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SUMMARY

High-performing human teams leverage intelligent and efficient communication and coordi-

nation strategies to collaboratively maximize their joint utility. Inspired by teaming behaviors

among humans, I seek to develop computational methods for synthesizing intelligent com-

munication and coordination strategies for collaborative multi-robot systems. I leverage both

classical model-based control and planning approaches as well as data-driven methods such

as Multi-Agent Reinforcement Learning (MARL) and Learning from Demonstration (LfD)

to provide several contributions towards enabling emergent cooperative teaming behavior

across robot teams.

In my thesis, I first leverage model-based methods for coordinated control and planning

under uncertainty for multi-robot systems to study and develop techniques for efficiently

incorporating environment models in multi-robot planning and decision making. In these

contributions, I design centralized and decentralized coordination frameworks, at the control-

input and the high-level planning stages, which are informed by and have access to the

model of the world. First, I develop an algorithm for human-centered coordinated control

of multi-robot networked systems in safety-critical applications. I tackle the problems of

enabling a robot team to reason about a coordinated coverage plan through active state

estimation and providing probabilistic guarantees for performance. I then extended these

methods to directly formulate and account for heterogeneity in robots’ characteristics and

capabilities. I design a hierarchical coordination framework, which enables a composite

team of robots (i.e., including robots that can only sense and robots that can only manipulate

the environment) to effectively collaborate on complex missions such as aerial wildfire

fighting.

Model-based approaches provide the ability to derive performance and stability guar-

antees. However, can be sensitive to the accuracy of the model and the quality of the
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heuristic algorithm. As such, I leverage data-driven and Machine Learning (ML) approaches,

such as MARL, to provide several contributions towards learning emergent cooperative

behaviors. I design a graph-based architecture to learn efficient and diverse communication

models for coordinating cooperative heterogeneous teams. Finally, inspired by the theory

of mind in humans’ strategic decision-making model, I develop an iterative model to learn

deep decision-rationalization for optimizing action selection in collaborative, decentralized

teaming.

In recent years, MARL has been predominantly used by researchers to optimize a

reward signal and learning multi-robot tasks. Nevertheless, Reinforcement Learning (RL)

generally suffers from key limitations such as the difficulty of designing an expressive

and suitable reward function for complex tasks, and high sample complexity. As such,

accurate models of human strategies and behaviors are increasingly important. Additionally,

as multi-robot systems become increasingly prevalent in our communities and workplace,

aligning the values motivating robot behaviors with human values is critical. LfD attempts

to learn the correct behavior directly from expert-generated data demonstrations rather

than a reward function. As such, in the last part of my work, I develop a multi-agent LfD

framework to efficiently incorporate humans’ domain-knowledge of teaming strategies for

collaborative robot teams and directly learn team coordination policies from human teachers.

To this end, I propose Mixed-Initiative Multi-Agent Apprenticeship Learning (MixTURE)

framework for human training of robot teams. MixTURE enables robot teams to learn

a humans’ preferred strategy to collaborate, while simultaneously learning end-to-end

emergent communication for the robot team to efficiently coordinate their actions, without

the need for human generated data. MixTURE benefits from the merits of LfD methods over

RL, while significantly alleviating the human demonstrators workload and time required to

provide demonstrations, as well as increasing the System Usability Scale (SUS) and overall

collaboration performance of the robot team.
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CHAPTER 1

INTRODUCTION AND LITERATURE SURVEY

1.1 Motivation

While multi-robot systems are capable of executing time-sensitive, complex, and large-

scale problems, it is challenging to efficiently coordinate such systems and to optimize

the collaborative behavior among robots. Communication is a key necessity to achieve an

effective coordinated policy among agents. This process, in fact, emulates high-performing

human teams where communication is leveraged to build team cognition and maintain

shared mental models to improve team effectiveness [1]. To achieve such capabilities in

multi-robot systems, we require algorithms that enable collective intelligence in robots for

planning and decision-making under uncertainty such that their shared utility is maximized.

Collective intelligence in multi-robot systems refers to the ability of a group of robots to

work together and achieve a goal that is beyond the capability of an individual robot. It

involves combining the individual knowledge and skills of each robot to create a more

sophisticated and intelligent system as a whole [2, 3].

From a control theoretic perspective, multi-robot coordination approaches can be tackled

at two separate levels: (1) high-level decision-making and (2) low-level control [4]. The

high-level decision-making module usually attempts to address the questions of "what

to do?" or "where to go?" and thus, deals with planning a set of objectives (course of

actions) among several possible options through which robot(s) can optimally (or at least

satisfactorily) accomplish their task-objective. On the other hand, the low-level control

module tackles the question of "how to do it?" or "how to go there?" and addresses the

problem of designing appropriate control inputs for robot actuator(s) so that the robot(s) can

follow a future trajectory as closely as possible. A hierarchical control architecture consists
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of both aforementioned low- and high-level modules and usually solves these two modules

consecutively, such that the low-level module generates the control inputs required for the

robot(s) to execute the plan made by the high-level decision-maker [4].

Low-level controllers or high-level policies and plans can be synthesized based on models

(of the world or agents) or learned end-to-end through data (interaction or demonstrated).

Regardless of the approach used, however, the goal of creating a robot team is to build a

group of coordinated agents, empowered via collective intelligence and social dexterity

among themselves, that are capable of true, shoulder-to-shoulder collaboration, rather than

simply co-existing [1]. In this thesis, I seek to develop such computational methods for

synthesizing intelligent communication and coordination strategies for collaborative multi-

robot systems. I leverage both classical model-based control and planning approaches as

well as data-driven methods such as MARL and Multi-Agent Learning from Demonstration

(MA-LfD) to provide several contributions (see section 1.2 for a summary of contributions)

towards enabling emergent cooperative teaming behavior in multi-robot systems.

In tackling the problem of designing or learning multi-agent coordination strategies

through end-to-end models, I specifically focus my studies around three major problems

that are less addressed in prior work: (1) heterogeneous teaming, (2) complex multi-

faceted objective(s), and (3) restless (i.e., changing states regardless of robot actions) and

dynamic environments. In first two chapters (chapter 4-chapter 5), I motivate the multi-

robot coordination and planning problem in the dynamic field-coverage application via

robot teams. Later, in chapter 6-chapter 8, I move beyond the application of multi-robot

systems in collaborative field coverage and investigate robot coordination strategies and

decision-making in a variety of domains and applications.

1.2 Thesis Contributions

The central statement and claim underlaying my works in this thesis is as follows: Enabling

robot teams to efficiently communicate and to reason about their plans, policies, and
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actions-decisions will improve the collective team coordination and collaboration

performance. I support this claim through the following contributions:

• Developing a novel coordinated control framework for UAV teams to enable

human-centered active sensing of dynamic environments: I develop a dual-criterion

objective function based on Kalman uncertainty residual propagation and weighted

multi-agent networked control, which enables the UAVs to actively infer a wildfire’s

propagation model parameters and monitor the fire transitions [5].

• Developing an adaptive control architecture for dealing with uncertain and faulty

communication networks in multi-robot teams: I develop a centralized, coordinated-

control structure for multi-robot teams with uncertain network structure achieved

through a model-reference adaptive control architecture. This approach enables multi-

robot teams to achieve consensus even with disconnected communication graphs [6].

• Creating a multi-agent coordinated planning for cooperative dynamic field Cover-

age with quality-of-service guarantees: Motivated by the problem of aerial wildfire

monitoring, I propose a predictive framework which enables cooperation in multi-UAV

teams towards collaborative dynamic field coverage with probabilistic performance

guarantees. This approach enables UAVs to infer the latent fire propagation dynamics

for time-extended coordination in safety-critical conditions [7, 8].

• Developing a hierarchical coordination framework for heterogeneous, collabora-

tive robot teams: I introduce a Multi-Agent State-Action-Reward-Time-State-Action

(MA-SARTSA) algorithm under Multi-Agent Partially Observable Semi-Markov

Decision Process (MA-POSMDP) formulation as a multi-agent decision-making

framework to enable agents to learn to surveil in an environment with an unknown

number of dynamic targets [9]. MA-SARTSA tackles an asynchronous multi-agent

decision-making process with macro action.
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• Introducing an MARL framework to learn highly efficient and diverse commu-

nication models for coordinating cooperative heterogeneous teams: I introduce

Heterogeneous Policy Networks (HetNet) through which different classes of robots

can learn from scratch to “speak” in binary as a highly-efficient intermediate shared

language among agents and collaborate [10].

• Developing a MARL framework for decision-making under bounded rationality:

I introduce Informational Policy Gradient (InfoPG), which is Inspired by the k-level

reasoning from the cognitive hierarchy theory [11] and strategic decision-making

in humans. InfoPG enables iterated decision rationalization for cooperative MARL

under the assumption of bounded rational agents [12].

• Developing a MA-LfD framework to efficiently incorporate humans’ domain-

knowledge of teaming strategies for collaborative robot teams and directly learn

team coordination policies from human expert teachers: I propose MixTURE

framework for human training of robot teams. MixTURE enables robot teams to learn

a humans’ preferred strategy to collaborate, while simultaneously learning end-to-end

emergent communication for the robot team to efficiently coordinate their actions,

without the need for human generated data.

The remaining of this thesis is organized as follows: chapter 2 presents a through

literature survey of the related prior works. In chapter 3, preliminaries and background

information are provided to help motivate the thesis and review a few fundamental concepts

required in later chapters. Chapter 3 presents two novel model-based approaches ([5]

and [6]) for multi-robot coordination at the node level with applications to dynamic field

coverage via UAV agents. Chapter 4 extends the works in chapter 4 by considering safety-

critical and time-sensitive scenarios where only a limited number of UAVs are available for

allocation or the UAV team consists of robots with heterogeneous capabilities and tasks.

This chapter presents a performance-guaranteed model-predictive approach [7, 8] and a
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data-based solution [9] to plan coordinated policies for robot teams under environment

uncertainty. In chapter 6 a novel method for learning highly-efficient end-to-end multi-agent

coordination and communication policies is presented [13, 10]. Chapter 6 presents an

enhancement over previous data-based and ML solutions for multi-robot coordination by a

novel MARL architecture that enables iterated reasoning and decision-rationalization for

agents of a cooperative multi-robot team [12]. Lastly, chapter 8 presents a novel MA-LfD

framework to efficiently incorporate humans’ domain-knowledge for collaborative robot

teams and directly learn team coordination policies from human teachers.
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CHAPTER 2

LITERATURE SURVEY

This chapter presents a comprehensive literature survey on related prior work in two sub-

categories: (1) recent model-based multi-agent planning and control methods, and (2)

learning end-to-end multi-agent coordination and collaboration policies.

2.1 Model-Based Multi-agent Planning and Control Methods

2.1.1 Dynamic Field Coverage and Mobile Sensor Networks

Recent advances in UAV technology have opened up the possibility of providing real-time,

high-quality fire information to firefighting teams across thousands of acres [14, 15, 16].

However, coordinated control of UAV teams in this volatile setting provides particular

challenges, such as decentralized controller design, task scheduling problems, large-scale

communication, smoke detection and image stabilization, etc. [17, 18, 19, 20, 21].

Among the vision-based fire coverage methods [16, 22, 23, 24], Merino et al. [25]

investigated the utility of visual and infrared cameras on UAVs to monitor the evolution of

the firefront shape and then attempted to extend the proposed approach to a collaborative

scheme performed by multiple UAVs. However, Yuan et al. [26] note that vision-based

approaches for fire monitoring and tracking struggle with image stabilization and camera

obstruction, e.g., due to smoke, which produce significant errors in sensor measurements.

Without addressing these errors properly, relying on such systems can be fatal.

Our work is closely relevant to the cooperative multi-robot target tracking literature.

A comprehensive review of the taxonomy and recent approaches on multi-robot target

detection and tracking is provided by Robin and Lacroix in [27]. An intensity function-

based algorithm is presented in [28] to generate a control law for tracking dynamic targets
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with a group of UAVs. The problem of dynamic distributed task allocation in ground-robot

teams for coordinated target tracking is studied in [29] through a bio-inspired approach.

Mottaghi et al. [30] developed a particle filter-based approach to create a potential field

to track a moving fire with multiple robots. Hausman et al. [31] developed a probabilistic

localization and control method for a UAV team with fixed number of robots which seeks to

minimize the expected future uncertainty of the target position. Both mutual information

and EKF’s covariance are investigated as measures of uncertainty.

A review of the recent methods on the automation methods for wildfire remote sensing

application via UAVs is presented in [32], introducing and discussing three key metrics,

i.e., situational awareness, decisional ability, and collaboration ability, in the recent relevant

literature. Recent work by Sujit et al. [33] proposed a cooperative approach to detect and

monitor multiple spots of fire (i.e. hotspots) using two groups of detector and service UAV

agents. Afghah et al. [14], proposed a distributed leader-follower coalition formation model

to cluster a set of UAVs into multiple coalitions that collectively cover a designated area.

Kumar et al. [34] proposed a cooperative control algorithm to first cooperatively track the

firefront shape for accurate situational awareness and then, autonomously fight the fire using

fire suppressant fluid. Ghamry et al. [35] proposed a distributed algorithm with multiple

stages such as search, confirmation and propagation monitoring for a team of UAVs to

evenly distribute in a leader-follower manner to track an elliptical fire perimeter. Pham

et al. [36] designed a fire heat-intensity based distributed control framework for a team

of UAVs to be capable of closely monitoring a wildfire in open space in order to track

its development. Harikumar et al. [37] proposes a search and dynamic formation control

framework for a multi-UAV system to efficiently search for a dynamic target in an unknown

environment. Pongpunwattana et al. [38] introduced a market-based cooperation planning

system for a team of fixed-wing UAVs operating in a dynamic environment which accounts

for uncertainty in future system states to compute tasks and path plans.

The majority of prior work on distributed control of UAVs, e.g. for MSN applications,
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focuses on maximizing the coverage of a particular area of interest [39, 40], such as an

area of wildfire [41, 14]. Previous studies typically sought to maximize coverage (of a fire

area) either through density-function based approaches [42, 43, 44, 5] or by maximizing the

average pixel density across a terrain [45, 41]. In the latter case, UAV-based wildfire coverage

studies tend to adopt a fire-intensity function for their coverage problem formulation [36,

39, 45, 5, 42, 43, 44] to model areas of fire according to an intensity model.

Many of the aforementioned approaches require an accurate fire-shape function [34]

to work, or assume an enlarging elliptical perimeter for burning area to be monitored and

tracked by moving UAVs [46, 33, 35, 37]. However, assuming a shape model for large-scale

wildfires (when robot help is required) is not accurate [47]. Other approaches such as [36]

use an “interestingness” function in order to enforce UAVs to look for areas of fire with

predefined specifications. However, this function requires accurate, online measurements of

heat intensity over the entire wildfire, which are often unavailable.

Previous image pixel density-based or intensity function-based approaches to distributed

control of UAVs for field coverage have typically sought to maximize the fire coverage, as

their sole objective [36, 14, 39, 40, 48, 49]. However, these approaches do not explicitly

reason (i.e., through tracking and filtering) about a fire’s state (i.e., position, velocity, scale

and associated uncertainty), nor do they develop a predictive model for fire propagation

by key parameters (e.g., fire-spread rate due to available fuel/vegetation and wind). Other

approaches such as [15] and [16] utilized Kalman filter to track fire position on input

image data, using frames centroids as model inputs. Nevertheless, unlike these estimation-

based approaches, in chapter 5 we develop a predictive system with upper-bounds on the

measurement-uncertainties that provides probabilistically-guaranteed performance.

Additionally, the fire-intensity based coverage approaches, such as [36] and [41], tend to

generate a density-function reflecting the heat-intensity in different parts of a terrain. Density-

functions and Voronoi Tessellation based coverage approaches are amongst the most popular

methods for static or dynamic field coverage in which robots are distributed and assigned
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to different parts of a map to maximize coverage [39, 45, 5, 42, 43, 44]. Accordingly,

fire-intensity based coverage approaches [36, 41] typically tend to model the location of a

firefront as the “coolest” or “hottest” part of a fire visible via infrared sensors [36] according

to the wildfire scenario, but this assumptions are not always accurate [50] for the applications

of continuous monitoring and tracking. These methods utilize a fire heat intensity model to

generate a time-varying density function and use artificial potential field to create driving

force to control UAVs towards areas of minima (coolest part of fire) or maxima (hottest part

of fire) [36]. Most of these methods are designed to cover as much of an area as possible with

limited resources without systematically reasoning about the minimum required number

robots for the task (our contributions in chapter 5) or prioritizing coverage areas based on

task requirements or uncertainty of the environment (our contributions in chapter 4).

More closely along the line of our work in chapter 5, Bailon-Ruiz et al. [51] proposed a

model-based planning algorithms to monitor a propagating wildfire using a fleet of UAVs.

