ring scenario, we see to we can outperform MLPs by
33% on average while achieving a 300x-600x reduction in
the number of policy parameters required.

IV. CONCLUSION

In this work, we present a novel tree-based model for
continuous control problems. Our Interpretable Continuous
Control Trees (ICCTs) can directly optimize over a sparse
decision-tree-like representation for RL in continuous ac-
tion spaces, and can maintain sparsity-adjustable liner sub-
controllers on the leaf nodes. As a result, ICCTs have
competitive performance to that of deep neural networks
across six continuous control domains, including four dif-
ficult autonomous driving scenarios, while maintaining high
interpretability. The maintenance of both high performance
and interpretability within an interpretable reinforcement
learning architecture provides a paradigm that would be
beneficial for the real-world deployment of autonomous
systems.
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APPENDIX

V. DIFFERENTIABLE DECISION TREES (DDTS)

Prior work has proposed differentiable decision trees
(DDTs) [28], [20] – a neural network architecture that
takes the topology of a decision tree (DT). Similar to a
decision tree, DDTs contain decision nodes and leaf nodes;
however, each decision node within the DDT utilizes a
sigmoid activation function (i.e., a “soft” decision) instead
of a Boolean decision (i.e., a “hard” decision). Each decision
node, i, is represented by a sigmoid function, displayed in
Equation 7.

yi =
1

1 + exp(−α(w⃗T
i x⃗− bi))

(7)

Here, the features vectors describing the current state, x⃗, are
weighted by w⃗i, and a splitting criterion, bi, is subtracted to
form the splitting rule. yi is the probability of decision node
i evaluating to TRUE, and α governs the steepness of the

sigmoid activation, where α → ∞ results in a step function.
Prior work with discrete-action DDTs modeled each leaf
node with a probability distribution over possible output
classes [20], [27]. Leaf node distributions are then weighted
by the probability of reaching the respective leaf and summed
to produce a final action distribution over possible outputs.

A. Conversion of a DDT to a DT

DDTs with decision nodes represented in the form of
Equation 7 are not interpretable. As DDTs maintain a one-to-
one correspondence to DTs with respect to their structure,
prior work [20], [27] proposed methodology to convert a
DDT into an interpretable decision tree (a process termed
“crispification”). To create an interpretable, “crisp” tree from
a differentiable form of the tree, prior work adopted a
simplistic procedure. Starting with the differentiable form,
prior work first converts each decision node from a linear
combination of all variables into a single feature check (i.e.,
a 2-arity predicate with a variable and a threshold). The
feature reduction is accomplished by considering the feature
dimension corresponding to the weight with the largest
magnitude (i.e., most impactful), k = argmaxj |w

j
i | where

j represents the feature dimension, resulting in the decision
node representation yi = σ(α(wk

i x
k − bi)). The sigmoid

steepness, α, is also set to infinity, resulting in a “hard”
decision (branch left OR right) [20], [27]. After applying
this procedure to each decision node, decision nodes are
represented by yi = 1(wk

i x
k− bi > 0). As each leaf node is

represented as a probability mass function over output classes
in prior work, leaf nodes, l, must be modified to produce
a single output class, o, during crispification. As such, we
can apply an argument max, od = argmaxa l

a
d , where a

denotes the action dimension, to find the maximum valued
class within the dth leaf distribution.
Drawbacks: This simplistic crispification procedure results
in an interpretable crisp tree that is inconsistent with the
original DDT (model differences arise from each argmax
operation and setting α to infinity). These inconsistencies can
lead to performance degradation of the interpretable model,
as we show in Section III, and results in an interpretable
model that is not representative of and inconsistent with the
model learned via reinforcement learning.2

In our work, we design a novel architecture that updates
its parameters via gradient descent while maintaining an
interpretable decision-tree-like representation, thereby avoid-
ing any inconsistencies generated through a post-training
crispification procedure. To the best of our knowledge, we
are the first work to deploy an interpretable tree-based
framework for continuous control.

VI. METHOD DETAILS

A. Node Crispification Algorithm

In this section, we provide a description of node crispifi-
cation, displayed in Algorithm 2 and termed NODE CRISP

2For figure simplicity, when displaying the crisp node (blue block), we
assume α > 0 in the fuzzy node (orange block). If α < 0, the sign of the
inequality would be flipped (i.e., wki

i xki < b).

https://proceedings.neurips.cc/paper/2021/file/05d74c48b5b30514d8e9bd60320fc8f6-Paper.pdf
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in the main paper. We display the transformation performed
by node crispification by the green arrow in Figure 2. Node
crispification recasts each decision node to split upon a single
dimension of the input.

Algorithm 2 Node Crispification: NODE CRISP(·)
Input: The original fuzzy decision node σ(α(w⃗T

i x⃗−bi)), where i
is the decision node index, w⃗i = [w1

i , w
2
i , ..., w

j
i , w

j+1
i , ..., wm

i ]T ,
and m is the number of input features
Output: The intermediate decision node representation
σ(α(wk

i x
k − bi)) (see the green box in Figure

2)
1: z⃗i = DIFF ARGMAX(|w⃗i|) (DIFF ARGMAX(·) displayed in

Algorithm 4)
2: w⃗′

i = z⃗i ◦ w⃗i

3: σ(α(wk
i x

k − bi)) = σ(α(w⃗′T
i x⃗− bi))

Node crispification takes as input the original fuzzy de-
cision node, σ(α(w⃗T

i x⃗ − bi)), where all input features are
used in determining the output of decision node i. The
output of this function is an intermediate decision node,
σ(α(wk

i x
k − bi)), where the output of decision node i is

only determined by a single feature, xk. To perform this
transformation, in Line 1, we use the differentiable argument
max function (in Algorithm 4) to produce a one-hot vector,
z⃗i, with the element associated with the most impactful
feature set to one and all other elements set to zero. In Line
2, we element-wise multiply the one-hot encoding, z⃗i, by
the original weights, w⃗i, to produce a new set of weights
with only one active weight, w⃗′

i. In Line 3, we show that by
multiplying x⃗ by w⃗′

i, we can obtain the intermediate decision
node σ(α(wk

i x
k − bi)), where k is the index of the most

impactful feature (i.e., k = argmaxj(|w
j
i |)).

Fig. 2: This figure displays the process of our proposed dif-
ferentiable crispification, including node crispification (Algo-
rithm 2) and outcome crispification (Algorithm 3). The node
crispification sparsifies the weight vector w⃗i and chooses
the most impactful feature. The outcome crispification helps
make a “hard” decision instead of a “soft” decision to choose
one branch. Both operations are differentiable.

B. Outcome Crispfication Algorithm

In this section, we provide a description of out-
come crispification, displayed in Algorithm 3 and termed

OUTCOME CRISP in the main paper. We display the trans-
formation performed by outcome crispification by the blue
arrows in Figure 2. Outcome crispification translates the
outcome of a soft decision node to a hard decision node,
resulting in a Boolean output from the decision node rather
than a set of probabilities.

Algorithm 3 Outcome Crispfication: OUTCOME CRISP(·)
Input: The intermediate decision node σ(α(wk

i x
k − bi)), where i

is the decision node index, k = argmaxj(|wj
i |), and wj

i is the jth
element in w⃗i

Output: Crisp decision node 1(α(wk
i x

k − bi) > 0) (see the blue
box in Figure 2)

1: v⃗i = [α(wk
i x

k − bi), 0]
2: z⃗′i = DIFF ARGMAX(v⃗i) (DIFF ARGMAX(·) displayed in Algo-

rithm 4)
3: 1(α(wk

i x
k − bi) > 0) = z⃗′i[0]

Outcome crispification takes in the intermediate decision
node σ(α(wk

i x
k − bi)), which outputs the probability of

branching left. The output of OUTCOME CRISP is the crisp
decision node, 1(α(wk

i x
k − bi) > 0), a Boolean decision

to trace down to the left branch OR right. In Line 1, we
construct a soft vector representation of the decision node
i’s output, v⃗i, by concatenating α(wk

i x
k − bi) with a 0. In

Line 2, we use the differentiable argument max function
(in Algorithm 4) to produce a one-hot vector, z⃗′i, where the
first element represents the Boolean outcome of the decision
node. In Line 3, we show that the output of the crisp decision
node, 1(α(wk

i x
k−bi) > 0), can be obtained by choosing the

first element of vector z⃗′i (we use bracket indexing notation
here, starting with zero).

C. Differentiable Argument Max Function for Differentiable
Crispification

In this section, we provide a description of the differen-
tiable argument max function which is utilized in both deci-
sion node crispification and decision outcome crispification.

Algorithm 4 Differentiable Argument Max Function for
Crispification: DIFF ARGMAX(·)
Input: Logits q⃗
Output: One-Hot Vector h⃗

1: h⃗soft ← f(q⃗)
2: h⃗hard ← ONE HOT(ARGMAX(f(q⃗))) (step 1 for g(·))
3: h⃗ = h⃗hard + h⃗soft−STOP GRAD(⃗hsoft) (step 2 for g(·))

Similar to [29], we present a function call (in Algorithm
4) that can be utilized to maintain gradients over a non-
differentiable argument max operation. The function takes in
a set of logits, q⃗, and applies a softmax operation, denoted by
f(·), to output h⃗soft, as shown in Line 1. In Line 2, the logits
are transformed using an argument max followed by a one-
hot procedure, causing the removal of gradient information,
producing h⃗hard. In Line 3, we combine h⃗soft, h⃗hard, and
STOP GRAD(⃗hsoft) to output h⃗, where STOP GRAD(·) keeps
the values and detaches the gradient data of h⃗soft. The



Fig. 3: A Learned ICCT in Lunar Lander

outputted value of h⃗ is equal to that of h⃗hard. However,
the gradient maintained within h⃗ is associated with h⃗soft.
Automatic differentiation frameworks can then utilize the
outputted term to perform backpropagation. Here, the opera-
tions in Line 2 and Line 3 compose function g(·) in Equation
3 and 4.