The approach tailors a variable neighborhood search to plan surveillance trajectories for

a fleet of fixed-wing aircrafts according to a given fire propagation model and a given

wind model. The fire state predictions are performed for hours into the future by using the

integrated models and are updated through aircraft observations. Despite the similarities to

our work in chapter 5, however, we did not consider the approach in [51] as a baseline for

comparison, since the method assumes both a fire propagation model and a wind model to

be given for making predictions and plans on the scale of hours into future and is designed

for fixed-wing aircrafts with constrained motion dynamics. In our model-based approach in

chapter 4 and chapter 5, we enable UAVs to actively infer fire propagation model parameters

through environment observations and plan accordingly. In addition, the method in [51]

directly plans trajectories for fixed-wing UAVs with constrained differential-drive dynamics

which are not applicable to our presumed omni-directional UAVs in chapter 4 and chapter 5.

The focus of our method in chapter 5, on the other hand, is to provide a performance-

guaranteed plan and an upper-bound on the number of UAV agents needed to monitor the
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fire areas without losing the track quality.

2.1.2 Heterogeneous Multi-Robot Teams

Heterogeneity in robots’ characteristics and roles are introduced to leverage the relative

merits of different agents’ capabilities [52, 9]. A group of heterogeneous robots that are

collaborating on a number of co-dependent tasks to accomplish an overarching mission form

a composite robot team [9, 53, 54]. Due to inherently different state- and action-spaces of

agents in a composite team, communication, coordination, and consequently collaboration

is not straightforward and requires proper considerations to model the interactions among

heterogeneous agents. Additionally, such heterogeneity in a composite team implicitly

entails a multi-faceted team objective such that several disjoint and sometimes competing

objectives need to be successively and actively carried out to accomplish a mission.

Previous studies tackle various aspects of heterogeneous multi-robot teaming by consid-

ering coordination strategies [55], task allocation [56, 33], and path-planning and control [57,

8]. The problem of coordination and collaborative planning between perception and ac-

tion agents has been of keen interest to the wireless communication research community,

referring to the problem as Wireless Sensor and Actor Networks [53, 58]. While most of

this prior work studies static environments (e.g., [55]), this assumption does not hold true

in many environments of interest which are dynamic (e.g., including numerous, moving

targets). Such dynamic environments have attributes of both a Partially Observable Markov

Decision Process (POMDP) and a Restless Bandit Problem [59]. Unfortunately, traditional

Reinforcement Learning (RL) formulations lack the scalability and adaptability with respect

to domain shift in order to tackle real-world problems. Moreover, most of the proposed

nonlearning-based approaches (e.g., mixed-integer linear/non-linear program) fail to handle

the large-scale, dynamic, and stochastic nature of these problems.

Efficient planning and coordination of robots with different traits in a composite team

while accounting for their collaborative behavior through specific capabilities and limitations
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is of significant importance [53, 52]. This coordination becomes more challenging when the

dynamicity of the environment needs to be taken into account.

2.2 Learning End-to-End Multi-agent Coordination Policies

There has been large success in generating high-performing cooperative teams using MARL

in challenging problems such as game playing [60] and robotics [61, 62]. In this section, we

discuss the relevant prior work, including communication learning in MARL, application of

Graph Neural Networks (GNN) in MARL and, heterogeneous multi-agent systems.

2.2.1 Enabling MARL with Communication

To learn cooperation protocols, prior MARL studies are commonly deployed under Decen-

tralized Partially Observable Markov Decision Processes (Dec-POMDP), in which agents

interact to maximize a shared discounted reward. Decentralized settings are typically pre-

ferred over central controllers since centralized approaches are costly, required extensive

communication overhead and lack scalability and robustness to malicious attacks [63]. Since

in a Dec-POMDP agents interact in a common environment to maximize a shared reward,

the collaborative MARL objective (i.e., maximizing the discounted return accumulated by

the team) is inherently satisfied. Nevertheless, such decentralized paradigms with the shared

reward maximization objective introduce new challenges such as the credit assignment

problem [64]. More recently, fully-decentralized (F-Dec) MARL was introduced [63, 65] to

address the credit assignment problem caused by the shared-reward paradigm in conven-

tional Dec-POMDPs [65, 64]. In an F-Dec MARL setting, agents can have varying reward

functions corresponding to different tasks (e.g., in a multi-task RL where an agent solves

multiple related MDP problems) which are only known to the corresponding agent and the

collective goal is to maximize the globally averaged return over all agents. Nevertheless,

under an F-Dec setting, agents seek to maximize their own reward, which does not neces-

sarily imply the maximization of the team long-term return since agents do not inherently
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understand coordination.

Cooperative MARL studies can be subdivided into two main lines of research, (1)

learning direct communication among agents to promote coordination [66, 67, 68, 69] and,

(2) learning to coordinate without direct communication [70, 71, 10, 72]. Our work can

be categorized under the former. Hierarchical approaches are also prevalent for learning

coordination in MARL [5, 73, 74, 9]. We consider MARL problems in which the task in

hand is of cooperative nature and agents can directly communicate, when possible.

Recently, the use of communication in MARL has been shown to enhance the collective

performance of learning agents in cooperative MARL problems [75, 67, 68]. In recent

years, several studies have been concerned with the problem of learning communication

protocols and languages to use among agents. DIAL [66] and CommNet [68] displayed

the capability to learn a discrete and continuous communication vectors, respectively.

While DIAL considers the limited-bandwidth problem, neither of these approaches are

readily applicable to composite teams or capable of performing attentional communication.

TarMAC [67] achieves targeted communication through an attention mechanism which

improves performance compared to prior work. Nevertheless, TarMAC requires high-

bandwidth message passing channels and its architecture is reported to perform poorly in

capturing the topology of interaction [76]. SchedNet [69] explicitly addresses the bandwidth-

related concerns. However, in SchedNet agents learn how to schedule themselves for

accessing the communication channel, rather than learning the communication protocols

from scratch.

Graph Neural Networks (GNNs) are a class of deep neural networks that learn from

unstructured data by representing objects as nodes and relations as edges and aggregating

information from nearby nodes [77, 78, 79]. Prior work on MARL have sought to utilize a

Graph Neural Networks (GNN) to model a decentralized communication structure among

agents [80]. Deep Graph Network (DGN) [79] represents dynamic multi-agent interaction

as a graph convolution to learn cooperative behaviors. This seminal work in MARL demon-
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strates that a graph-based representation substantially improves performance. In [81], an

effective communication topology is proposed by using hierarchical GNNs to propagate

messages among groups and agents. G2ANet [76] proposed a game abstraction method

combining a hard and a soft-attention mechanism to dynamically learn interactions between

agents. More recently, MAGIC [82] introduced a scalable, attentional communication model

for learning a centralized scheduler. While these prior work have successfully modeled

multi-agent interactions, they are not designed to address heterogeneous teams directly.

2.2.2 Modeling Heterogeneous Multi-Agent Systems via MARL

While MARL researchers have increasingly focused on developing computational models

of team communication [75, 82], most of these prior frameworks fail to explicitly model

the heterogeneity of composite teams and fail to explicitly quantify and reduce the team’s

communication overhead to support decentralized, bandwidth-limited teaming. Multi-agent

communication is fundamental in composite teams, especially in the case where some

agents are vision-limited. See [54, 9] for various examples of such composite teams. More

accurately, we define a composite team as a group of heterogeneous agents that perform

different tasks according to their respective capabilities while their tasks are co-dependent on

accomplishing an overarching mission [83, 53, 9]. Agents in a composite team can inherently

have different state, action, and observation spaces and yet, must still communicate essential

information. Without a proper model for teaming, heterogeneous agents will not be able to

reason about the heterogeneity in their team and share information accordingly to achieve

team cognition. Therefore, communication may become unhelpful and deteriorate the

MARL performance [84].

In [85], several types of heterogeneity induced by agents of different capabilities are

discussed. As opposed to homogeneous teams, the diversity among agents in heterogeneous

teams makes it challenging to hand-design intelligent communication protocols [85]. In [86],

a control scheme is designed for a heterogeneous multi-agent system by modeling the
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interaction as a leader-follower system. While this approach is successfully applied to

a UAV-UGV team, the control scheme is hand-designed and requires a fully connected

communication structure. More recently, HMAGQ-Net [87] utilized GNNs and Deep

Deterministic Q-network (DDQN) to facilitate coordination among heterogeneous agents

(i.e., those with different state and action spaces).

2.2.3 Decision Rationalization and Mutual Information (MI) in MARL

In addition to communication, individuals in high-performing human teams also benefit

from the theory of mind [88] and making strategic decisions by recursively reasoning about

the actions (strategies) of other human members [89]. Such hierarchical rationalization

alongside with communication facilitate meaningful cooperation in human teams [90]. In

MARL, meaningful cooperation is an interactive policy through which the team objective is

achieved. Similarly, collaborative Multi-agent Reinforcement Learning (MARL) relies on

meaningful cooperation among interacting agents in a common environment [91]. Most of

the prior works introduced in subsection 2.2.1 and subsection 2.2.2 on collaborative MARL

are based on the maximum utility theory paradigm which assumes perfectly informed,

rational agents [92]. Nevertheless, even under careful handcrafted or machine learned

coordination policies, it is unrealistic and perhaps too strong to assume agents are perfectly

rational in their decision-making [93, 94, 95, 96].

Recently, strong empirical evidence has shown that MI, defined as the information gain

by an agent by observing another agent, is a statistic that correlates with the degree of

collaboration between pairs of agents [97]. Researchers have also shown that maximizing

MI among agents leads to maximizing the joint entropy of agents’ decisions, which in turn,

improves the overall performance in MARL [98]. As such, prior work has sought to increase

MI by introducing auxiliary MI regularization terms to the objective function [98, 99]. These

prior works adopt a centralized paradigm. Model of Other Agents (MOA) was proposed by

[99] as a decentralized approach that seeks to locally push the MI lower-bound and promote
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collaboration among neighboring agents through predicting next-state actions of other agents.

In all of the mentioned approaches, the amount of MI maximization objective that should be

integrated into the overall policy objective is dictated through a β regularization parameter.

Among prior work seeking to enable k-level reasoning for MARL, [100] presented

Probabilistic Recursive Reasoning (PR2), an opponent modeling approach to decentralized

MARL in which agents create a variational estimate of their opponents’ level k−1 actions

and optimize a joint Q-function to learn cooperative policies without direct communication.

[93] extended the PR2 for generalized recursive depth of reasoning. Neither of these works

however, establish a link between k-level reasoning and MI for multi-agent coordination

(our contribution in chapter 7).

2.2.4 Multi-Agent Learning from Expert Demonstration (MA-LfD)

Learning from Demonstration (LfD) explores techniques for learning a task policy from

examples provided by a human teacher [101, 102]. Ho et al. [103] and Fu et al. [104]

formulated the LfD problem under generative adversarial learning setting [105] to tackle

the limitations in classic LfD frameworks such as BC [106], DAgger [107], and IRL [108].

Generative Adversarial IL (GAIL) [103] collects state-action pairs from executing the learned

policy to shift the trajectories closer to the desired behavior. In GAIL, a discriminator model

is trained to distinguish between state-action pairs provided by the expert and a deceiving

generator model (i.e., the learned policy) that learns to imitate the expert. Standard RL

algorithms are leveraged to optimize over the output of the discriminator (i.e., treated as

a reward signal), encouraging the agent to match the expert-data in expectation, over full

trajectories. Adversarial IRL (AIRL) [104] follows a setup similar to the GAIL but addresses

the reward signal ambiguity in GAIL by leveraging a specific discriminator structure.

The literature for Multi-Agent LfD (MA-LfD) primarily aims to address the complexity

of simultaneously training multiple agents. In [109], a coordinated IL approach is proposed

which learns a latent coordination model along with the individual policies. In [110] the
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single-agent GAIL framework, described above, is extended for multi-agent scenarios along

with a practical actor-critic method for multi-agent imitation. Yu et al. [111] extend the

AIRL method to the multi-agent settings and propose a scalable framework. In [112] a

scalable multi-agent LfD approach is proposed where a model-based heuristic method

for automated swarm reorganization is leveraged to improve multi-agent task allocation

problem. In [113] authors create an advising system to incorporate sub-optimal model-based

heuristic policies to help improve MARL performance. More recently, Hoque et al. [114]

proposed Fleet-DAgger , formalizing interactive fleet learning setting, in which multiple

robots interactively query and learn from multiple human supervisors.

Nevertheless, applicability of these prior work in the collaborative multi-agent problems

are considerably limited since none of these works explicitly address the inter-agent com-

munication in complex domains where agents not only need to take task-related actions, but

also need to communication and share information for coordination. Enabling inter-agent

communication in these prior work requires the human expert to provide demonstrations for

both environment actions and communication actions, which postulates an existing efficient

communication strategy on a known message spaces. Additionally, none of these prior work

consider a partially observable domain (common for realistic multi-robot systems) which ne-

cessitates the need for inter-agent communication and do not leverage real human-generated

data for training to evaluate the approach against heterogeneity and variance in human data.

These limitations can alleviate applicability of the mentioned works to multi-robot scenarios.

In our work in chapter 8, we address the limitations in prior work by relaxing the need for

demonstrating a communication strategy by the expert. Using our method, a human expert

can only teach the robot team how to accomplish a task collaboratively via demonstrations

and the team will automatically learn a communication strategy suitable for the cooperation

policy underlying the expert’s demonstrations. The learned communication protocol will

then help the robot team to deal with the partial observability, reasoning about action-

decisions to best respond to teammates’ policies, and alleviate the effects of environment
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non-stationarity. We also collect real human data and evaluate MixTURE’s ability to cope

with demonstration heterogeneity due to different expert styles and strategies.
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CHAPTER 3

PRELIMINARIES AND BACKGROUND

3.1 Motivating Applications

Throughout this thesis I predominantly motivate the multi-robot coordination methods in

two applications: (1) aerial wildfire monitoring, where a group of homogeneous (similar

in capabilities and tasks) Unmanned Aerial Vehicle (UAV)s are tasked with dynamically

tracking and monitoring a propagating wildfire, and (2) wildfire fighting, where two groups

of heterogeneous (different capabilities and objectives) robots, such as UAVs and Unmanned

Ground Vehicles (UGVs), must collaborate to not only find, monitor, and track the fire,

but also to extinguish them. Specifically for the latter case, I propose and create a novel

multi-agent environment called FireCommander [54] details of which are presented in

subsection 3.1.2. In the following I describe each of the two aforementioned applications

and motivate my studies.

3.1.1 Aerial Wildfire Monitoring

I adopt the application of aerial wildfire monitoring as a running case-study and motivate

my works in in chapter 4 and chapter 5 in this important safety-critical problem. In the

application of wildfire fighting, human firefighters on the ground need online and dynamic

observation of the firefront (i.e., the moving edge of fire) to anticipate a wildfire’s unknown

characteristics, such as size, scale, and propagation velocity, in order to plan their strategies

accordingly. To support human firefighters, teams of UAVs can be deployed as Mobile

Sensor Networks (MSN) to estimate the states of fire across thousands of acres and provide

human firefighters with such information [7, 8, 15, 16, 14]. Nevertheless, coordinated control

of UAV teams in this volatile setting provides particular challenges [17, 18, 19, 20, 21] and
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(a) Clustering fire areas for monitoring based on propa-
gation velocity and direction (courtesy of Motion Array;
used with modifications).

(b) Separating fire areas for coverage and
tracking based on areas of human activity
and priority.

Figure 3.1: Figure 3.1a demonstrates an example of separating wildfire areas for coverage
and tracking based on fire propagation velocity and direction. The firefront in each area is
moving in a different direction and with a varying velocity and, therefore, at least one sepa-
rate UAV is required to monitor and track the firefront in each area. In a similar perspective,
Figure 3.1b shows an example of disjoint coverage areas that are separated according to
areas of human (i.e., firefighters) activity and priority. In this case, the autonomous UAVs
are teaming with humans to safely manage their human collaborators by providing for them
high-quality information regarding their time-varying proximity to fire (i.e., areas of human
operation). When we have access to additional UAV resources that may not be needed in
the prioritized areas, we can deploy such UAVs (i.e., unallocated UAVs) to monitor the rest
of the wildfire areas (not specified or prioritized).

an effective algorithm with the ability to prioritize coverage areas based on environment

uncertainties and human firefighters’ needs seems to be necessary (see section 4.1).

Fighting wildfires safely and effectively requires accurate online information on firefront

location, size, shape, and propagation velocity [115, 116, 33, 15]. To provide firefighters

with this realtime information, researchers have sought to utilize satellite feeds to estimate

fire location information [117, 118, 46]. Unfortunately, the resolution of these images is too

low for more than simple detection of a wildfire’s existence [46]. Firefighters need frequent,

high-quality images of the wildfire to make strategic plans [15, 36, 119]. Here, we define

high-quality information as local, high-resolution images (or other sensory information) that

are captured from a close by distance with respect to the areas prioritized by humans.
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In large scale dynamic field coverage and tracking applications, such as aerial wildfire

monitoring, UAVs need to be distributed effectively to cover the entire area of interest [5,

41]. In many cases, the region that need to be covered and tracked by the UAV team can

be sub-divided into smaller areas according to different characteristics, priorities or needs.

Figure 3.1a depicts an example of separating wildfire areas for coverage and tracking based

on fire propagation velocity and direction. The firefront in each area is moving in a different

direction and with a varying velocity and therefore, at least one separate UAV is required

to monitor and track the firefront in each area. In a similar perspective, Figure 3.1b shows

an example of disjoint coverage areas that are separated according to regions of human

(i.e., firefighters) activity and priority. In this case, the autonomous UAVs are teaming with

humans to safely manage their human collaborators by providing for them high-quality

information regarding their time-varying proximity to fire (i.e., areas of human operation).

Accordingly, when the UAV resources are limited, a multi-agent planning algorithm is

required such that the real-time cooperative field coverage and tracking performance can be

guaranteed with as few UAV agents as possible (see section 5.1).

3.1.2 Robotic Teams for Wildfire Fighting

In this application, at least two groups of heterogeneous (different capabilities and objectives)

robots, such as UAVs and Unmanned Ground Vehicle (UGV)s, must collaborate to not only

find, monitor, and track the fire, but also to extinguish them. We motivate the coordination

of heterogeneous composite robot teams with perception and action agents in the problem of

aerial wildfire fighting (see Figure Figure 3.2b). National firefighting departments such as

the California Department of Forestry and Fire Protection (CAL FIRE) require online and

accurate information about the wildfire states to plan for using large, limited, and high-cost

aerial firefighting equipment such as Airtankers, Water Scoopers and Smokejumper aircraft

or ground robots such as the Thermite RS1-T4 robotic firefighters [120]. These larger

resource-rich aircrafts, equipped with fire retardant, can be considered as Action agents
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(a) Firefighting Airtanker (b) Composite UAV Teams for Aerial Wildfire
Fighting

Figure 3.2: Figure Figure 3.2a depicts a firefighting Airtanker dropping fire retardant
on the 2008 Tea Fire, Montecito, Calif. (Courtesy: National Public Radio, July 2012).
Figure Figure 3.2b depicts a composite UAV team for aerial wildfire fighting. Smaller
quadcopters (perception agents) sense the fire and gather information for larger, fixed-wing
fire-extinguisher aircraft, i.e. action agents (Courtesy: Dronelife, Feb. 2016).

(or manipulators) which are capable of extinguishing large amounts of fire, however, are

not suitable for estimating fire states due to high-velocity, high-altitude (Airtankers) or

constrained ground vision (Thermite robots). To gather this required information on fire,

however, other smaller, low-cost, and low-power devices such as multi-rotor quadcopters are

more desirable due to their agility and cost-efficiency. These small information-gathering

UAVs can perform as Perception agents (or sensing robots).

The challenges of coordinating a Perception-Action composite robot team is three-fold:

(1) given an unknown dynamic wildfire environment, the robot team must balance the time

spent on exploring new fire-areas (perception agents) and distinguishing the ones already

found (action agents), (2) efficiently communicate the estimated fire states or distinguished

firespots between perception and action agents to generated highly coordinated collaborative

plans and policies, and (3) explicitly account for different agent characteristics (i.e., different

state-, observation-, and action-spaces) and task objectives (exploring environment and

finding areas of fire versus extinguishing firespots) in designing cooperative policies.
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The FireCommander (FC) Multi-Agent Domain

To evaluate the performance of our methods, particularly the MARL algorithms proposed in

chapter 5, chapter 6, and chapter 8, we design a new cooperative multi-agent environment

with heterogeneous agents, called FireCommander [54, 121]. FireCommander can be

categorized as a strategic game, in which a composite team of robots (i.e., UAVs and UGVs)

must collaboratively find hidden areas of propagating wildfire and extinguish the fire in such

areas as fast as possible. In FireCommander, two classes of perception and action agents

must collaborate as a composite team to extinguish a propagating firespot. At each timestep,

the firespot propagates to a new location according to the FARSITE [122] model, while the

previous location is still on fire. All firespots are initially hidden to agents and need to be

discovered before being extinguished. As such, perception agents are tasked to scan the

environment to detect the firespots while action agents (no observation inputs) are required

to move and extinguish a firespot that has been discovered by a perception agent before. Note

that since firespots propagate, both perception and action agents need to continue to explore

the map and collaborate until all firespots are extinguished. For more details regarding the

environment and applications of such perception-action composite teams, please refer to

the documentation [54] and its publicly available codebase on GitHub (available online:

https://github.com/CORE-Robotics-Lab/FireCommander) [121].

3.2 FARSITE Fire Propagation Mathematical Model

Our model-based coordinated multi-UAV control and planning frameworks in chapter 4

and chapter 5 as well as our prevalent FireCommander domains [54, 121] relay on fire’s

approximate motion model. This model is leveraged in Kalman filter to infer its latent

parameters through robots’ observations. As such, we adopt the Fire Area Simulator

(FARSITE) wildfire propagation mathematical model [122]. The FARSITE model is now

widely used by federal and state land management agencies in the United States.
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In this thesis, we leverage the simplified FARSITE model [36, 5, 41] to predict firefront

propagation and use dynamic observations to infer latent parameters of the model. We

note that although our model-based frameworks in chapter 4 and chapter 5 have access

to the fire propagation model, this environment model does not necessarily need to be

the FARSITE model and can be replaced with any dynamic target motion model. For

instance, the FARSITE wildfire propagation model used in chapter 4 and chapter 5 or the

FireCommander domain [54, 121] can be replaced with any other parameterized model,

such as the correctable fire simulation model introduced in [123] which calculates the fire

spread based on Rothermel’s original surface fire model [124]. In the following we present

the details of the simplified FARSITE model as utilized in prior work [36, 41].

Considering qi
t as the location of i-th firespot on firefront at time t and q̇i

t as a firefront’s

growth rate at location qi
t (i.e., fire propagation velocity), the wildfire propagation dynamics

can be written as in Equation 3.1, where δ t is the time-step and q̇i
t =

d
dt

(
qi

t

)
is a function of

fire spread rate (Rt , i.e., fuel and vegetation coefficient), wind speed (Ut), and wind azimuth

(θt), which are available to our system through weather forecasting equipment.

qi
t = qi

t−1 + q̇i
t−1δ t (3.1)

In Equation 3.1, by ignoring the superscript i and without losing generality, the firefronts

growth rate, q̇t , can be estimated for each propagating spot on firefront by Equation 3.2 -

Equation 3.3, where q̇x
t and q̇x

t are first-order firefront dynamics for X and Y axes [122, 5].

q̇x
t =C(Rt ,Ut)sin(θt) (3.2)

q̇y
t =C(Rt ,Ut)cos(θt) (3.3)

In above equations, C(Rt ,Ut) is a firespot’s velocity which is a function of the fuel/vege-

tation coefficient, Rt , and mid-flame wind speed, Ut . We use equations from Finney [122]

to calculate C as in Equation 3.4, in which LB(Ut) = 0.936e0.256Ut +0.461e−0.154Ut −0.397 and
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GB(Ut) = LB(Ut)
2−1.

C(Rt ,Ut) = Rt

(
1− LB(Ut)

LB(Ut)+
√

GB(Ut)

)
(3.4)

Furthermore, due to the fuel exhaustion, we model the intensity decay of a fire spot during

its ignition time δ tq, as a dynamic exponential decay rate λ over time, as Iq
t+δ t = Iq

t

(
e−λ

δ tq
Rt

)
.

In this equation, Iq
t is the heat intensity of firespot q at time t and is calculated according to

the intensity model proposed by [125], in which Iq
t = 259.833

(
hq

t
cos(α

q
t )

)2.174

. In this equation,

hq
t and α

q
t are flame height (meters) and tilt angle (degrees) with respect to vertical horizon

line for each firespot and the intensity Iq
t is measured in kilo-watts per meter.

Finally, when a firefighting UAV or UGV drops the extinguisher fluid over an area of fire,

we cut the fire intensities of the respective fire spots according to a predefined extinguisher

fluid coefficient. A fire point is pruned from the fire-map if its intensity falls below a

threshold value, leaving a burnt spot on the terrain map which cannot catch fire anymore.

3.3 Markov Decision Processes and Reinforcement Learning

In its basic form, a Markov Decision Process (MDP) can be represented via a 6-tuple,

⟨S ,A ,R,T ,γ,ρ0⟩. S and A are the state- and action-space, respectively. R : S → R

is the reward function. At each timestep, t, the agent takes an action, at ∈ A in state

st ∈S which leads to a state transition according to the state transition probability density

function, T (st+1|st ,at) : S ×A → S . The agent is rewarded R(st ,at) ∈ R after this

transition. γ ∈ [0,1) is the temporal discount factor and ρ0 : S →R denotes the initial state

probability. The goal in an MDP is to find a good policy for the decision maker. A policy

π : S ×A → R is a mapping from states to probabilities over actions.

RL is a machine learning training method based on rewarding desired or penalizing

undesired behaviors. A reinforcement learning agent can perceive its environment and inter-

pret the feedback received, take actions, and eventually learn through trial and error [126].
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An RL agent can generate a trajectory τ = ⟨s0,a0,r0, · · · ,st ,at ,rt , · · · ⟩ by executing a policy,

π , within the environment. The objective for RL is to solve this sequential decision-making

process by finding an optimal policy, π∗, such that the expected discounted return of the

policy is maximized. This optimization problem can be formulated as in Equation 3.5.

π
∗ = argmax

π

J(π) = Eτ∼π

[
∞

∑
t=0

γ
tR(st ,at)

]
(3.5)

3.3.1 Policy Gradient Methods

Policy Gradient (PG) methods are an approach to RL that utilize function approximation, in

which each agent j has a policy, π
j

ϕ(a|s), parameterized by ϕ , that specifies which action, a,

to take in each state, s, to maximize the expected future discounted reward. PG methods

apply gradient ascent to the actor’s (i.e., policy) parameters, ϕ , based on a gradient estimate

of the expected return in Equation 3.5. By the policy gradient theorem [126], the expected

reward maximization, J(ϕ), is maximized via Equation 3.6, where a j
t and o j

t are the action

and observation of agent j, respectively.

∇ϕJ(ϕ) = E
π

j
ϕ

[
∇ϕ logπ

j
ϕ(a

j
t |o

j
t )Ât(o

j
t ,a

j
t )
]

(3.6)

The advantage function, Ât(o
j
t ,a

j
t ) = Q(o j

t ,a
j
t )−V φ (o j

t ), measures how much better

the action is relative to the default action of the current policy [127], where Q(o j
t ,a

j
t ) is

the action value function approximated by the total discounted rewards, and V φ (o j
t ) is the

state-value function, approximated according to a critic network parametrized by φ .

3.4 Multi-Agent Reinforcement Learning

Prior work typically models the learning process in MARL as a Multi-Agent Partially

Observable Markov Decision Process (MA-POMDP) [128]. This can be represented by

a 9-tuple ⟨N ,S ,A ,Ω,O,r,T ,γ⟩. N is the total number of agents, S = {×iS i}Ni=1
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is a joint set of agent state-spaces. Note that this joint state- space increases linearly as

the environment size becomes larger and exponentially as the number of agents in the

environment increases. For each agent j we can represent the state vector at time t as

S j
t =

[
s j1
t ,s j2

t , · · · ,s jm
t

]
, where m is the state vector dimension. A = {×iA i}Ni=1, is the

joint set of action-spaces. Ω = {×iΩ
i}Ni=1 is similarly defined as the joint set of observation-

spaces. γ ∈ [0,1) is the temporal discount factor for each unit of time and T is the state

transition probability density function: T : S ×A →S . Note that in a homogeneous

setting (i.e., similar agents) the contents of state-, observation- and actions-spaces are the

same for all agents while in a heterogeneous multi-agent setting [13], the class (i.e., type)

of an agent determines the content of its state-, action- and observation-spaces, such as the

number of or the type of variables in these spaces.

At each timestep, t, each agent, j, can receive a partial observation o j
t ∈Ω according to

an observation function {O} : o j
t ∼O(·|s̄). If the environment observation is not available for

agents of class i, agents in the respective class will not receive any input from the environment

(e.g., lack of sensory inputs). Regardless of receiving an observation or not, at each time, t,

each agent, j, takes an action, a j
t , forming a joint action vector ā =

(
a1

t ,a
2
t , · · · ,a

j
t

)
. This

step leads to changing the joint states to s̄′ ∈S according to the state transition probability

density function T
(
s̄t+1|s̄t , āt

)
. Next, depending on the next joint-state, s̄t+1 , they receive

an immediate reward, r(s̄t , āt) ∈ R, shared by all agents. We note that Such shared reward,

encourages collaboration and teaming behaviour among agents [69]. Our objective is to learn

an optimal policy, π∗j (s
j
t ) : S →A that maximizes the total expected, discounted reward

accumulated by agents over an infinite horizon, or as formally presented in Equation 3.7.

π
∗(s̄) = argmax

π(s̄)∈Π

Eπ(s̄)

[
∞

∑
k=0

γ
krt+k|π(s̄)

]
(3.7)
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3.5 Learning from Demonstration

Learning from Demonstration (LfD) explores techniques for learning a task policy from

examples provided by a human teacher [101, 102]. Behavioral Cloning (BC) is one of the

simplest approaches to learn from demonstrations in which an agent is directly trained on

an expert-provided dataset to maximize the likelihood of the demonstrated actions given

the corresponding environment states [129]. However, when training data is limited or the

environment is highly stochastic, BC suffers from poor performance due to compounding

errors resulting in covariate shift [130]1.

Dataset Aggregation (DAgger) [107] attempts to address the limitations of BC through

interactive data collection. In other words, DAgger proceeds by collecting a dataset at

each iteration under the current policy and trains the next policy under the aggregate of all

collected trajectories. Intuitively, through this process DAgger attempts to build up the set of

inputs that the learned policy is likely to encounter during its execution [107]. Nevertheless,

DAgger makes the assumption that a simulator of the environment as well as an expert

are always accessible so that they can interactively collect new state-action pairs. These

assumptions are strong and not always feasible.

Generative Adversarial Imitation Learning (GAIL) [103] addresses the aforementioned

issues by collecting state-action pairs from executing the learned policy to shift the trajecto-

ries closer to the desired behavior. GAIL casts the optimization in a generative adversarial

framework, learning a discriminator model, Dθ , to distinguish between state-action pairs

provided by the expert and a deceiving generator model (i.e., the learned policy), π , that

learns to imitate the expert. Standard RL algorithms are leveraged to optimized over the

output of the discriminator (i.e., treated as a reward signal), encouraging the agent to match

the expert-data in expectation, over full trajectories. However, once the learned policy

closely matches the demonstrated behavior, the discriminator’s output in GAIL does not

1In states not seen in the demonstration dataset agents tend to have poor performance and since actions
taken in the current state affect future states, the errors tends to compound over the course of a trajectory.
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necessarily encode useful information.

The imitation learning approaches described above aim to learn a policy which effec-

tively imitates the demonstrated expert behavior. In contrast, a paradigm known as Inverse

Reinforcement Learning (IRL) [108] instead attempts to extract a reward function which ex-

plains the demonstrated behavior [131]. IRL [108] is another solutions to learn from expert

provided demonstrations which considers an MDP sans reward function. The goal of the

IRL is to infer and recover a reward function R(s,a) given a set of demonstration trajectories

U = {τ1,τ2, · · · ,τN}, where N is the number of demonstrations. A typical assumption for

IRL is that demonstrated trajectories are optimal, or at least near-optimal.

Adversarial Inverse Reinforcement Learning (AIRL) [104] solves the IRL problem with

a generative-adversarial setup similar to the GAIL framework described above. In AIRL, the

discriminator, Dθ , is trained via a Binary Cross Entropy (BCE) loss and predicts whether the

state transition (st ,st+1), belongs to the demonstrator dataset or is generated by the generator

model, πϕ(a|s). The generator, πϕ , is trained to maximize the pseudo-reward given by

the discriminator [132]. AIRL addresses the reward signal issue in GAIL by leveraging

a specific discriminator structure which enables recovering a meaningful reward function

even after convergence. The discriminator in AIRL is given by the Equation 3.8 where

f̂θ (s,a) is the inferred reward function parameterized by θ , and πϕ(a|s) is the learned policy

parametrized by ϕ .

Dθ =
exp
(

f̂θ (s,a)
)

exp
(

f̂θ (s,a)
)
+πϕ(a|s)

(3.8)

The inferred reward function in Equation 3.8, R̂ = f̂θ (s,a), is updated using gradient

descent via the BCE loss function shown in Equation 3.9. Minimizing the BCE loss in

Equation 3.9 allows the discriminator, Dθ , to distinguish expert trajectories from generator

policy rollouts. The policy, πϕ(a|s), is trained to imitate the expert by maximizing the
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pseudo-reward function given by R̂ = f̂θ (s,a).