VII. QUALITATIVE EXPOSITION OF ICCT
INTERPRETABILITY

Here, we provide a display of the utility and interpretabil-
ity of a learned ICCT model. In Figure 3, we present our
learned ICCT model in Lunar Lander, rounding each element
to two decimal places for brevity. The displayed figure
is an ICCT-1-feature model (i.e., only one active feature
within the sparse sub-controller). The 8-dimensional input
in Lunar Lander is composed of position (x1,x2), velocity
(x3,x4), angle (x5), angular velocity (x6), left (x7) and right
(x8) lander leg-to-ground contact. The action space is two-
dimensional: the first (dictated by the top of each pair of the
red-colored leaves) controls the main engine thrust, and the
second (bottom) controls the net thrust for the side-facing
engines. The tree can be interpreted as follows: taking the
leftmost path as an example, if the left leg is not touching
the ground (≤ 0.00 m), the horizontal velocity is greater than
-0.07 m/s, and the angular velocity is greater than 0.00 rad/s,
then the main engine action is 2.1 ∗ (the lander angle)+0.2,
and the side engine action is 9.8 ∗ (the lander angle) − 0.5.
Such a tree has several use cases: 1) An engineer/developer
may pick certain edge cases and verify the behavior of the
lander. Tree-based models are amerable to verification [30].
Furthermore, tree-based models similar to ICCTs can be
verified in linear time [31], while DNN verification is NP-
complete [32]. 2) An engineer can evaluate the decision-
making in the tree and detect anomalies. Furthermore, there
are hands-on use-cases of such a model, such as threshold
editing (directly modifying nodes to increase affordances),
etc.

VIII. ADDITIONAL RESULTS

A. Learning Curves

In Figure 4, we display the learning curves of the eleven
methods across six domains shown in Table 1 of the main
paper. In general, ICCT-complete has competitive or better
performance with regards to running-average rollout rewards
and convergence rate, compared to MLP-Max, MLP-Upper

and fuzzy DDTs in Inverted Pendulum, Lunar Lander, Lane-
Keeping, Sing-Lane Ring, and Multi-Lane Ring, while main-
taining interpretability. We also notice as the sparsity of
the linear sub-controller increases, the performance of ICCT
gradually drops. However, the interpretable approaches of
ICCT-3-feature and ICCT-2-feature still have comparable or
better performance with respect to MLP-Lower and ICCT-
L1-sparse.

B. Ablation: Interpretability-Performance Tradeoff

Here, we provide an ablation study over how ICCT
performance changes with respect to the number of ac-
tive features within our linear sub-controllers and depth
of the learned policies. [33] states that decision trees are
interpretable because of their simplicity and that there is
a cognitive limit on how complex a model can be while
also being understandable. Accordingly, for our ICCTs to
maximize interpretability, we emphasize the sparsity of our
sub-controllers and attempt to minimize the depth of our
ICCTs. Here, we present a deeper analysis by displaying
the performance of our ICCTs while varying the number of
active features, e, from ICCT-static to ICCT-complete (Figure
5a), and varying the number of leaves maintained within the
ICCT from nl = 2 to nl = 32. We conduct our ablation
study within Lunar Lander.

In Figure 5a, we show how the performance of our
ICCTs change as a function of active features in the Sub-
Controller. Here, we fix the number of ICCT leaves to 8.
We see that as the number of active features increase, the
performance also increases. However, there is a tradeoff in
interpretability. As above 200 reward is considered successful
in this domain, a domain expert may determine a point on the
Pareto-Efficiency curve that maximizes the interpretability-
performance tradeoff. In Figure 5b, we show how the per-
formance of our ICCTs change as a function of tree depth
while fixing the number of active features in the ICCT sub-
controller to two. We see a similar, albeit weaker, relationship
between performance and interpretability. As model com-
plexity increases, there is a slight gain in performance and a
large decrease in interpretability. The Pareto-Efficiency curve
provides insight into the interpretability-performance tradeoff
for ICCT tree depth.

C. Ablation: Differentiable Argument Max and Gumbel-
Softmax

In this section, we provide an ablation study on the
differentiable operator used in ICCTs. Here, we substitute
the Softmax function with a Gumbel-Softmax [34] function,
a widely-used differentiable approximate sampling mech-
anism for categorical variables, to perform decision node
crispification, perform decision outcome crispification, and
enforce sub-controller sparsity. Changing ICCT to utilize the
Gumbel-Softmax function as opposed to DIFF ARGMAX(·)
in Algorithm 4 requires modifying the original Softmax



Fig. 4: In this figure, we display the learning curves of eleven methods in six domains shown in the main paper. The rewards
are rollout rewards throughout the training process. The curves in 5 domains except Lane-Keeping are smoothed by a sliding
window of size 5, the curves in Lane-Keeping are smoothed by a sliding window of size 20. The shadow region depicts the
standard error across 5 seeds.