LD =−Eτ∼D,(s,a)∼τ

[
logD(s,a)

]
−Eτ∼π,(s,a)∼τ

[
log
(
1−D(s,a)

)]
(3.9)

We use the introduced concepts, in the following chapters to develop solutions and design

architectures to model collaborative multi-robot teams under various environment constraints

and task objectives. Particularly, we leverage MARL and RL in chapter 5-chapter 7 for

learning collaborative policies directly from data experienced through environment interac-

tions. I later utilize LfD in chapter 8 to tackle the weaknesses of MARL and teach robots to

collaborate directly via human-expert generated data.
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CHAPTER 4

MODEL-BASED NODE-LEVEL CONTROL FOR MULTI-ROBOT

COORDINATION

Collaborative field coverage is a widely applied instance of a classic multi-robot coordination

problem. In these problems, a robot team is deployed as a MSN [133]. MSNs are instances

of wireless sensor networks [133] with robots as their mobile nodes. MSNs are versatile

and can cope with rapid topology changes. Due to their agility and hovering capabilities,

UAVs are good candidates to be deployed as MSNs [5].

To enable a highly efficient and intelligent team behavior, in [5] (i.e., section 4.1), we

design a low-level control strategy toward a human-centered robot coordination. Such a

system is desired in a variety of applications; as an example, deploying a fleet of UAVs to

actively monitor a propagating wildfire in support of human firefighters on the ground. In [5],

we propose a decentralized control framework that leverages a model-predictive mechanism

to coordinate a UAV team for tracking the moving firefronts while simultaneously enabling

the firefighters to receive online information regarding their time-varying proximity to fire.

An issue that we faced in [5] was that a connected communication graph was required at

all times for the control architecture to work properly. The team’s communication network,

however, may be disconnected at times and its links may have varying strengths due to

environment constraints. In [6] (i.e., section 4.2), we tackle this problem by designing a

model-reference multi-agent adaptive controller that achieves team convergence even for a

network of robots with a disconnected communication graph or even non-communicative

robots. We derive an adaptive control law for a leader-follower networked system that prov-

ably converges to mimic any desired network structure even though the real communication

topology remains unknown to the robots.
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4.1 Coordinated Control of UAVs for Human-Centered Active Sensing of Wildfires

Fighting wildfires is a precarious task, imperiling the lives of engaging firefighters and

those who reside in the fire’s path. Firefighters need online and dynamic observation of

the firefront to anticipate a wildfire’s unknown characteristics, such as size, scale, and

propagation velocity, and to plan accordingly (see subsection 3.1.1 for a detailed discussion).

In this paper, we propose a distributed control framework to coordinate a team of UAVs for

a human-centered active sensing of wildfires. We develop a dual-criterion objective function

in Equation 4.3 based on Kalman uncertainty residual propagation and weighted multi-agent

consensus protocol, which enables the UAVs to actively infer the wildfire dynamics and

parameters, track and monitor the fire transition, and safely manage human firefighters on

the ground using acquired information. We empirically evaluate our approach relative to

prior work as well as on physical robots in a mock fire-monitoring exercise [5].

4.1.1 Introduction and Motivation

Fighting wildfires requires accurate online information regarding firefront location, scale,

shape, and propagation velocity [115, 33]. Firefighters may lose their lives as a consequence

of inaccurately anticipating information either due to inherent stochasticity in fire behavior or

low-quality information provided, such as low-resolution satellite images [46]. Firefighters

need frequent, high-quality images to monitor the fire propagation and plan accordingly.

As such, Multi-robots teams capable of fast scheduling and task allocation [134, 135] with

analytical temporal upper-bounds [7, 8, 136] are of particular interest for this applications.

Due to recent advances in aerial robotic technology, UAVs have been proposed as a solution

to overcoming the challenges of needing real-time information in fighting fires [137].

In [33], a cooperative approach is proposed to detect local fire areas in a wildfire using

two groups of detector and service UAV agents. In [25], utility of visual and infrared

cameras on heterogeneous UAVs with hovering capabilities is investigated to monitor the
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Figure 4.1: Firefighters trying to control a back burn as the Carr fire spreads toward Douglas
City. Courtesy of the Los Angeles Times (May 2019).

evolution of the firefront shape. In [35], a leader-follower-based distributed framework is

proposed for a team of UAVs to evenly distribute and track an elliptical fire perimeter. In

[36], a heat-intensity-based distributed control framework is designed for a team of UAVs to

be capable of closely monitoring a wildfire in open space. More recently, both model-based

(i.e., Kalman estimation) and model-free (e.g., learning [138]) methods have been used for

cooperative prediction and tracking of the firefront shape [139, 140, 34]. Additionally, other

learning-based approaches, such as RL, have also been applied to this problem to enable

collaborative monitoring of wildfires [119, 141].

There is a clear absence of human-centric approaches (e.g., [142, 143, 144]) in the

literature for UAV teams for active sensing of wildfire and firefront monitoring. This

is mainly because a majority of previous studies are solely focused on autonomous fire

detection and surveilling a large burning area by drones rather than focusing on local human-

32



defined areas of priority (i.e., areas of firefighter activity) and serving human firefighters by

taking into account their safety. In this study, we seek a control strategy toward a smarter,

human-centered robot coordination, through better perception and accurate local situational

awareness. We overcome key limitations in prior work by developing an algorithmic

framework to provide a model-predictive mechanism that enables firefighters to receive

online, high-quality information regarding their time-varying proximity to a fire.

Contributions

In our approach, we explicitly estimate the latent fire propagation dynamics and parameters

via an adaptive extended Kalman filter (AEKF) predictor and the simplified FARSITE

wildfire propagation model [122] to account for firefighter’s safety and provide them with

online information regarding propagating firefronts. This model allows us to develop

straightforward distributed control adapted from vehicle routing literature [145] to enable

track-based fire coverage. Moreover, a mathematical observation model through which UAV

sensors observe fire is derived to map from state space to observation space. The calculated

models are then used in combination to derive a dual-criteria objective function in order

to control a fleet of UAVs. The proposed dual-criteria objective is an ad hoc, well-suited

function to the wildfire monitoring task, which minimizes environment’s uncertainty on

local, human-centered areas (first criteria) and maximizes coverage through ensemble-level

formation control of the robot network (second criteria).

We empirically evaluate our approach against simulated wildfires alongside contempo-

rary approaches for UAV coverage [36] as well as against a reinforcement learning baseline,

demonstrating a promising utility of our method. Our coordinated controller is capable of

effectively reducing the cumulative uncertainty residual of the fire environment in firefront

coverage to support human-robot teaming. We also assess the feasibility of our method

through implementation on physical robots in a mock firefighting scenario.
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4.1.2 Preliminaries: Adaptive Extended Kalman Filter (AEKF)

We utilize an AEKF to leverage the mathematical fire propagation model and the obser-

vation model of a flying drone with respect to a dynamic object on the ground to actively

sense the fire-spots, infer wildfire dynamics and parameters, and propagate all sources of

measurement uncertainty. In a conventional Extended Kalman Filter (EKF), process and

observation noise covariances Qt and Γt are often chosen as constant matrices based on

the state-transition model and sensor accuracy and do not receive updates. However, this

selection process is highly sensitive to user experience and can be extremely inaccurate. We

leverage AEKF [146], which introduces innovation and residual-based updates for process

and observation noise covariances, as shown in Equation 4.1-Equation 4.2, where α is

a forgetting factor and dt is the measurement innovation and is defined as the difference

between the actual measurement and its predicted value. Moreover, Kt is the Kalman gain

and Ht is the observation Jacobian matrix.

Qt = αQt−1 +(1−α)
(

KtdtdT
t KT

t

)
(4.1)

Γt = αΓt−1 +(1−α)
(

ỹt ỹT
t +HtPt|t−1HT

t

)
(4.2)

These adaptive updates remove the assumption of constant covariances Qt and Γt

and enable even more accurate predictions over time as the Kalman filter leverages its

observations to improve the predicted covariance matrix Pt|t−1 [146].

4.1.3 Problem Statement and Algorithmic Overview

The focus of our study includes two important aspects of wildfire monitoring: (1) providing

high-quality information on firefront status while accounting for physical and methodologi-

cal errors and (2) human-centered coverage and tracking of wildfire to account for firefighter

safety. Accordingly, we define high-quality information as high-resolution and online im-

ages of areas prioritized by humans. We take advantage of the estimated uncertainty of
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the environment to achieve these objectives. Through a unified error propagation system,

not only can the physical and methodological uncertainties be leveraged to manage the

human teams and account for their safety, they can also be used to manage the UAV team,

both in node-level and ensemble-level dynamics. An AEKF is a proper candidate for the

uncertainty propagation system here since it can accumulate physical and methodological

errors and generate a cumulative error map through the calculated probability distribution

and predicted covariance matrix.

Accordingly, UAVs initially calculate two uncertainty maps: (1) a firefront uncertainty

map (subsubsection 4.1.4) and (2) a human uncertainty map (subsubsection 4.1.4). The

latter is generated through a bimodal distribution of human locations as received by GPS

devices while the first map is created by the AEKF’s online inference of firefront locations

and error propagation (subsection 4.1.5). Through the combination of these two error-maps,

we obtain our first node-level controller (uncertainty-based controller, subsubsection 4.1.4).

We also incorporate an ensemble-level (formation) controller to encourage the UAV team to

maintain a formation consensus for maximizing the coverage (subsubsection 4.1.6). The

two controllers coordinate to generate a virtual position for each UAV which is then fed to a

path planning controller to generate the force required to move the UAV to the determined

position based on UAVs flight dynamics (subsection 4.1.6).

In algorithm 1 we depict an overview of the proposed human-centered coordinated

control procedure for monitoring wildfires. Upon receiving a request, UAVs travel to the

human-defined areas of interest (i.e., rendezvous point, line 1 in algorithm 1). On arrival,

UAVs sense the firefront by extrapolating fire-spots qt and generate a general uncertainty map

U tot
t by fusing AEKF error propagation and areas of human activity using GPS data (line

3-5 in algorithm 1). Afterwards, a combination of an uncertainty-based optimization and a

graph-based weighted consensus protocol forms our new dual-criteria objective function

H , shown in Equation 4.3 for a set of N UAVs (line 6 in algorithm 1). In Equation 4.3

pd
t represents UAV positions and Q is the entire fire-map. This objective function is then
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embedded as our coordinated control system to move UAVs to highly uncertain areas on

the generated error map to minimize the associated error while encouraging drones to

maintain a distributed formation to increase the team efficiency in field coverage (lines 7-8

in algorithm 1). To generate the required control inputs for UAVs to move, we calculate

the negative derivative of the objective function with respect to the location of drones at

time t. Meanwhile, AEKF is also used to infer the firefront characteristics, such as spatial

distribution q̂t , propagation velocity q̇t , and direction, in order to calculate an individualized

temporal safety index (SI) (Equation 4.37) for firefighters.

minH = argmax
qi

t ,pd
t

(∫
i∈Q

U tot
t

(
qi

t

)
dq−

∫
d∈N

Ed j

(∥∥∥pd
t − p j/d

t

∥∥∥)d p

)
(4.3)

Algorithm 1: Stages of the proposed human-centered coordinated control for a
team of UAVs.

input :Obtain the rendezvous area pr, fire-map Qt , human GPS data ph
t , UAV positions pd

t , and fire
propagation model M

1 Move to rendezvous area: pd
t ← Move(pr, pd

t−1)

2 while MissionDuration do
3 Generate firefront uncertainty map: U f

t ,qt ← Sense(Qt)

4 Generate human uncertainty map: U h
t ← GPS(qh)

5 Combine uncertainty maps: U tot
t = U f

t +U h
t

6 Minimize the dual-criteria objective function:

minH = argmax
qi

t ,p
d
t

(∫
i∈Q

U tot
t

(
qi

t

)
dq−

∫
d∈N

Ed j

(∥∥∥pd
t − p j/d

t

∥∥∥)d p

)

7 Calculate the overall control inputs and determine new virtual positions for UAVs:

pn
t+δ t = pv

t −
(

uucc
d −u f cc

d

)
δ t

8 Move to the new desired position: pd
t+δ t ← Move(pn

t+δ t , pd
t )

9 end
10 def Move(pd

g , pd
t ): // pd

g is the goal position for drone d
11 ud,t = ∑i uatti

d,t (pd
g , pd

t )+urepi
d,t (pd

g , pd
t ), ∀i ∈ Ft

12 pd
t+δ t = pd

t +ud,tδ t
13 def Sense(Qt): // Ot is the UAV observation model

14 q̂t = argmaxqt
ρ

(
qt|t−1, pt−1,Mt−1,Ot−1

)
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4.1.4 Method

The following sections are dedicated to discussing and formulating the two modules of the

dual-criteria objective function in Equation 4.3, as well as elaborating on the uncertainty

map generation process.

Criteria 1: Uncertainty-based Controller

We design our coverage and tracking controller to minimize the uncertainty of the firefront

locations over time, while focusing on the areas of human operation. To this end, we

generate two uncertainty maps for (1) the propagating fire locations U f
t and (2) the areas of

human activity U h
t . Eventually, we fuse these error maps together by linearly summing up

the respective estimated uncertainty values of each point to obtain the general uncertainty

map U tot
t at time t. The uncertainty-based controller’s objective is to minimize the overall

uncertainty residual in U tot
t . We present the details of calculating U f

t and U h
t in the

following sections. Figure 4.2 demonstrates the formation of the uncertainty map and the

foundation of our human-centered controller.

Firefront Uncertainty Map

We leverage AEKF to estimate a probability distribution of the fire-spot locations and

compute a measurement covariance for each point through linear error propagation tech-

niques. Considering qt−1 as the location of firefronts at current time and pd
t−1 as the UAV

coordinates, a firefront location q̂t one step forward in time is desired, given the current

firefront distribution (qt−1), fire propagation model with current parameters (Mt−1), and

UAV observation model of the field (Ot−1) as in Equation 4.4

q̂t = argmax
qt

ρ (qt−1, pt−1,Mt−1,Ot−1,qt) (4.4)

In AEKF, the uncertainty of the firefront locations over time is measured as the state
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covariance Pt|t at time t. It has been shown previously (see [147]) that minimizing the

state covariance corresponds to maximizing the covariance residual St in Equation 4.5

where Pt|t−1 is the predicted covariance, Ft and Ht are process and observation model

Jacobians, and Qt and Γt are the corresponding noise covariances and can be calculated as

Pt|t−1 = FtPt−1|t−1FT
t +Qt .

St = HtPt|t−1HT
t +Γt (4.5)

According to Equation 4.5, by setting pt|t−1 to identity, we see that a maximally infor-

mative position for drones is the one that minimizes the HtHT
t , or in other words, the closest

possible position where dynamic observations change rapidly [147]. As such, we generate an

uncertainty map which is reflective of the wildfire dynamics where a measurement residual

can be calculated for each point qt by summing up the estimated covariance residual matrix

St and set our objective to maximize St . Accordingly, we derive our new objective function

U f
t as in Equation 4.6, where Tr(.) represents the trace operation, and f ovd

t is the field of

view (FOV) of drone d at time t.

minU f
t = argmax

qi
t∈ f ovd

t

(
Tr(St)

)
= argmax

qi
t∈ f ovd

t

(
Tr
(

HtPt|t−1HT
t +Γt

))

= argmax
qi

t∈ f ovd
t

(
Tr
(

Ht

(
FtPt−1|t−1FT

t +Qt

)
HT

t +Γt

))
(4.6)

Human Uncertainty Map

While hovering around the highly uncertain areas to provide firefighters with online infor-

mation regarding the firefront, UAVs are required to focus on their human collaborators

on the ground and take their safety into account by putting additional concentration on the

areas of human operation. Accordingly, UAVs receive human positions ph
t (i.e., through

GPS devices) at time t as planar coordinates µx
t,h and µ

y
t,h and generate a bimodal Gaussian

distribution for each human h to account for both error in GPS information as well as the
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Figure 4.2: Fusing AEKF measurement residual and human GPS data to generate an
uncertainty map. UAVs focus on areas of human activity while monitoring fire propagation.

mobility of the humans. By assuming independence, a joint PDF can be calculated as our

human safety objective as in Equation 4.7 where v j represents the points in a safe circular

vicinity of human h with radius rs and Ps is a predefined safety threshold. Pih is a Cumulative

Distribution Function (CDF) with respect to each human location and all approaching fires.

U h
t = argmax

qt∈vh
∏
i∈vh

Pih

{
qi

t− ph
t ≥ rs

}
≥ Ps (4.7)

To calculate the Pih, we leverage the estimated fire-spot locations qt alongside inferred

fire parameters (i.e., R̂t , Ût , and θ̂t ) by AEKF to calculate a glsCDF for each human at

location ph
t and all approaching firefronts qi

t . We then integrate the resulting glsCDF to be

greater than the safe-distance. A Probability Pih is then calculated for each individual as in

Equation 4.8 where µqi
t

and σ2
t,i are calculated by AEKF. Equation 4.7 is leveraged later in

subsubsection 4.1.7 to compute an individualized safety index for each firefighter.