Method Lunar Lander Lane-Keeping
ICCT-complete 300.5± 1.2 476.6± 3.1

ICCT-complete (Gumbel-Softmax) 276.7± 7.0 412.6± 31.3
ICCT-complete (Gumbel-Softmax, Crisp) 239.0± 18.9 309.1± 94.6

ICCT-1-feature 190.1± 13.7 437.6± 7.0
ICCT-1-feature (Gumbel-Softmax) 113.2± 43.1 −853.4± 333.2

ICCT-1-feature (Gumbel-Softmax, Crisp) −20.1± 50.0 −658.114± 345.3
ICCT-2-feature 258.4± 7.0 458.5± 6.3

ICCT-2-feature (Gumbel-Softmax) 161.7± 54.8 −560.6± 251.6
ICCT-2-feature (Gumbel-Softmax, Crisp) 62.3± 82.2 −945.0± 331.0

TABLE II: This table shows performance comparison between ICCTs utilizing our proposed differentiable Argmax function
(DIFF ARGMAX(·) in Algorithm 4), a variant of ICCTs utilizing the Gumbel-Softmax function, and a variant of crisp ICCTs
utilizing the Gumbel-Softmax function. Across each approach, we include ICCTs with fully parameterized sub-controllers
(ICCT-complete) and sparse sub-controllers. We present our findings across Lunar Lander and Lane-Keeping.

function, f , introduced by Equation 2, to f ′ as follows:

f ′(w⃗i)k =
exp

(wk
i +gk

i

τ

)
∑m

j exp
(wj

i+gj
i

τ

) (8)

Here, w⃗i is a m-dimensional vector, [w1
i , · · · , wm

i ]T , and
{gji }mj=1 are i.i.d samples from a Gumbel(0, 1) distribution
[34]. Here, we compare the performance of ICCT-complete,
ICCT-1-feature, and ICCT-2-feature to their variants using
Gumbel-Softmax in Lunar Lander and Lane-Keeping. All the
methods and their corresponding variants are trained using
the same hyperparameters.

From the results shown in Figure 6 and Table II, we find
that the addition of Gumbel noise reduces performance by a
wide margin. Furthermore, comparing crisp ICCTs utilizing
Gumbel-Softmax to ICCTs utilizing Gumbel-Softmax, we
see that due to the sampling procedure within the Gumbel-
Softmax, an inconsistency issue arises between non-crisp and

crisp performance. Such results support our design choice of
the differentiable argument max function.

D. Physical Robot Demonstration

Here, we demonstrate our algorithm with physical robots
in a 14-car figure-8 driving scenario and provide an online,
easy-to-inspect visualization of our ICCTs, which controls
the ego vehicle. We utilize the Robotarium, a remotely acces-
sible swarm robotic research platform [35], to demonstrate
the learned ICCT policy. The demonstration displays the
feasibility of ego vehicle behavior produced by our ICCT
policy and provides an online visualization of our ICCTs. A
frame taken from the demonstrated behavior is displayed in
Figure 7.

IX. UNIVERSAL FUNCTION APPROXIMATION

In this section, we provide a proof to show our ICCTs
are universal function approximators, that is, can represent
any decision surface given enough parameters. Our ICCT



(a) Performance vs. Number of Controller Features

(b) Performance vs. Number of ICCT Leaves

Fig. 5: In this figure, we display the interpretability-
performance tradeoff of our ICCTs with respect to active
features within our linear sub-controllers (Figure 5a) and
tree depth (Figure 5b). Within each figure, we display the
Pareto-Efficiency Curve and denote the reward required for
a successful lunar landing as defined by [25].

architecture consists of successive indicator functions, whose
decision point lies among a single dimension of the feature
space, followed by a linear controller to determine a continu-
ous control output. For simplicity, we assume below that the
leaf nodes contain static distributions. However, maintaining
a linear controller at the leaves is more expressive and thus,
the result below generalizes directly to ICCTs.

The decision-making of our ICCTs can be decomposed as
a sum of products. In Equation 9, we display a computed
output for a 4-leaf tree, where decision node outputs, yi,
are determined via Equation 1 of the main paper. Here,
the sigmoid steepness, α is set to infinity (transforming
the sigmoid function into an indicator function) resulting
in hard decision points (yi ∈ {0, 1}. Equation 9 shows
that the chosen action is determined by computation of
probability of reaching a leaf, y, multiplied by static tree
weights maintained at the distribution, p.

ICCT (x) = p1(y1 ∗ y2) + p2(y1 ∗ (1− y2)) (9)
+ p3((1− y1) ∗ y3) + p4 ∗ ((1− y1) ∗ (1− y3))

Equation 9 can be directly simplified into the form of

G(x) =
∑N

j=1 pjσ(w
T
j x+bj), similar to Equation 1 in [36].

[36] demonstrates that finite combination of fixed, univariate
functions can approximate any continuous function. The key
difference between our architecture is that our univariate
function is an indiator function rather than the commonly
used sigmoid function. Below, we provide two lemmas
to show that indicator functions fall within the space of
univariate functions [36].

Lemma IX.1. An indicator function is sigmoidal.

Proof: This follows from the definition of sigmoidal:
σ(t) → 1 as t → ∞ and σ(t) → 0 as t → −∞.

Lemma IX.2. An indicator function is discriminatory.

Proof: As an indicator function is bounded and measure-
able, by Lemma 1 of [36], it is discriminatory.

Theorem IX.3. Let σ be any continuous discriminatory
function. ICCTs are universal function approximators, that
is, dense in the space of C(In). In other words, there is a
representation of ICCTs, I(x), for which |I(x)− f(x)| < ϵ
for all x ∈ In, for any function, f (f ∈ C(In)), where C(In)
denotes the codomain of an n-dimensional unit cube, In.