Pih =
∫

∞

τ=rs

N
(

µqi
t
− ph

t ,σ
2
t,i

)
dτ = 1−CDF

(
rs|µqi

t
− ph

t ,σ
2
t,i

)
(4.8)
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Criteria 2: Weighted Multi-agent Consensus Protocol

To ensure that the combination of the above objective functions results in local actions

leading up to appropriate global performance, we enforce an extra control term in such a

way that the UAVs also act on other easily measurable information, such as the relative

displacements to neighboring drones. This is specifically important to disperse UAVs, while

preserving the connectedness of the network, from converging to an extreme minima (i.e., a

highly uncertain point). Accordingly, we leverage the weighted consensus protocol [148] as

in Equation 4.9 for a set of N UAVs with the objective of minimizing the total displacement

error Ei j while preserving a distance of at least δ between all UAVs.

minE = argmin
pt

Ei j

(∥∥∥pi
t− p j

t

∥∥∥)= argmin
pt

N

∑
i=1

∑
j∈Vi

1
2(∆−δ )


∥∥∥pi

t− p j
t

∥∥∥−δ

∆−
∥∥∥pi

t− p j
t

∥∥∥


2

(4.9)

In Equation 4.9, j ∈Vi represents j−th UAV within the communication range ∆ of UAV

i. As such, a negative force will be generated to move UAVs apart from or closer to each

other if they are getting closer than δ or farther than ∆ (i.e., the UAV network becomes

disconnected). Note that δ should be set high enough so that the UAV team can spread

effectively.

4.1.5 Online Inference of Wildfire Dynamics

The joint probability density function in Equation 4.4 is calculated through AEKF estimator.

Using the aforementioned notations, the AEKF state transition and observation equations

can now be stated as in Equation 4.10 and Equation 4.11 where pt−1 is the UAV location.

qt = ft−1 (qt−1, pt−1,Rt−1,Ut−1,θt−1)+ωt (4.10)

q̂t =ht (qt , pt−1)+νt (4.11)
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We reform the state transition equation in Equation 4.10 to account for all state variables

in Θt =
[
qx

t ,q
y
t , px

t , py
t , pz

t ,Rt ,Ut ,θt
]T as in Equation 4.12 where the process noise ωt .

Θt


8×1

=

 ∂ f
∂Θi

∣∣∣∣
Θ̂t−1|t−1


8×8

Θt−1


8×1

+ωt , ∀i ∈Θ (4.12)

Therefore, we form the state transition Jacobian matrices Ft as in Equation 4.13, includ-

ing partial derivatives of wildfire propagation dynamics in Equation 3.1 with respect to all

state variables.

∂ f
∂Θi

∣∣∣∣
Φ̂t′

=

qx
t ′ qy

t ′ p(3)t ′ Rt ′ Ut ′ θt ′



qx
t 1 0 0(3) ∂qx

t
∂Rt′

∂qx
t

∂Ut′
∂qx

t
∂θt′

qy
t 0 1 0(3) ∂qy

t
∂Rt′

∂qy
t

∂Ut′
∂qy

t
∂θt′

p(3)t 0(3) 0(3) 0(3) 0(3) 0(3) 0(3)

Rt 0 0 0(3) 1 0 0

Ut 0 0 0(3) 0 1 0

θt 0 0 0(3) 0 0 1

(4.13)

In Equation 4.13 t ′ = t− 1 and superscript (3) represent number of column and row

repetitions for all
[
px

t , py
t , pz

t
]
. We note that the parameters Rt , Ut , and Ut are not necessarily

dynamic with time, and it is fairly reasonable to consider these physical parameters as

constants for short periods of time. However, in the case of analyzing the system for longer

durations, temporal dynamics may apply [149], specifically due to changes in wind speed

and velocity. Exact estimation of temporal dynamics related to these parameters are out

of the scope of the current study, since we assume locality in time and space according to

FARSITE [122]. The partial derivatives of qx
t and qy

t with respect to parameters Rt−1, Ut−1,

and θt−1 are computed by applying the chain-rule and using Equation 3.2 - Equation 3.3 as

shown in Equation 4.14 - Equation 4.16, where L (θ) equals sinθ and cosθ for X and Y
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Figure 4.3: The UAV observation model.

axis, respectively.

∂qt

∂θt−1
= C(Rt ,Ut)

∂L (θ)

∂θ
δ t (4.14)

∂qt

∂Rt−1
=

(
1− LB(Ut)

LB(Ut)+
√

GB(Ut)

)
L (θ)δ t (4.15)

∂qt

∂Ut−1
=

Rt ′

(
LB(Ut ′)

∂GB(Ut′)
∂Ut′

−GB(Ut ′)
∂LB(Ut′)

∂Ut′

)
(

LB(Ut ′)+
√

GB(Ut ′)
)2 L (θ)δ t (4.16)

Next, we derive the observation model through which UAVs perceive dynamic fire-

spots, according to Figure 4.3. The observation mapping in Equation 4.11 is reformed

into Equation 4.17 where Φt =
[
ϕx

t ,ϕ
y
t , R̂t ,Ût , θ̂t

]T
is a mapping vector through which the
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estimated parameters are translated into a unified, observed angle-parameter vector Φ̂t .Φ̂t


5×1

=

 ∂h
∂Θi

∣∣∣∣
Φt|t


5×8

Φt


8×1

+νt , ∀i ∈Θ (4.17)

According to Figure 4.3, the angle parameters are calculated as ϕx
t = tan−1

(
pz

t
∥qt−pt∥

)
and ϕ

y
t = tan−1

(
∥qt−pt∥

pz
t

)
for X and Y axes respectively, where qt = [qx

t ,q
y
t ] and pt = [px

t , py
t ].

Then, the observation Jacobian matrix Ht is calculated as in Equation 4.18

∂h
∂Θi

∣∣∣∣
Θ̂t|t′

=

qx
t qy

t px
t py

t pz
t Rt Ut θt



ϕx
t

∂ϕx
t

∂qx
t

∂ϕx
t

∂qy
t

∂ϕx
t

∂ px
t

∂ϕx
t

∂ py
t

∂ϕx
t

∂ pz
t

0 0 0

ϕ
y
t

∂ϕ
y
t

∂qx
t

∂ϕ
y
t

∂qy
t

∂ϕ
y
t

∂ px
t

∂ϕ
y
t

∂ py
t

∂ϕ
y
t

∂ pz
t

0 0 0

R̂t 0 0 0 0 0 1 0 0

Ût 0 0 0 0 0 0 1 0

θ̂t 0 0 0 0 0 0 0 1

(4.18)

Using the aforementioned angle parameter equations, the partial derivatives for X-axis

are derived as in Equation 4.19 - Equation 4.21.

∇qt ϕ
x
t =

1

1+
(

pz
t

∥qt−pt∥

)2

(
−pz

t (qt− pt)

∥qt− pt∥3

)
=

[
∂ϕx

t
∂qx

t
,
∂ϕx

t

∂qy
t

]
(4.19)

∇pt ϕ
x
t =

1

1+
(

pz
t

∥qt−pt∥

)2

(
pz

t (qt− pt)

∥qt− pt∥3

)
=

[
∂ϕx

t
∂ px

t
,
∂ϕx

t

∂ py
t

]
(4.20)

∂ϕx
t

∂ pz
t
=

1

1+
(

pz
t

∥qt−pt∥

)2

(
1

∥qt− pt∥

)
(4.21)
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and for Y-axis derivatives, we can derive as in Equation 4.22 - Equation 4.24.

∇qt ϕ
y
t =

1

1+
(
∥qt−pt∥

pz
t

)2

(
(qt− pt)

pz
t∥qt− pt∥

)
=

[
∂ϕ

y
t

∂qx
t
,
∂ϕ

y
t

∂qy
t

]
(4.22)

∇pt ϕ
y
t =

1

1+
(
∥qt−pt∥

pz
t

)2

(
−(qt− pt)

pz
t∥qt− pt∥

)
=

[
∂ϕ

y
t

∂ px
t
,
∂ϕ

y
t

∂ py
t

]
(4.23)

∂ϕ
y
t

∂ pz
t
=

1

1+
(
∥qt−pt∥

pz
t

)2

(
−∥qt− pt∥

(pz
t )

2

)
(4.24)

The process noise ωt in Equation 4.12 accounts for both stochasticity in fire behavior and

wildfire propagation model inaccuracy. Moreover, the observation noise νt is responsible to

account for the estimation errors associated with both qt and pd
t which affect UAVs’ ability

to extrapolate where a fire is on the ground. Both ωt and νt are modeled as a zero-mean

white Gaussian noise with covariances Qt and Γt , respectively. Note that errors in X, Y,

and Z axes coordinates of a drone are loosely correlated, and thus, we also incorporate

non-diagonal elements in noise covariance matrices when initializing them. Qt and Γt then

receive adaptive updates according to AEKF framework, in Equation 4.1 and Equation 4.2.

4.1.6 Controller Design

Figure 4.4 represents our node-level controller architecture for each UAV d with neighbor-

ing UAVs pi/d
t . Our controller consists of three components: (1) an Uncertainty Control

Component (UCC), (2) a Formation Controller Component (FCC), and (3) a Path Plan-

ning Controller (PPC). The first controller performs exploitation to minimize the overall

uncertainty in the map (i.e., firefront locations or human areas of activity) while the second

controller is designed to manage the general formation of the UAV swarm in order to

maximize exploration as well as coverage. The third controller component moves UAVs

to any desired next position. Assuming ud = ṗd to be the quadcopter UAV dynamics, we

develop each of our control components in the following sections.
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Figure 4.4: Node-level controller architecture of each drone d.

Uncertainty Controller Component (UCC)

The first controller works based on the theory of artificial potential field [150] where each

UAV is distributedly controlled by a negative gradient of the generated total uncertainty map

U tot
t from objective functions in Equation 4.6 and Equation 4.9, with respect to its position

pd
t =

[
px

t , py
t , pz

t
]T as follows in Equation 4.25 where κ1 is the proportional gain parameter.

uucc
d =−κ1

∂U tot
t

∂ pd
(4.25)

To derive the gradients with respect to the UAV coordinates, we first need to analytically

derive the uncertainty objective function (Equation 4.6). To do so, we insert the values of

process and observation Jacobian matrices (i.e., Ft and Ht) and the process and observation

noise covariances (i.e., Qt and Γt) and calculate the trace of the final matrix (see subsec-

tion 4.1.5). Eventually, after the simplifications, the UCC objective function equation can be

derived as in Equation 4.26 where the gradient terms can be calculated using introduced
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angle-parameters.

minU = argmax
qi

t∈ f ovd
t

β1

(
∂ϕx

t
∂qx

t

)2

+β2

(
∂ϕ

y
t

∂qy
t

)2

+β3

(
∂ϕx

t
∂ px

t

)2

+ β4

(
∂ϕ

y
t

∂ py
t

)2

+β5

(∂ϕx
t

∂ pz
t

)2

+

(
∂ϕ

y
t

∂ pz
t

)2

 (4.26)

In Equation 4.26 βi are covariance constants and are equal to β1 =
(

P11 +σ2
qx

)
, β2 =(

P22 +σ2
qy

)
, β3 = σ2

px , β4 = σ2
py and β5 = σ2

pz . Accordingly, the final gradients in Equation 4.25

with respect to UAV pose can be calculated as in Equation 4.27- Equation 4.29

∂U

∂ px
d
= β1

∂

(
∂ϕx

t
∂qx

t

)2

∂ px
d

+β3

∂

(
∂ϕx

t
∂ px

d

)2

∂ px
d

+β5

∂

(
∂ϕx

t
∂ pz

d

)2

∂ px
d

(4.27)

∂U

∂ py
d
= β2

∂

(
∂ϕ

y
t

∂qy
t

)2

∂ py
d

+β4

∂

(
∂ϕ

y
t

∂ py
d

)2

∂ px
d

+β5

∂

(
∂ϕ

y
t

∂ pz
d

)2

∂ py
d

(4.28)

∂U

∂ pz
d
= β1

∂

(
∂ϕx

t
∂qx

t

)2

∂ pz
d

+β2

∂

(
∂ϕ

y
t

∂qy
t

)2

∂ pz
d

+β3

∂

(
∂ϕx

t
∂ px

d

)2

∂ pz
d

+β4

∂

(
∂ϕ

y
t

∂ py
d

)2

∂ pz
d

+β5

∂

(
∂ϕx

t
∂ pz

d

)2

∂ pz
d

+
∂

(
∂ϕ

y
t

∂ pz
d

)2

∂ pz
d

 (4.29)

Eventually, the control input to UAV d from UCC module is shown in Equation 4.30

uucc
d,t =

[
κx

∂U tot
t

∂ px
d

,κy
∂U tot

t

∂ py
d

,κz
∂U tot

t
∂ pz

d

]
(4.30)

We note that there is no need to explicitly calculate the gradients of human uncertainty

map with respect to UAV positions separately, since we linearly sum up the values (non-

negative) of the two maps (see Figure 4.2).
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Formation Controller Component (FCC)

Similar to the UCC, our formation controller component (FCC) attempts to minimize the

consensus displacement error by using a gradient descent flow of the weighted consensus

protocol in Equation 4.9, with respect to UAV pose, as represented in Equation 4.31.

u f cc
d =−κ2

∂E

∂ pd
=− ∑

( j,d)∈E

(
1− δ∥∥∥pd

t −pd/ j
t

∥∥∥
)(

pd
t − pd/ j

t

)
(

∆−
∥∥∥pd

t − pd/ j
t

∥∥∥)3 (4.31)

Similar logistics as in Equation 4.30 can be derived here for the three axes of coordinate.

Accordingly, the combination of control inputs generated by UCC and FCC modules are

leveraged according to our dual-criteria objective function, introduced in Equation 4.3, in

order to produce a new desired location pv
t for each UAV to move to. As such, a UAV’s new

virtual position will be updated and fed to PPC as shown in Equation 4.32.

pv
t+δ t = pv

t −
(

uucc
d −u f cc

d

)
δ t (4.32)

Path Planning Controller (PPC)

The PPC module generates either an attractive force toward a desired pose or a repulsive

force avoiding an undesirable one. Desired poses include the initial rendezvous point where

coverage and tracking wildfire begins and the new virtual position pv
t+δ t generated through

our dual-criteria objective function as in Equation 4.32. Undesirable poses include ones

that are too close to another UAV or too high/low of an altitude. Leveraging an artificial

potential field, we address these problems by generating attractive and repulsive forces using

a quadratic function of distances from desired or to undesired points. The attractive control

force applied to each UAV pd
t to any goal points pg

t at time t can be calculated as noted in
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Equation 4.33 where κg is the proportional gain.

Datt
d =

1
2

κg

∥∥∥pd
g− pd

t

∥∥∥2
and uatt

d =−∇Datt
d = κg

(
pd

g− pd
t

)
(4.33)

Using the same notation, the repulsive control force generated to avoid any point pg
t

can be defined as in Equation 4.34 where γ is the distance between current position and the

undesirable position pg
t and ζ = 1 only if

∥∥∥pg
t − pd

t

∥∥∥< γ .

D rep
d =


1
2

κg

 1∥∥∥pd
g− pd

t

∥∥∥ − 1
γ


2

i f
∥∥∥pd

g− pd
t

∥∥∥< γ

0 otherwise.

(4.34)

urep
d =−ζ ∇D rep

d =−ζ κg

 1∥∥∥pd
g− pd

t

∥∥∥ − 1
γ

 1∥∥∥pd
g− pd

t

∥∥∥3

(
pd

g− pd
t

)
(4.35)

Eventually, the general control law in order to generate the required force to move UAVs

to their new locations can be formed as in Equation 4.36 where Ft is the set of all generated

attractive and repulsive forces at time t. Thus, the final position of UAV d gets updated

through pd
t+δ t = pd

t +udδ t.

ud,t = ∑
i

uatti
d,t +urepi

d,t , ∀i ∈ Ft (4.36)

4.1.7 Empirical Evaluation

Safety Index to Secure Human Firefighters

As a corollary of our algorithm, we calculate an individualized safety index (SI) as a temporal

quantity for human firefighters on the ground by leveraging the estimated wildfire dynamics

and parameters and report this quantity to firefighters for situational awareness. Now, SI as a

measure of time is defined as in Equation 4.37 for human firefighters by taking into account
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Figure 4.5: This figure depicts a quantitative comparison of our coordinated controller with
prior work (left-side) and human safety index (SI) variations as a temporal quantity, with
respect to distance between an approaching firefront and a human firefighter (right-side).

the velocity of the approaching firefront.

SIh
t = ∏

i∈vh

Pih

q̇i
t

ph
t −qi

t∥∥∥ph
t −qi

t

∥∥∥

−1

(4.37)

In this equation, Pih is the CDF (from Equation 4.8), vh is the vicinity of human h, and q̇i
t

is the estimated fire spread velocity of fire-spot i toward this vicinity. The ratio is to account

for the direction of the firefront and equals to 1 if the firefront is directly approaching the

coordinates where the human is located. Accordingly, we assume three different ranges for

SI to be announced at each time, namely (1) safe if SIh
t ≥ Ts, (2) warning if Tw ≤ SIh

t < Ts,

and (3) danger if SIh
t < Tw. Parameters Ts and Tw are predefined temporal-bounds for safety

and warning situations, respectively. We leave the safety and warning thresholds Ts and Tw

to be pre-defined by humans, as these variables are subjective to the firefighting scenario

(e.g., a burning hospital versus forest fire) and are dependent on situational severity. The

right-side figure in Figure 4.5 depicts the variations (i.e. mean±std) of SI with respect to

distance between an approaching firefront with 10 points and a human firefighter over 100

trials of simulation. For this case, a single UAV was placed over the fire area, inferring the
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fire-spot locations and parameters.

Results

We evaluate the efficiency of our controller in simulation and against two benchmarks:

(1) a state-of-the-art, model-based, distributed control [36] and (2) a deep reinforcement

learning (RL) baseline. The first benchmark [36] is a fire heat-intensity-based distributed

control framework for wildfire coverage which incorporates FARSITE and a model for

fire heat-intensity measure in order to maximize the area-pixel density of the UAV’s fire

observations. Furthermore, we train an RL policy network to control UAVs to reduce the

uncertainty residual as measured by AEKF. The network consists of four convolutional

layers followed by three fully connected layers with ReLU activations. The image of the fire

area is an input while a direction for UAVs is an output of the network. We define the reward

at each step as the negative sum of uncertainty residual across the entire map, encouraging

the agent to minimize uncertainty over time.

In our simulations, we initialize the fire-map with 20 randomly placed ignition points

in [50 100] range and within a 500-by-500 terrain where the fire model parameters Rt , Ut ,

and θt were chosen similar to [36], for comparison. A total of five drones were initialized

around [50 300] coordinates with initial altitude set to zero. UAV camera half-angles were

set to [π

4 ,
π

6 ]. The inter-distance δ and communication range ∆ in our weighted consensus

protocol were set to 50 and 500, respectively. The maximum and minimum altitudes were

chosen to be 15 and 45, respectively. Figure 4.6 depicts the simulation results of eight

sample time-steps between t = 20 (top-left) and t = 300 (bottom-right) as detailed above,

representing drone FOVs projected on the ground.

The left-side figure in Figure 4.5 shows a comparison for a team of UAVs controlled

by our method, the distributed control proposed by [36], and the RL baseline. We ran the

simulations for 100 time-steps for all three methods for a total of 10 trials where for each

trial, a cumulative uncertainty was calculated by the AEKF for fire points not covered by any
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Figure 4.6: Simulation results of eight sample time-steps between t = 20 (top-left) and
t = 300 (bottom-right) for distributed coverage, representing drone FOVs projected on the
ground. Dot rays show the FOV centroids.

drones at each step. While the RL baseline failed to learn during 800 episodes of training, our

approach shows significant improvements by reducing the cumulative uncertainty residual

by more than 102x and 105x times.

We also evaluate the feasibility of our controller on physical robots. The physical experi-

ments with actual robots were performed in the Robotarium, a remotely accessible swarm

robotics research platform [151]. We tested the coverage performance of our controller using

five robots and similar fire environment as above. Figure 4.7 represents example demonstra-

tions of our experiment. Results of the experiment is demonstrated in the supplementary

video, which can also be found at https://youtu.be/j3YdIO5u_fE.

4.1.8 Conclusion

We combined a node-level control criteria and an ensemble-level control criteria to introduce

a novel coordinated control algorithm for human-centered active sensing of wildfires, pro-

viding high-quality, online information to human firefighters on the ground. In our approach,

we take advantage of AEKF’s error propagation capability to generate an uncertainty map,

incorporating uncertainties about firefront dynamics and areas of human activity. Our ap-

proach outperformed prior work for distributed control of UAVs for wildfire tracking as well
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Figure 4.7: Feasibility of the proposed distributed control algorithm for wildfire coverage
evaluated on physical robots in Robotarium platform [151]. The experiment footage can be
found at https://youtu.be/j3YdIO5u_fE.

as a reinforcement learning baseline.
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4.2 Adaptive Leader-Follower Control for Multi-Robot Teams with Uncertain Net-

work Structure

Traditionally-designed, centralized or decentralized control architectures typically rely on

the availability of communication channels between neighboring robots as well as a known,

static network structure to tightly coordinate their actions in order to achieve global con-

sensus. Unfortunately, communication constraints and network disconnectivity are key

bottlenecks in such approaches, leading to the failure of conventional centralized or decen-

tralized networked controllers in achieving stability and global consensus. To overcome

these limitations, we develop a centralized, coordinated-control structure for multi-robot

teams with uncertain network structure. Our novel approach enables multi-robot teams

to achieve consensus even with disconnected communication graphs. Leveraging model

reference adaptive control framework and networked control architectures, we develop a

coordinated leader-follower consensus controller capable of overcoming communication

losses within the team, handling non-communicative robots, and compensating for environ-

mental noise. We prove the stability of our controller and empirically validate our approach

by analyzing the effects of reference graph structures and environmental noise on team

performance. Finally, we demonstrate our novel controller in a multi-robot testbed.

4.2.1 Introduction and Motivation

Multi-robot systems have grown in importance during the past decade in cooperative task

settings and for solving complex, large-scale problems that are intractable for individual

robots. Multi-agent robotic systems have been applied to a wide array of applications,

including environmental surveillance [5, 152, 8] and multi-robot formation control and

object transport in automated factories and warehouses [153, 154, 155, 135, 156]. In many

of the aforementioned scenarios, robots are typically required to navigate and maintain a

specific, organized formation, e.g. to maintain a communication network [157, 158], to
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cooperatively survey an area [5], or to manipulate an object [153, 154]. While the need

for developing multi-robot systems that are capable of autonomously coordinating and

performing their tasks is critical, effective team coordination in these systems is challenging

due to problems such as inter-agent communication constraints [17, 159].

Coordination of multi-robot teams typically entails a shared, common objective requiring

the team to take actions according to the mutual interest(s) of the group [17]. In control

theory, multi-robot control and coordination approaches can be divided into three main

categories: (1) centralized control, (2) decentralized (distributed) control and, (3) hybrid-

hierarchical (also referred to as semi-centralized [154]) control. Centralized methods consist

of a central agent (e.g., a robot or a computer) that has access to global state information

and oversees robots’ navigation towards a desired location or formation [153, 160, 158]. On

the other extreme, decentralized control and coordination methods do not include a central

agent and each robot is taking actions solely based on its own local information [5, 161,

162, 163]. In hybrid-hierarchical control architectures, there exists a central planning agent

which distributes tasks, while each robot then executes its actions locally [154, 8, 164].

Centralized coordinated-control approaches are typically criticized for burdensome

communication overhead and are said to be memory-expensive in large-scale multi-robot

systems [165]. As such, complex decentralized architectures, such as consensus-based

networked control strategies, have been proposed to deal with the communication costs

in large-scale multi-robot systems [166, 148, 167]. Nevertheless, centralized (and semi-

centralized) architectures are still preferred in many, small-scale applications since de-

centralized methods suffer from issues such as sub-optimal solutions, rising from local,

uncoordinated actions and computational complexity [165]. Moreover, it has been shown

in prior work that existence of communication channels between all neighboring robots,

such that a connected graph structure is formed and preserved, is a necessity to improve the

quality of decentralized solutions [166, 148, 167]. However, a connected communication

graph may not always be achievable, and a robot network might become disconnected, due
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to environmental constraints or hardware (e.g., wireless devices) limitations and failures.

We note that this issue relates to both centralized and decentralized control architectures,

as a consequence of which, these controllers become unstable and result in an inability to

achieve global consensus under communication uncertainty and network disconnectivity.

Contributions

In this paper, we overcome these limitations in prior work by proposing a coordinated-

control framework, suitable for centralized and semi-centralized multi-robot teams with

uncertain communication network structures. Inspired by the adaptive control theory and

the networked control systems, we develop a coordinated controller that takes advantage

of the best of both centralized and decentralized control architectures while minimizing

the aforementioned issues of each. Our proposed coordinated-controller can achieve team

convergence even for a network of robots with a disconnected communication graph. To

this end, we derive an adaptive control law for a leader-follower networked system that

provably converges to mimic a desired network structure even though the real communication

topology remains unknown to the robot agents (both leaders and followers alike).

In our approach, the team’s communication network may be disconnected and its links

may have varying strengths, with the only assumption that these communication links are

not created/destroyed suddenly during the mission (i.e., an impulse). With this assumption,

we avoid the need for Neural Network (NN) weight approximation as proposed in prior

works [168, 169, 170], while reducing the required communication overhead due to a

centralized model reference. Our motivation is to develop an elegant, robust method

without relying on complex NN weight approximation, and to modify the conventional

networked control strategy for multi-robot systems in scenarios where centralized controllers

are feasible, but full inter-robot communication might be a concern. Moreover, our low-

complexity coordinated adaptive controller can be used in online applications and is capable

of handling non-communicative robots while also compensating for environmental noise.
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We provide Lyapunov-based formal proofs of stability, and evaluate our controller by

analyzing the effects of choosing different reference graph structures and environmental

noises on the performance of robot team for leader-follower navigation. We empirically

evaluate our algorithm on a set of coordinated control scenarios showing that our approach is

able to quickly converge and achieve consensus whereas a traditional approach consistently

fails. Finally, we demonstrate our approach on a physical, multi-robot testbed showing the

feasibility and success of our approach.

4.2.2 Problem Statement and Formulation

To properly describe the problem under consideration, we choose a graph theoretic for-

mulation of the robot network. Let us consider a collection of n agents with coordinates

zi ∈ Rd for i = 1, . . . ,n. Assume that each agent, i, can communicate with a neighboring

agent, j, only if agent j is within the communication range of agent i. This network is

as an undirected graph G = ⟨V,E⟩, where V = {v1, · · · ,vn} are vertices corresponding to

each individual agent and E = {(vi,v j)} ⊂ V ×V are edges, describing the connection

(e.g., existence of communication channels) between robots i and j. These communication

channels can be encoded by the adjacency matrix, A = [ai j], with ai j > 0 if (v j,vi) ∈ E and

ai j = 0 otherwise. Let di be the degree of vertex i, defined as the sum of elements in the i-th

row (or i-th column due to symmetry) of A. By calculating the degree of all agents in the

graph, we obtain the degree matrix, D = diag(di), and the Laplacian matrix, L = D−A. It

is known that L = LT ≥ 0 and any undirected connected graph G has the property that its

first eigenvalue is zero while the rest are strictly positive [148].

Considering the aforementioned notions, the basic node-level consensus equation for a

team of robots is given in Equation 4.38, in which agents simply move in the direction of

the negative gradient of the total displacement error. Applying Equation 4.38 to a network
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of robots will result in all agents converging to the same location (e.g., reaching consensus).

żi =− ∑
⟨ j,i⟩∈E

(zi− z j) (4.38)

The ensemble-level dynamics of the robot network and accordingly, the description of

leader-follower robot networks is presented in subsubsection 4.2.3.

4.2.3 Adaptive Leader-Follower Controller

This section formulates the proposed coordinated, adaptive, leader-follower controller. We

begin by providing a detailed description of the leader–follower networks and then present

our proposed adaptive leader-follower control structure. Next, we provide formal guarantees

of stability and consensus for our robot network.

Leader-Follower Networks

Consider the following dynamical description of a leader-follower robot network at the

ensemble-level for uni-dimensional, static, undirected graph G = ⟨V,E⟩ with n agents and

m edges, as presented in Equation 4.39.

ż = u (4.39)

In Equation 4.39, z =
[
ζ ,xn

]T ∈ℜn is the state vector in which ζ = [x1, · · · ,xn−1]
T ∈ℜn−1

denotes the vector of follower coordinates (agents) and xn ∈ ℜ represents a static leader

(anchor node or desired location for agents to move towards). Moreover, u =
[
uζ ,0

]T
∈ℜn

is the control signal in which uζ =
[
uζ1

, · · · ,uζn−1

]T
∈ℜn−1 is the control input vector of

the followers. We define the control input as in Equation 4.40.

u =−Lz (4.40)
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Next, we obtain the ensemble-level dynamics as in Equation 4.41.

ż =−Lz (4.41)

In Equation 4.41, L ∈ℜn×n is the actual Laplacian matrix, meaning that it is unknown to the

controller, and can be partitioned as represented in Equation 4.42 in which L f ∈ℜn−1×n−1,

v ∈ℜn−1, and b ∈ℜ. Note that, if G is connected, then L f > 0 [166].

L =

L f v

vT b

 (4.42)

Accordingly, the followers dynamics along with the d-dimensional version of the prob-

lem can be derived as in Equation 4.43 and Equation 4.44, respectively, where ξ =[
ζ1, · · · ,ζd

]T ∈ℜ(n−1)d and xn =
[
xn1 , · · · ,xnd

]T ∈ℜd . Moreover, L f = Id⊗L f ∈ℜ(n−1)d×(n−1)d ,

v = Id⊗ v ∈ℜ(n−1)d×d , and the operator ⊗ represents the Kronecker tensor product.

ζ̇ =−L f ζ − vxn (4.43)

ξ̇ =−L f ξ − vxn (4.44)

Applying the above distributed, leader-follower controller in Equation 4.44 to a team of

networked-robots will drive the follower agents to the position of leader(s) [166]. We

note that in our formulation, the disconnected sub-graphs do not necessarily need to have

the same structure. We empirically validate this in our demonstrations (subsection 4.2.4-

subsection 5.2.6).

Controller Formulation

Our objective is to derive a feedback control such that the consensus of the followers to the

leader positions is achieved even if the network connectivity and structure are uncertain. For
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this purpose, we begin by defining the following reference model,

ξ̇m =−L fmξm− vmxn (4.45)

In Equation 4.45, ξm =
[
ζm1, ...,ζmd

]T ∈ ℜ(n−1)d , L fm = Id ⊗ L fm ∈ ℜ(n−1)d×(n−1)d , and

vm = Id⊗ vm ∈ℜ(n−1)d×d . Note that L fm is the desired Laplacian and is a positive definite

matrix (as the desired graph is connected). Thus, Hm =−L fm is Hurwitz and satisfies the

Lyapunov equation for Q ∈ℜ(n−1)d×(n−1)d > 0 such that Equation 4.46 holds.

HT
mP+PHm =−Q (4.46)

Equation 4.46 ensures that, for any Hurwitz matrix, Hm, and any positive definite matrix, Q,

the solution, P∈ℜ(n−1)d×(n−1)d , is always a positive definite matrix. We utilize the solution,

P, in our adaptation mechanisms (Equation 4.55 and Equation 4.56), and the Lyapunov

function (Equation 4.46) to guarantee the system stability.

Now, let us define the following direct adaptive model reference control law in Equa-

tion 4.47, where uξ ∈ℜ(n−1)d is the vector of the followers control inputs, Kx ∈ℜ(n−1)d×(n−1)d ,

and Kr ∈ℜ(n−1)d×d are design matrices. Proper adaptation mechanisms will be designed

later to update the control gains Kx and Kr (Equation 4.55 and Equation 4.56).

uξ =−L f ξ − vxn−Kxξ −Krxn (4.47)

By substituting Equation 4.47 into the followers dynamics ξ̇ = uξ , we arrive at the closed-

loop system as follows in Equation 4.48.

ξ̇ =−L f ξ − vxn−Kxξ −Krxn (4.48)

Accordingly, to match the above closed-loop system in Equation 4.48 with the reference
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model in Equation 4.45, we assume that K∗x and K∗r are the ideal gains, leading to the

matching conditions defined as follows in Equation 4.49 and Equation 4.50.

K∗x = L fm−L f (4.49)

K∗r = vm− v (4.50)

Now, we define the reference model tracking error, e = ξ − ξm, and the gain estimation

errors, K̃x = Kx−K∗x and K̃r = Kr−K∗r , using which the error dynamics are derived as

follows, leading to Equation 4.53.

ė =−L f ξ − vxn−Kxξ −Krxn +L fmξm + vmxn (4.51)

=−L f ξ − vxn− (K̃x +K∗x )ξ − (K̃r +K∗r )xn +L fm(ξ − e)+ vmxn (4.52)

=−L fme+(L fm−L f −K∗x )ξ +(vm− v−K∗r )xn− K̃xξ − K̃rxn (4.53)

Substituting the matching conditions in Equation 4.49 and Equation 4.50 into Equa-

tion 4.53, we can rewrite the error dynamics as stated in Equation 4.54.

ė =−L fme− K̃xξ − K̃rxn (4.54)

Accordingly, we suggest the following adaptation laws in Equation 4.55 and Equation 4.56

with the positive definite adaptation convergence matrices γx ∈ ℜ(n−1)d×(n−1)d > 0 and

γr ∈ ℜ(n−1)d×(n−1)d > 0, and utilize the control law in Equation 4.47 for the followers

dynamics ξ̇ = uξ to follow the reference model represented in Equation 4.45.

K̇x = γxPeξ
T (4.55)

K̇r = γrPexT
n (4.56)
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Consensus Analysis and Proof of Stability

To ensure that followers achieve consensus (e.g., converging to leader locations), we utilize

the Lyapunov stability notion. We define the following candidate Lyapunov function in

Equation 4.57, in which P is a positive definite matrix and solution to Equation 4.46.