Proof: As the propositional conditions hold for Theorem
1 in [36], the result that ICCTs are dense in C(In) di-
rectly follows. We note that as the indicator function jump-
continuous, we refer readers to [37] whom extend UFA for
G(x) =

∑N
j=1 pjσ(w

T
j x+ bj) to the case when σ is jump-

continuous.

X. DYNAMIC DEPTH

In this section, we present a dynamic deepening algorithm
here drawing inspiration from [20]. Allowing our ICCTs
to automatically deepen and increase in complexity has
several advantages. In continuous control, it is typical that
a deployed policy may encounter a covariate shift in a real-
world setting [38]. As such, our ICCT may need to change
to account for features previously thought unimportant. Dy-
namic deepening would allow our ICCTs to mitigate the
encountered covariate shift and represent additional com-
plexities when deployed. Furthermore, the ability to deepen
eliminates the need to set the tree depth a priori.

Algorithm 5 Dynamic Deepening Procedure
Input: Pretrained ICCT P , deepened ICCT Pdeep, controller
sparsity e

1: for i epochs do
2: Collect trajectory rollouts, τ , with P
3: P, Pdeep ←NETWORK UPDATE(P ,Pdeep)
4: H⃗, H⃗deep ← CALCULATE LEAF ENTROPIES(P ,Pdeep , τ )
5: if H(Pdeep) + ϵ < H(P ) then
6: P ← Pdeep

7: Pdeep ← DEEPEN(Pdeep)
8: end if
9: end for

Our proposed procedure for deepening is shown in Al-
gorithm 5. This procedure should be conducted after a



Fig. 6: This figure displays the average running rollout rewards of six methods for the ablation study during training. The
results are averaged over 5 seeds, and the shadow region represents the standard error.

Fig. 7: In this figure, we display our ICCTs controlling a vehicle in a 14-car physical robot demonstration within a Figure-8
traffic scenario. Active nodes and edges are highlighted by the right online visualization, where si represents the speed of
vehicle i, and pi represents the position of vehicle i.

ICCT model, P , has been pretrained with an initial dataset
(e.g., with simulated data for transfer to the real world). At
initialization of the dynamic deepening procedure, two ICCT
models are maintained, a shallow pre-trained version, P , and
deeper-by-one-depth version Pdeep. Both models utilize the
same controller sparsity e. The deepened ICCT is initialized
so that the top-level weights match that of P , and lower-
level weights are randomly initialized. During deployment,
the pre-trained ICCT model, P is utilized to collect trajectory
rollouts, τ , as shown in Line 1 of Algorithm 5. Given
these trajectory rollouts and associated rewards, both models
are updated via gradient descent, as shown by the function
NETWORK UPDATE in Line 3. P is updated via Equation
2 in our main paper. As we do not have access to rollout
trajectories for Pdeep, the model update is simulated by
utilizing the likelihood that Pdeep will take similar actions
to P given the states within τ . In Line 4 of Algorithm 5
(CALCULATE LEAF ENTROPIES), we calculate the entropy
across each leaf within P and Pdeep. As our leaf nodes are
input-parameterized (based on state), we utilize the sample
of trajectories collected in Line 2 to estimate the leaf entropy.
Here, H⃗ and H⃗deep represent a vector of leaf entropies. The
deeper ICCT has more leaves (generated via the deepening
procedure) and, thus, H⃗deep is a higher-dimensional vector.
In Line 5 of Algorithm 5, we compare the entropy of adjacent
leaf nodes between P and Pdeep. For example, in the case

where we have P as a two-leaf tree and Pdeep as a four-leaf
tree, if the entropy of the left leaf node of P is at least ϵ
greater than that of the combined entropy of the two left
leaf nodes of Pdeep, Pdeep has learned a leaf distribution
that is more precise in representing high-performance control
behavior. Thus, in Line 6 and 7 of Algorithm 5, the shallow
model, P , is updated the additional leaves of the deeper
model, Pdeep, and the deeper model, Pdeep, is deepened by
an additional level for each decision tree path that had lower
entropy (determined in Line 5). This procedure continues for
a set number of predefined epochs.

XI. RELATED WORK

Due to recent accidents with autonomous vehicles
(c.f. [39]), there has been growing interest in developing
Explainable AI (xAI) approaches to understand an AV’s
decision-making and ensure robust and safe operation. Ex-
plainable AI (xAI) is concerned with understanding and
interpreting the behavior of AI systems [40]. In recent years,
the necessity for human-understandable models has increased
greatly for safety-critical and legally-regulated domains,
many of which involve continuous control (e.g., specifying
joint torques for a robot arm or the steering angle for an
autonomous vehicle) [41], [5]. In such domains, prior work
[42], [1], [43], [44] has typically used highly-parameterized
deep neural networks in order to learn high-performance
policies, completely lacking in model transparency.