V (e, K̃x, K̃r) = eT Pe+ tr
(

K̃T
x γ
−1
x K̃x

)
+ tr

(
K̃T

r γ
−1
r K̃r

)
(4.57)

We leverage Barbalat’s lemma [171, 172], reproduced below in Lemma Theorem 1, for

guaranteeing asymptotic stability of nonlinear systems, and then present Theorem Theorem 2

to guarantee the stability of the closed-loop system.

Lemma 1 (Barbalat’s Lemma) If a Lyapunov function V (t,x) satisfies the three conditions

such that: 1) V (t,x) is lower-bounded, 2) V̇ (t,x) is negative semi-definite, and 3) V̈ (t,x) is

bounded, then V̇ (t,x)→ 0 as t→ ∞.

Theorem 2 Consider the leader-follower system introduced in Equation 4.44 with a dis-

connected network structure, the candidate Lyapunov function in Equation 4.57, the control

law in Equation 4.47, and the adaptation mechanisms in Equation 4.55 and Equation 4.56.

Under the matching conditions in Equation 4.49 and Equation 4.50, and the reference model

in Equation 4.45, consensus of the follower agents is achieved asymptotically, i.e., ξ → ξm

and the gain estimation errors, K̃x and K̃r, are bounded for all e(0), K̃x(0), and K̃r(0).

Proof 1 To prove the stability of our system through Theorem Theorem 2 and Lemma The-

orem 1, we start by taking the time derivative of our candidate Lyapunov function in

Equation 4.57 along the system trajectory in Equation 4.54. We derive the following:

V̇ =2eT Pė+2tr
(

K̃T
x γ
−1
x K̇x

)
+2tr

(
K̃T

r γ
−1
r K̇r

)
(4.58)

=2eT PHme−2tr
(

eT PK̃xξ

)
+2tr

(
K̃T

x γ
−1
x K̇x

)
−2tr

(
eT PK̃rxn

)
+2tr

(
K̃T

r γ
−1
r K̇r

)
(4.59)
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Using Equation 4.46 and the trace properties, we derive the following:

V̇ =− eT Qe−2tr
(

K̃xξ eT P
)
+2tr

(
K̃T

x γ
−1
x K̇x

)
−2tr

(
K̃rxneT P

)
+2tr

(
K̃T

r γ
−1
r K̇r

)
(4.60)

=− eT Qe−2tr
(

K̃T
x Peξ

T
)
+2tr

(
K̃T

x γ
−1
x K̇x

)
−2tr

(
K̃T

r PexT
n

)
+2tr

(
K̃T

r γ
−1
r K̇r

)
(4.61)

which using the adaptation laws in Equation 4.55 - Equation 4.56, it reduces to

V̇ =−eT Qe (4.62)

According to Equation 4.62, V̇ is negative-semi definite, and therefore, Barbalat’s lemma

may be utilized to show V̇ → 0. Since V is lower-bounded and Equation 4.62 implies that V

is upper-bounded, the system errors, e, K̃x, and K̃r, are all bounded. It follows that conditions

(i) and (ii) of Barbalat’s lemma are satisfied. To verify the last condition of Barbalat’s lemma,

we calculate the second derivative of V along the system in Equation 4.54 as follows in

Equation 4.63.

V̈ =−2eT Qė = 2
(
L fme+ K̃xξ + K̃rxn

)
(4.63)

Since e and the reference trajectory, ξm, are bounded, then the boundedness of ξ is

ensured. This, coupled with the boundedness of K̃x, K̃r, and the leader coordinate xn implies

that V̈ is bounded, concluding that all premises in Barbalat’s lemma are satisfied, which in

turn proves that V̇ → 0 as t→ ∞. Therefore, referring to Equation 4.62, it is then proven

that ξ → ξm. Taken altogether, under the proposed controller, it is formally guaranteed that

the consensus of follower agents is achieved (e.g., convergence to leader positions) in the

presence of network dissconnectivity while the estimation errors K̃x and K̃r are bounded.

Remark 1 (The Stability and safety Assumptions) (1) Stability Assumptions: Under our
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proposed coordinated-controller, ξ converges to the desired formation, ξm, as t→ ∞, if the

following condition holds: fixed communication weights, which implies no links between

agents are created or destroyed suddenly during the missions (i.e., P is constant which

follows that Ṗ = 0). However, in some applications time-varying communication weights

may also exit, for instance, due to environmental constraints and obstacles or hardware

(sender-receiver) poor performance. Time-varying weights imply that communication links

between robots are not suddenly created or removed, but they may vary in time and Pt ∈ (0,1].

The immediate result of time-varying communication weights is that Ṗ is non-zero and P is

slow-varying (||Ṗ|| ≤ ε with ε > 0). In this case, it can be proven (see [173] for a similar

discussion) that the error is uniformly ultimately bounded (UUB), e.g., ||e|| ≤ δ (ε) as

t→ ∞ (δ is a function of ||Ṗ||), and thus, the proposed coordinated-controller will be stable.

Accordingly, ξ converges to a small neighborhood of the desired formation, ξm, as t→ ∞,

for which the ultimate bound of the neighborhood depends on the scale of ||Ṗ||.

(2) Safety Assumption: As described, under the proposed coordinated controller, agents

may be disconnected, meaning that safety barrier certificates for collision avoidance can-

not be applied. Accordingly, while developing collision avoidance algorithms for non-

communicative robot teams falls beyond the scope of our current study, we make the

assumption that in the case of a safety-critical application, each robot is equipped with

proper collision avoidance for safety. We rely on the rich literature on vision-based collision

avoidance (VCA) methods (e.g.,see [174, 175]) and assume each robot is equipped with

proper sensors and a VCA method to refrain from “in-flight” collisions.

Reference Model and Decaying Noise Effects on Follower Agents’ Ultimate Configuration

Reference Model In subsubsection 4.2.3, asymptotic convergence of the tracking error, e,

was guaranteed, which implies that the follower agents converge to the reference trajectory.

This section analyzes the effect of the reference model on follower agents’ ultimate formation.

Since it is guaranteed that ξ→ ξm, the problem reduces to see where will each agent converge
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to, given ξm. To investigate this problem, we note that the solution to Equation 4.45 with

L fm > 0 will asymptotically reach the quasi-static equilibrium ξ ∗m where

−L fmξ
∗
m− vmxn = 0 (4.64)

Solving Equation 4.64 for ξ ∗m yields

ξ
∗
m =−L−1

fm vmxn. (4.65)

Since from Theorem Theorem 2 we know that ξ → ξm as t→ ∞, we can transform Equa-

tion 4.65 into Equation 4.66.

lim
t→∞

ξ (t) =−L−1
fm vmxn, (4.66)

Equation 4.66 implies that the selection of the reference model (L fm,vm) as well as the

leaders’ positions xn collectively determine where the follower agents will converge to. We

empirically evaluate the effects of these parameters on the performance of the follower

agents in simulation, and provide results in subsubsection 4.2.4.

Decaying Noise In the presence of a decaying noise, e−αt , affecting the system with

α > 0, the solution of Equation 4.45 can be obtained as shown in Equation 4.67.

ξ (t) =e−L fm t
ξ (0)−L−1

fm vmxn(1− e−L fm t)

+
∫ t

0
e−L fm(t−τ)1e−αtdτ (4.67)

Utilizing the property e−L fm(t−τ)1 = 1 for the above equation, where 1 is the all-ones vector,

we arrive at the solution for the noisy system as in Equation 4.68.

lim
t→∞

ξ (t) =−L−1
fm vmxn +1

1
α

(4.68)

64



Comparing Equation 4.68 with Equation 4.66 as the general solution for leader-follower

systems, we conclude that under the decaying noise e−αt , the ultimate follower configuration

is drifted by the positive constant 1
α

, which can be compensated for.

4.2.4 Empirical Evaluation

In this section, we empirically evaluate our coordinated adaptive controller to assess the

coordination performance when the network is disconnected. First, we provide the simu-

lation results in subsubsection 4.2.4 including error convergence results and adaptive gain

assessments. We then present an empirical experiment on the effects of choosing the refer-

ence model (e.g., graph structure) and leaders’ positions on the follower agents’ ultimate

configuration.

Empirical Stability and Convergence

To assess the performance of our proposed coordinated controller in presence of network

disconnectivity, without loss of generality, we created an environment of ten agents (i.e.,

Dubins vehicles) as the follower robots that are separated into disjoint groups of size two,

three and five. The follower agents within each group were connected to each other, but

there was no communication channel between the agents of different groups. The goal

was to navigate these agents to an area (e.g., for field coverage or to achieve a specific

formation) and thus, we identified the coordinates of four vertices in a rectangular area as the

leader (static) coordinates. Accordingly, we ran our proposed coordinated leader-follower

controller on the collective set of ten agents by choosing a fully-sconnected graph between

all agents as the reference communication model.

We compared our approach to a conventional networked-system controller on the same,

disconnected graph that our algorithm has access to. To set an optimal – but not achievable –

baseline, we also included a conventional leader-follower controller with a fully-connected

graph. We note that we chose to compare our more-informed (e.g., centralized) adaptive,
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(a) Tracking error and control effort (b) Adaptation gains

Figure 4.8: This figure depicts the empirical stability and convergence results of our coordi-
nated adaptive leader-follower controller with network disconnectivity. Figure 4.8a presents
the error convergence and the control effort for each of the ten robot agents in the team
(setup described in subsubsection 4.2.4), and Figure 4.8b shows the adaptive gains during
the simulation.

networked controller with a regular distributed networked controller to demonstrate that the

connectedness condition in such systems can be bypassed at the cost of a simple centralized

model-reference. Our motivation was to modify the conventional networked control strategy

for multi-robot systems in scenarios where centralized (or semi-centralized) controllers are

feasible, but full inter-robot communication might be a concern.

The stability and convergence results for performance evaluation of our coordinated

adaptive controller in the presence of network disconnectivity are presented in Fig. 1.

Figure 4.8a depicts the tracking performance and control effort from which we see that all

tracking errors and velocity control inputs converge to zero. This convergence is coincided

with the moment that the adaptation gains converge to a bounded neighbourhood around their

true values, as shown in Figure 4.8b. Figure 4.9 demonstrates the follower agents’ behaviors

in comparison with conventional controller, with and without network disconnectivity, in

which black and blue lines show the positions of follower agents and leaders, respectively.

It is observed that, in contrast with the conventional controller that fails navigating agents to

the desired leader positions, the proposed adaptive controller can successfully performs the

task in the presence of the network disconnectivity.
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Figure 4.9: This figure demonstrates the follower agents’ behaviors under our proposed
coordinated adaptive framework in comparison with the conventional controller. The black
and blue lines show the positions of followers and leaders, respectively.

Effects of Reference Graph Structure

To evaluate the effects of choosing the reference communication graph on the performance

of the team we examined three well-known graph structures: (1) complete graph, (2) cycle

graph, and (3) linear graph. The experiment environment was similar to the setting in sub-

subsection 4.2.4 and the resulting follower agents’ behavior (e.g., position and convergence)

are presented in 3 for complete (left), cycle (middle) and linear (right) graphs. As shown,

our coordinated controller can successfully navigate the follower agents and mimic the

reference communication model.

As shown in Figure 4.10a, in case of choosing a complete graph as the reference

communication topology, the follower agents collectively converge to the mean of the four

leader locations (blue lines) while for the other two cases followers are showing different

behaviors. Figure 4.10b shows that follower agents are uniformly distributed between the

smallest and largest leader locations in case of choosing a cycle graph as the reference model.
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(a) Complete graph (b) Cycle graph

(c) Linear graph

Figure 4.10: Effects of choosing reference communication graph model on the performance
of the leader-follower controller and follower agents’ behaviors (e.g., position and conver-
gence) for complete (Figure 4.10a), cycle (Figure 4.10b) and linear (Figure 4.10c) graphs.

Moreover, Figure 4.10c shows that for a linear graph, followers converge to the smallest

leader. Therefore, based on the underlaying application, one can choose the reference model

to achieve a desired formation. For instance, for covering a large wildfire area, one can

select the smaller and larger leader positions such that agents are distributed between the

two locations, to cover the entire area. Moreover, we note that choosing the reference graph

also affects the convergence rate of the followers to the leader positions. Accordingly, a

weak communication graph (e.g., Linear) results in a slower convergence, as compared to

stronger communication topologies.

4.2.5 Demonstration: Multi-Robot Testbed

To demonstrate the feasibility of our approach, we implemented and tested our coordinated

adaptive leader-follower controller in the Robotarium, a multi-agent robotic platform [151].

The robot team in Robotarium is composed of a number of wheeled miniature, differential-
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Figure 4.11: Initial (t = 0s) and final robot standings (t = 80s) in the field coverage experi-
ment under both the conventional (left-side column) and our proposed controllers (right-side
column). In our experiments, three disjoint groups (no communication between groups) of
two, two, and three robots, were initialized. A cycle graph was selected as the reference
communication model with leader locations set on lower-left and upper-right corners of the
designated coverage area. (video link https://youtu.be/mX8Sm-iH-kQ).

drive robots which are tracked (i.e., position and orientation) in real-time by a webcam-based

tracking system. For the experiment setup, seven robots that were separated in three disjoint

groups of size two, two, and three, were initialized. Considering field coverage as the

underlaying application, we selected a cycle graph as the reference communication model

for our disconnected network of robots and smaller and larger leader locations were chosen

to be the lower-left and upper-right corners of the designated coverage area so that robots

cover the entire area (see discussion in subsubsection 4.2.4). Figure 4.11 presents initial and

final robot standings in our experiments where squares around each robot shows the field-
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of-view (FOV) of the robot and solid lines between robots demonstrates communication

channels. A similar experiment was performed under the conventional controller and results

of both experiments are provided for comparison. The video recordings of experiments can

be found on https://youtu.be/mX8Sm-iH-kQ.

4.2.6 Conclusion

In this paper, we developed an adaptive coordinated control strategy for the leader-follower

systems with uncertain communication network structures. The proposed approach provides

a novel coordinated controller to be applied to disconnected and/or non-communicative

teams of robots with uncertain communication graph structure for which the conventional

consensus-based networked controllers fail. We achieved this result by bypassing the

connectedness condition at the cost of a simple centralized model-reference. Our motivation

was to modify the conventional networked control strategy for multi-robot systems in

scenarios where centralized (or semi-centralized) controllers are feasible, but full inter-robot

communication might be an issue. Through the proposed controller, we take advantage

of the best in both centralized and decentralized control architectures, while reducing the

limitations of each. Simulation and experiments confirm the benefits of the proposed scheme

over conventional methods that fail at achieving consensus. In future work, we aim to relax

the assumption that no communication edges are added/removed during the mission and

modify our controller to compensate for time-varying graphs.

70

https://youtu.be/mX8Sm-iH-kQ


CHAPTER 5

HIGH-LEVEL PERFORMANCE-GUARANTEED COORDINATED PLANNING

FOR MULTI-ROBOT TEAMS

Multi-robot coordination approaches can be tackled at two separate levels: (1) high-level

decision-making and (2) low-level control. The high-level decision-making module deals

with planning a set of objectives (course of actions) among several possible options through

which robot(s) can optimally (or at least satisfactorily) accomplish their task-objective. On

the other hand, the low-level control module tackles the problem of designing appropriate

control inputs for robot actuator(s) so that the robot(s) can follow a future trajectory as

closely as possible. Our works in the previous chapter was focused on the low-level control.

In this chapter, we focus our studies on designing coordinated high-level plans for

cooperative teams of robots. We tackle important aspects of multi-robot teaming such as

providing performance-guaranteed service. We continue to use the aerial fire monitoring

and wildfire fighting, introduced in section 3.1, as our running case-study.

In section 5.1, we study the problem of coordinated planning of a multi-UAV team for

cooperative surveillance and tracking of a restless environment [7, 8]. We utilize a similar

model-predictive mechanism as in section 4.1 to enable UAVs with the ability to reason about

their plan for collaborative surveillance through actively estimating changing environment

states. Particularly, we consider time-sensitive scenarios where only a limited number of

UAVs are available for allocation. A central contribution of our work in section 5.1 is a set

of analytical temporal and tracking-error bounds that allow UAVs to enable probabilistically-

guaranteed coordination in tracking dynamic targets.

Next, in section 5.2, in an attempt to simultaneously tackle both the high-level planning

and the low-level control stages of the coordination hierarchy, we develop an efficient
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hierarchical coordination framework for a composite robot team1 composed of perception-

only and action-only agents [9]. Our proposed framework in section 5.2 consists of two

modules: (1) a MA-SARTSA algorithm under Partially Observable Semi-Markov Decision

Process (POSMDP) as the high-level decision-making module to enable perception agents

to learn to surveil in a restless environment with unknown number of dynamic targets and

(2) a low-level coordinated control module that ensures probabilistically-guaranteed support

for action agents.