Interpretable machine learning approaches refers to a
subset of xAI techniques that produce globally transparent
policies (i.e., humans can inspect the entire model, as in
a decision tree [45], [46], [47] or rule list [48], [49], [6],
[50]). In particular, tree-based frameworks could represent
complex decision-making processes while maintaining in-
terpretability. Decision trees [45] represent a hierarchical
structure where an input decision can be traced to an output
via evaluation of decision nodes (i.e., “test” on an attribute)
until arrival at a leaf node. Decision nodes within the
tree are able to split the problem space into meaningful
subspaces, simplifying the problem as the tree gets deeper
[51], [52], [53]. Decision trees provide global explanations
of a decision-making policy that are valid throughout the
input space [54], as opposed to local explanations typically
provided via “post-hoc” explainability techniques [55], [20],
[27]. Several approaches have attempted to distill trained
neural network models into decision trees [56], [16]. While
these approaches produce interpretable models, the resulting
model is an approximation of the neural network rather
than a true representation of the underlying model. Our
work, instead, directly learns an interpretable tree-based
policy via reinforcement learning, producing a model that
can be directly verified without utilizing error-prone post-hoc
explainability techniques. We emphasize that explainability
stands in contrast to interpretability, as explanations may
fail to capture the true decision-making process of a model
or may apply only to a local region of the decision-space,
thereby preventing a human from building a clear or accurate
mental model of the entire policy [13], [57], [58], [59].

Recently, [19] presented a set of grand challenges in
interpretable machine learning to guide the field towards
solving critical research problems that must be solved before
machine learning can be safely deployed within the real
world. In this work, we present a solution to directly assess
two challenges: (1) Optimizing sparse logical models such as
decision trees and (10) Interpretable reinforcement learning.
We propose a novel high-performing, sparse tree-based ar-
chitecture, Interpretable Continuous Control Trees (ICCTs),
which allows end-users to directly inspect the decision-
making policy and developers to verify the policy for safety
guarantees.

XII. EXPERIMENT SETTINGS

A. Baselines

We provide a list of baselines alongside abbreviations used
for reference and brief definitions below. We compare against
interpretable models, black-box models, and models that can
be converted post-hoc into an interpretable form. We also
include the number of parameters3 for each method, shown
in Table I. We list the following notations for an easier
understanding of the number of parameters. The number of
leaf nodes is nl (the number of decision nodes is nl − 1).
The dimension of the observation space is m. The number of

3We only consider the active parameters involved during the deployment
of the trained model.

active features within the leaf controllers is e. The dimension
of the action space da. The calculated number of parameters
is denoted as np. Our approach, ICCT-e-feature, has a
number of parameters of np = 3(nl − 1) + (2e+ 1)danl =
(2eda + da + 3)nl − 3.

• Continuous DDTs (CDDT): We translate the framework
of [20] to function with continuous action-spaces by
modifying the leaf nodes to represent static probability
distributions. Here, np = (m+2)(nl−1)+danl = (da+
m+2)nl−m−2. When converted into an interpretable
form post-hoc, this approach is reported as CDDT-crisp
which has a number of parameters: np = 3(nl − 1) +
danl = (3 + da)nl − 3.

• Continuous DDTs with controllers (CDDT-controllers):
We modify CDDT leaf nodes to utilize linear controllers
rather than static distributions. Here, np = (m+2)(nl−
1) + (m+ 1)danl = (mda + da +m+ 2)nl −m− 2.
When converted into an interpretable form post-hoc, this
approach is reported as CDDT-controllers Crisp that has
np = 3(nl−1)+(m+1)danl = (mda+da+3)nl−3.

• ICCTs with static leaf distributions (ICCT-static): We
modify the leaf architecture of our ICCTs to utilize
static distributions for each leaf (i.e., set e = 0). Com-
paring ICCT and ICCT-static displays the effectiveness
of the addition of sparse linear sub-controllers. Here,
np = 3(nl − 1) + danl = (3 + da)nl − 3.

• ICCT with complete linear sub-controllers (ICCT-
complete): We allow the leaf controllers to maintain
weights over all features (no sparsity enforced, i.e., e =
m). Comparing ICCT-complete and CDDT-controllers
displays the effectiveness of the proposed differentiable
crispification procedure. Here, np = 3(nl − 1) + (m+
1)danl = (mda + da + 3)nl − 3.

• ICCT with L1-regularized controllers (ICCT-L1-
sparse): We achieve sparsity via L1-regularization ap-
plied to ICCT-complete rather than enforce sparsity
directly via the ENFORCE CONTROLLER SPARSITY
procedure. While this baseline produces sparse sub-
controllers, there are drawbacks limiting its inter-
pretability. L1-regularization enforces weights to be
near-zero rather than exactly zero. These small weights
must be represented within decision-nodes and thus, the
interpretability of the resulting model is limited. Here,
np = 3(nl−1)+(m+1)danl = (mda+da+3)nl−3.

• Multi-layer Perceptron (MLP): We maintain three vari-
ants of an MLP. The first (MLP-Max) contains a very
large number of parameters, typically utilized in contin-
uous control domains. The second (MLP-Upper) main-
tains approximately the same number of parameters of
our ICCTs with sparse leaf controllers during training,
including all inactive parameters after training (e.g.,
non-top feature weights in decision nodes). The last
(MLP-Lower) maintains approximately the same num-
ber of active parameters as our ICCTs with sparse leaf
controllers during evaluation. The number of parameters
of MLP depends on the size of the network and we



Fig. 8: This figure displays the first three environments we utilized including Inverted Pendulum, Lunar Lander, and Lane-
Keeping.

Fig. 9: In this figure, we display the configuration of each Flow network used in our experimentation. In each image, the
red vehicle is the autonomous agent that utilizes the learned control policy to stabilize traffic flow. Each cyan vehicle is a
simulated human vehicle which contains a noisy acceleration behavior, the severity of which is defined by the user.

count all the weights and bias parameters but leave out
all the optimizer parameters.

• Decision Tree (DT): We train a DT via CART [45]
on state-action pairs generated from MLP-Max. This
baseline represents the distillation approach from a
high-performance black-box policy to an interpretable
model. Here, np = 2(nl − 1) + danl = (2+ da)nl − 2.

• DT w\ DAgger: We utilize the DAgger imitation learn-
ing algorithm [60] to train a DT to mimic MLP-Max.

B. Environments
We provide detailed descriptions for the two common

continuous control problems: Inverted Pendulum and Lunar-
Lander, and autonomous driving domains: Lane-Keeping and
those from Flow, including Single-Lane Ring, Multi-Lane
Ring, and Figure 8.

Inverted Pendulum: Inverted Pendulum (Figure 8(a))
is provided by MujoCo [23] and OpenAI Gym [25]. The
observation includes the cart position, velocity, pole angle,
and pole angular velocity. The goal is to apply a force to the
cart to balance a pole on it and prevent the pole from falling.
A plus one reward is provided at each timestep provided if
the pole keeps upright at each time step.

Lunar Lander: Lunar Lander (Figure 8(b)) is a game
provided by Box2D [24] and OpenAI Gym. The goal is

to land a lunar lander as close to a landing pad between
the flags. The observation is 8-dimensional including the
lander’s current position, linear velocity, tilt, angular velocity,
and information about ground contact. The continuous action
space is two dimensional for controlling the main engine
thruster and side thrusters. At each timestep, the lander
reward is determined by a proximity to the landing pad,
whether each leg is touching the landing pad, and a fuel
cost. The episode ends if the lander crashes and a terminal
reward of -100 is provided. If the lander successfully lands,
a terminal reward of 100 is provided.

Lane-Keeping: Lane-Keeping (Figure 8(c)) is a domain
with continuous actions within highway-env [26]. The ob-
servation is 12-dimensional, which consists of the vehicle’s
lateral position, heading, lateral speed, yaw rate, linear,
lateral, and angular velocity, and the lane information. The
action is the steering angle to control the vehicle. At each
time step, +1 reward will be provided if the vehicle can keep
in the center of the lane. The reward decreases as the vehicle
drives away from the lane center. The terminal condition
within this domain is a maximum timestep of 500.

Flow Domains [2]: Each of the following domains are
custom continuous actions domains provided within the Flow
deep reinforcement learning framework for mixed autonomy



traffic scenarios. Flow utilizes the SUMO traffic simulator,
which allows for both autonomous agents and simulated
human agents. The simulated human agents are constructed
by adjusting the noise factor present within their acceleration
and deceleration control. Stabilization of traffic is defined as
the average velocity of all vehicles approaching a set value
for velocity. The general observation includes the global
positions and velocity of all vehicles in the network. These
are normalized based upon the length and max velocity for
the network, which is defined by the user, and then combined
into a single 1-Dimensional array with a length that is double
the number of vehicles present. The reward is measured by
how closely the network’s average velocity matches the user-
defined average velocity. The episode is terminated if any
collision between two vehicles is detected, or preset time
steps are executed.

Flow Single-Lane Ring Network: The Single-Lane Ring
Network (Figure 9(a)) is a ring road network, with the
objective being to stabilize the flow of all traffic within the
network. A control policy must apply acceleration commands
to an autonomous agent in order to stabilize the flow. There
are 21 human vehicles and 1 ego vehicle, with a maximum
time step of 750.

Flow Multi-Lane Ring Network: The Multi-Lane Ring
network (Figure 9(b)) is a complex ring road network con-
sisting of multiple lanes of traffic, with the objective being
to stabilize the flow of all traffic within the network. The
observation for this network includes the general observation
for Flow networks, as well as the current lane index for each
vehicle. The network holds 21 human vehicle and 1 ego
vehicle. A control policy must apply acceleration commands
and lane changing commands (a continuous value from -1 to
1) to the ego vehicle in order to stabilize the flow of traffic
between both lanes. The maximum step in this domain is set
to 1500.

Flow Figure-8 Network: The Figure-8 Network (Figure
9(c)) is a complex Flow domain as it contains a road section
where the vehicles will cross-over, which is in the center of
the figure-8. The control policy must consider this congestion
point when controlling the ego vehicle, applying acceleration
commands to the autonomous agent in order to stabilize the
flow. The network holds 13 human vehicles besides the ego
vehicle. Here the maximum time step is 1500.

C. Hyperparameters

All methods are trained using SAC with the same structure
of critic network, which consists of an MLP with 2 hidden
layers of 256 units. The buffer size is always set to 1000000,
and the discount factor γ is always set to 0.99. In the
Single-Lane Ring network, the training steps are 100000,
otherwise the training steps are 500000 for all the methods.
The soft update coefficient, τ , is set to 0.005 for ICCT-static
in Inverted Pendulum, and set to 0.01 in all other domains.
We display the learning rates, batch sizes, and network sizes
used for the methods discussed in the paper across each
domain in Tables III-VIII.

TABLE III: Hyperparameters in Inverted Pendulum

Hyperparameter Learning Rate Batch Size Network Size
ICCT-complete 3× 10−4 1024 2 leaves
ICCT-1-feature 6× 10−4 1024 8 leaves
ICCT-2-feature 5× 10−4 1024 4 leaves
ICCT-3-feature 5× 10−4 1024 2 leaves

ICCT-static 5× 10−4 1024 32 leaves
ICCT-L1-sparse 3× 10−4 256 4 leaves

CDDT 3× 10−4 1024 2 leaves
CDDT-controllers 3× 10−4 1024 2 leaves

MLP-Max 3× 10−4 1024 [256, 256]
MLP-U 3× 10−4 1024 [8, 8]
MLP-L 3× 10−4 1024 [6, 6]

TABLE IV: Hyperparameters in Lunar Lander
Hyperparameter Actor Learning Rate Critic Learning Rate Batch Size Network Size

ICCT-complete 5 × 10−4 5 × 10−4 256 8 leaves
ICCT-1-feature 5 × 10−4 5 × 10−4 256 8 leaves
ICCT-2-feature 5 × 10−4 5 × 10−4 256 8 leaves
ICCT-3-feature 5 × 10−4 5 × 10−4 256 8 leaves

ICCT-static 5 × 10−4 3 × 10−4 256 32 leaves
ICCT-L1-sparse 5 × 10−4 5 × 10−4 256 8 leaves

CDDT 5 × 10−4 3 × 10−4 256 8 leaves
CDDT-controllers 5 × 10−4 3 × 10−4 256 8 leaves

MLP-Max 3 × 10−4 3 × 10−4 256 [256, 256]
MLP-U 3 × 10−4 3 × 10−4 256 [10, 10]
MLP-L 3 × 10−4 3 × 10−4 256 [6, 6]

TABLE V: Hyperparameters in Lane-Keeping

Hyperparameter Learning Rate Batch Size Network Size
ICCT-complete 3× 10−4 1024 16 leaves
ICCT-1-feature 3× 10−4 1024 16 leaves
ICCT-2-feature 3× 10−4 1024 16 leaves
ICCT-3-feature 3× 10−4 1024 16 leaves

ICCT-static 2× 10−4 1024 16 leaves
ICCT-L1-sparse 3× 10−4 1024 16 leaves

CDDT 3× 10−4 256 16 leaves
CDDT-controllers 3× 10−4 512 16 leaves

MLP-Max 3× 10−4 256 [256, 256]
MLP-U 3× 10−4 256 [14, 14]
MLP-L 3× 10−4 256 [6, 6]

TABLE VI: Hyperparameters in Sing-Lane Ring Network

Hyperparameter Learning Rate Batch Size Network Size
ICCT-complete 5× 10−4 1024 16 leaves
ICCT-1-feature 5× 10−4 1024 16 leaves
ICCT-2-feature 5× 10−4 1024 16 leaves
ICCT-3-feature 5× 10−4 1024 16 leaves

ICCT-static 5× 10−4 1024 16 leaves
ICCT-L1-sparse 5× 10−4 1024 16 leaves

CDDT 5× 10−4 1024 16 leaves
CDDT-controllers 5× 10−4 1024 16 leaves

MLP-Max 3× 10−4 1024 [256, 256]
MLP-U 3× 10−4 1024 [12, 12]
MLP-L 3× 10−4 1024 [3, 3]

TABLE VII: Hyperparameters in Multi-Lane Ring Network

Hyperparameter Learning Rate Batch Size Network Size
ICCT-complete 5× 10−4 1024 16 leaves
ICCT-1-feature 5× 10−4 1024 16 leaves
ICCT-2-feature 6× 10−4 1024 16 leaves
ICCT-3-feature 5× 10−4 1024 16 leaves

ICCT-static 5× 10−4 1024 16 leaves
ICCT-L1-sparse 5× 10−4 1024 16 leaves

CDDT 5× 10−4 1024 16 leaves
CDDT-controllers 5× 10−4 1024 16 leaves

MLP-Max 5× 10−4 1024 [256, 256]
MLP-U 5× 10−4 1024 [32, 32]
MLP-L 5× 10−4 1024 [3, 3]



TABLE VIII: Hyperparameters in Figure-8 Network

Hyperparameter Learning Rate Batch Size Network Size
ICCT-complete 5.5× 10−4 1024 16 leaves
ICCT-1-feature 6× 10−4 1024 16 leaves
ICCT-2-feature 6× 10−4 1024 16 leaves
ICCT-3-feature 7× 10−4 1024 16 leaves

ICCT-static 5× 10−4 1024 16 leaves
ICCT-L1-sparse 5× 10−4 1024 16 leaves

CDDT 5× 10−4 1024 16 leaves
CDDT-controllers 5× 10−4 1024 16 leaves

MLP-Max 5× 10−4 1024 [256, 256]
MLP-U 5× 10−4 1024 [20, 20]
MLP-L 5× 10−4 1024 [3, 3]
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