5.1 Multi-UAV Planning for Cooperative Dynamic Field Coverage with Quality-of-

Service Guarantees

In recent years, teams of robot and UAVs have been commissioned by researchers to enable

accurate, online wildfire coverage and tracking. While the majority of prior work focuses

on the coordination and control of such multi-robot systems, to date, these UAV teams

have not been given the ability to reason about a fire’s track (i.e., location and propagation

dynamics) to provide performance guarantee over a time horizon. Motivated by the problem

of aerial wildfire monitoring, we propose a predictive framework which enables cooperation

in multi-UAV teams towards collaborative field coverage and fire tracking with probabilistic

performance guarantee. Our approach enables UAVs to infer the latent fire propagation

dynamics for time-extended coordination in safety-critical conditions. We derive a set of

novel, analytical temporal, and tracking-error bounds to enable the UAV-team to distribute

their limited resources and cover the entire fire area according to the case-specific estimated

states and provide a probabilistic performance guarantee. Our results are not limited to

the aerial wildfire monitoring case-study and are generally applicable to problems, such as

search-and-rescue, target tracking and border patrol. We evaluate our approach in simulation

and provide demonstrations of the proposed framework on a physical multi-robot testbed

to account for real robot dynamics and restrictions. Our quantitative evaluations validate

1See subsection 3.1.2 for a detailed description of the composite robot teams
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the performance of our method accumulating 7.5× and 9.0× smaller tracking-error than

state-of-the-art model-based and reinforcement learning benchmarks, respectively.

5.1.1 Introduction

While multi-robot systems are capable of executing time-sensitive, complex missions that

are intractable for a single robot, it is challenging to efficiently coordinate such systems

and to optimize the collaborative behavior among robots [9, 12]. This coordinated planning

problem becomes even more challenging when robots have to collaborate in a dynamic

environment, such as in monitoring an active wildfire. Dynamic environments are restless;

meaning regardless of robots’ collective actions, the states of the environment continually

change. As such, classical multi-agent planning and scheduling approaches designed for

static environments will fail in such domains, since coordination plans made for a timestep

may be inapplicable to the next step due to the environment dynamicity [176, 177].

In this work, we study the problem of coordinated planning of multi-UAV teams deployed

as MSNs for cooperative surveillance and tracking of a dynamic environment. We enable

UAVs with the ability to estimate the changing states of their environment and leverage these

estimated information to reason about their cooperation plan for collaborative monitoring.

Particularly, we consider safety-critical and time-sensitive scenarios where only a limited

number of UAVs are available. Therefore, in our problem, not only it is important to reason

robustly under environmental dynamicity via active planning with limited resources, it is

exigent to have probabilistic guarantees that the UAV team can execute the coordinated plan.

In our approach, the UAV agents actively evaluate a probabilistic error-bound that provides

such guarantee and attempt to revise their coordinated plan when a performance guarantee

cannot be provided due to changes in environment states. While the problem of multi-agent

planning and scheduling has been studied extensively in prior work [176, 177, 178, 179, 180,

181], many of these works either lack the ability to actively plan in a dynamic environment,

or do not provide a probabilistic performance guarantee that assures the teams’ success in
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executing a coordinated plan.

Contributions

We develop a probabilistically-guaranteed framework for real-time, large-scale coordinated

planning and cooperative coverage of dynamic environments. We ground our approach in

application to aerial wildfire monitoring and develop an algorithmic framework in which we

explicitly infer the latent fire propagation dynamics and leverage the estimated information

in real-time to plan for a guaranteed quality of service. In our predictive mechanism,

we define the term service as actively estimating the states of a propagating wildfire via

limited number of UAVs and providing human firefighters on the ground with probabilistic

guarantees regarding their proximity to a fire. We design our planning and coverage

(i.e., monitoring) strategies upon a multi-step AEKF predictor and the FARSITE wildfire

propagation mathematical model [122].

A primary motivation of our approach is the need for computationally lightweight, yet

probabilistically-guaranteed, algorithms to scale to large numbers of UAVs and coverage

areas. A central contribution of our work is a set of novel, analytical temporal and tracking-

error residual bounds that allow UAVs to enable probabilistically-guaranteed coordination

in monitoring and tracking dynamic targets (i.e., firespots). We derive these bounds in

three different scenarios: (1) stationary fire, (2) moving fire without considerable grow (i.e.,

spawn), and (3) quickly moving, multiplying fire. For each case, we derive analytic and

probabilistic temporal upper-bounds to facilitate performance guarantee for collaborative

field coverage. The primary contributions of our work are:

1. An algorithmic planning framework based on Kalman estimation and uncertainty

propagation to learn and leverage in real-time a predictive mechanism that enables

probabilistic guarantees for tracking dynamic targets (i.e., firefronts).

2. Introducing the Uncertainty Residual Ratio (URR) tracking-error bound as well as a set

74



of novel, analytical temporal upper-bounds that allow UAVs to enable probabilistically-

guaranteed coordination in monitoring and tracking dynamic targets (i.e., firespots)

3. An efficient and scalable collaborative field coverage algorithm by leveraging our

analytical temporal bounds for centralized planning and distributed execution.

4. Presenting quantitative and experimental results in simulation and on physical robots

that show the effectiveness of our URR bound and cooperative coordinated multi-

UAV planning framework by demonstrating efficient scalability and significantly

outperforming two prior SOTA baselines [36, 119] in a wildfire coverage and tracking

task by accumulating 7.5× and 9.0× smaller tracking-errors, respectively.

We note that, despite the utility of UAVs as the robot agents and the aerial wildfire monitoring

application in our work, the proposed coordinated, collaborative planning and area coverage

algorithms as well as the derived set of analytical temporal and the URR tracking-error

bounds are broadly applicable to other safety-critical applications that require mobile

sensors to accurately track moving targets in their environment. See subsubsection 5.1.1

for a detailed discussion of the applicability of our proposed framework. We investigate the

cooperative field monitoring problem by considering the wildfires in three separate scenarios

of stationary, moving and moving-spreading target points (e.g., firespots).

In the application of wildfire fighting, human teams (i.e., firefighters) fight a wildfire

until the fire is extinguished or working condition becomes too harsh to continue relative to

the cost of abandoning. However, determining when a situation is too dangerous relative to

the costs of abandoning the effort is a non-trivial ethical dilemma (e.g., how to measure the

lives of immovable patients at a hospital in the fire’s path relative to those of the firefighters)

complicated by a lack of information regarding the fire’s propagation characteristics. We

take the perspective that this decision should remain in the hands of human professionals.

As such, in our case-study, we focus 1) on developing a tight, probabilistic, upper-bound to

reason about the minimum number of robots required to ensure high-quality information
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for the human decision-makers ( subsection 5.1.4) and 2) measuring the tightness of our

test by the number of robots required to satisfy this bound relative to other state-of-the-art

approaches ( subsection 5.1.7).

We empirically evaluate the performance, feasibility, and scalability of our framework

in various experiments, alongside a state-of-the-art model-based [36] and a reinforcement

learning (RL) benchmark [119] for UAV-based aerial field coverage and coordinated plan-

ning. Our experiments demonstrate a promising utility of our approach, accumulating 7.5×

and 9.0× smaller tracking-errors than the two benchmark methods. Moreover, we assess

the feasibility of our framework through implementation on physical robots in a mock

wildfire monitoring scenario. The results of our experimental evaluations are presented in a

supplementary video, available on https://youtu.be/zTR07cKlwRw.

General Applicability of the Proposed Framework

While grounded in an application to wildfire monitoring, the proposed coordinated planning

and collaborative field coverage frameworks for teams of autonomous robots are broadly

applicable to other domains and problems in which one is attempting to perform intel-

ligent tracking and monitoring of many targets with few robotic sensors in large-scale

operations [182]. Such applications include search-and-rescue [183, 184, 185], tracking of

wildlife poachers [186, 187, 188], oil spill surveillance in oceans [189, 190, 152], border

patrol and protection [191, 182] and even air traffic control for urban air mobility [192, 193,

194]. Here, we discuss these potential applications.

Search and Rescue Missions– Considering a scenario in which a natural disaster has

struck a city, a team of UAVs can be used to keep monitoring various distant search sites

for detecting survivors. Here, robots need to make sure to visit each search site frequently

enough to not miss any signs of motion; here, our analytical temporal and measurement-

uncertainty bounds for the case of static targets can provide a probabilistic guarantee for

surveillance quality. This example can be extended to other search-and-rescue scenarios
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where humans (groups or individuals) are lost in forests or mountains and various sites need

to be searched persistently or even for animal and wildlife monitoring and control, such as

tracking specific animal species.

Border Patrol and Protection– Similar to the search-and-rescue example, border patrol

and protection can be a relevant application for our framework in which aerial surveillance

and tracking of multiple moving target (e.g., cars) can be performed by hovering UAVs.

Various distant areas each including multiple targets can be monitored with a small team

of UAVs which estimate the states (i.e., position and velocity) of specific targets. For this

application, our analytical bounds for dynamic targets can provide the minimum number of

UAVs, required to ensure a high tracking quality of targets. A related example would be the

tracking of wildlife poachers.

Oil Spill Detection and Surveillance– Detecting and surveilling oil spills in the oceans

are also a closely relevant application for our frameworks. Similar to the aerial wildfire

detection and monitoring, teams of autonomous UAVs can be deployed for large-scale oil

spill surveillance, including multiple distant and dynamically growing spills, similar to the

third case of our wildfire case-study, the moving-spreading fire areas.

5.1.2 Related Work

Along the line of our work in the section, Bailon-Ruiz et al. [51] proposed a model-based

planning algorithms to monitor a propagating wildfire using a fleet of UAVs. The approach

tailors a variable neighborhood search to plan surveillance trajectories for a fleet of fixed-

wing aircrafts according to a given fire propagation model and a given wind model. The fire

state predictions are performed for hours into the future by using the integrated models and

are updated through aircraft observations. Despite the similarities to our work, however, we

did not consider the approach in [51] as a baseline for comparison, since the method assumes

both a fire propagation model and a wind model to be given for making predictions and plans

on the scale of hours into future and is designed for fixed-wing aircrafts with constrained
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motion dynamics. In our approach, we enable UAVs to actively infer fire propagation model

parameters through environment observations and plan accordingly, whereas, in [51], the

state estimation is performed for extended temporal windows into the future. An active state

estimation framework may be able to better cope with changes in fire dynamics over time. In

addition, the method in [51] directly plans trajectories for fixed-wing UAVs with constrained

differential-drive dynamics which are not applicable to our presumed omni-directional

UAVs. The focus of our method, on the other hand, is to provide a performance-guaranteed

plan and an upper-bound on the number of UAV agents needed to monitor the fire areas

without losing the track quality.

Furthermore, data-driven and learning-based approaches such as Reinforcement Learn-

ing (RL), have also been broadly applied to the problem of dynamic field coverage to

enable collaborative monitoring of wildfires [119, 195, 196, 54, 197, 198]. The problems

of high-dimensional state-space and imperfect sensory information, which are common

in the aerial wildfire monitoring application, are tackled in [141] and [199] for teams of

fixed-wing aircrafts using two deep RL methods. A similar problem was investigated and

tackled in [200] where a Q-learning [126] was leveraged to learn one surveillance policy for

a group of independent Q-learners. Ure et al. [201] proposed a decentralized approach for

the problem of multiple learning and collaborating agents in fire monitoring cases where

agents estimate different models from their local observations, but they can share infor-

mation by communicating model parameters. In [13, 10], a graph-based actor-critic [126]

method is introduced to learn efficient communication protocols for a group of cooperating

heterogeneous agents (i.e., sensing and manipulating agents) performing wildfire fighting.

While RL-based approaches occasionally show promising results in specific contexts,

such as for small-scale fires [119, 141], there are key limitations in terms of lack of

formal guarantees on the boundedness of error, non-standard reward-function specification,

scalability and inadaptability to domain shift, which are all limiting factors in application to

safety-critical domains such as wildfire fighting.
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5.1.3 Problem Formulation and Algorithmic Overview

Problem Statement

The proposed coordinated planning and collaborative coverage framework with quality-

of-service guarantees is described and formulated in this section and is presented in Al-

gorithm algorithm 2. We assume that firefront loci are detected through vision or thermal

cameras [25, 26]. Moreover, as discussed in Figure 3.1a and Figure 3.1b, the UAV team

is required to collectively monitor and track the fire (or generally moving targets) within

several disjoint areas, such as areas of human-activity or human-defined areas of priority

where high-quality information is indeed required. As such, we also assume that locations

of these areas are known a priori.

Upon receiving the request to monitor and track the fire in a total of Nh areas of wildfire,

an available UAV, d, from a set of homogeneous UAVs, d ∈ {UAV}Nd (Nd is total number of

UAVs), is required to provide, online (or at within reasonable time frames) and high-quality

information regarding the firefronts in the specified areas. The information here is referring

to the estimated state information of a firespot, such as its location and velocity. To this

end, the UAV d conducts a tour on firespots,
(

q1
t , · · · ,q

Nq
t

)
∈ {Qt}Nq , where Nq is the total

number of detected firespots in all of Nh areas. This tour is performed to generate a graph,

Gt , on firespots and accordingly a path, Pg
t , on this graph for the UAV to follow as its

tour-paths. The graph, Gt , is created by considering the firespots, qNq
t , as its nodes and the

straight path between them as its edges. The path, Pg
t , must be created and updated such

that the UAV, d, is capable of visiting all Nh areas frequently enough such that the estimated

state information, i.e., firespot locations and velocities, would remain up-to-date between

the UAV visits. A list of inputs and outputs are summarized in Algorithm algorithm 2.

Since the velocity of the assigned UAV is limited to vd
max and fire’s propagation parame-

ters (i.e., Rt ,Ut and θt in FARSITE model in Equation 3.1) alter stochastically over time,

it will be challenging for a single UAV to monitor all firespots within all Nh areas without
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Table 5.1: Summary of key nomenclature used in our paper.

Notation Domain Definition and Properties

Nq N+ Total number of detected firespots (or “targets” in general)

Nd N+ Total number of available UAVs (or “robots” in general)

Nh N+ Total number of areas to be monitored and tracked

ˆ − Accent used for estimated variables

qi
t R1×2 Location of i-th firespot at time t (i.e., qt =

[
qx

t ,q
y
t
]
)

pd
t R1×3 Position of d-th UAV at time t (i.e., pt =

[
px

t , py
t , pz

t
]
)

vd
max R Maximum linear velocity of UAV d

Mt R Fire propagation model (or in general, a target’s motion model)

Ot R UAV’s observation model (value at time t)

TUB R Upper-bound time it takes a UAV to complete a tour in an area

URRq
t R The uncertainty residual ratio

St|t Rm×m Measurement residual covariance matrix; m is # state variables

A d
t N1×2 Assigned UAV-path pairs

losing the track quality, particularly if the monitoring areas are distant. As such, more UAVs

need to be recruited and the monitoring tasks need to be divided among them. Note that,

UAV resources are limited and thus, in large-scale operations such as wildfire fighting it is

not feasible nor is efficient to simply use as many UAVs as possible to increase the quality

of the estimated information. Accordingly, the number of required UAV agents need to be

systematically bounded to efficiently monitor fire propagation within all Nh human-defined

areas of priority, while not losing the fire tracking quality. For this purpose, we propose

leveraging online inference of wildfire dynamics and quantifying UAVs’ accumulated esti-

mation uncertainties about the fire model’s parameters in order to efficiently coordinate the

UAV team. For the readers’ convenience, we provide Table 5.2 listing the key variables and

notations used throughout the article.
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Algorithmic Overview

Our solution to the aforementioned problem in subsubsection 5.1.3 is overviewed here.

Algorithm algorithm 2 presents our multi-UAV coordinated planning framework for active

monitoring of dynamic environments, such as wildfire areas. Figure 5.1 represents a

flowchart diagram of the core analytical process for guaranteeing performance in our

proposed algorithm.

Initially areas that need to be monitored are prioritized and divided from the rest of the

map (Line 3). A selected UAV travels to these areas and gathers sensing information by

flying over firespots and creating a graph, Gt , with detected firespots as its vertices and

a tour-path, Pg
t , by connecting the vertices on the generated graph as its edges (Lines

4-5). The graph Gt is an undirected graph generated by connecting each point to its closest

neighboring point (i.e., minimum spanning tree) and thus, the initial, quickly-generated

graph, Gt , and tour-path, Pg
t , are not efficient and therefore, need to be modified. In our

approach, generating the revised graph G′t and the path Pg′
t on detected firespots within

specified areas includes leveraging a Close-Enough Traveling Salesman Problem (CE-TSP)

step to account for multiple firespots observable within UAVs’ Field-of-View (FOV) (Line

6). In CE-TSP, a UAV only needs to get “close enough” to firespots for state estimation

rather than going to the exact location of each firespot. Next, the UAV must determine

through a feasibility test that whether monitoring all dynamic firespots within the Nh areas

can be guaranteed by taking the generated path, such that the track of none of the spots is

lost.

The performed feasibility test (Lines 9-13) is based on an analytical, probabilistic bound

on the tracking error, which evaluates the measurement uncertainty residual about the state

estimate, q̂i
t , of a firespot, qi

t , at time t, where i = 1, · · · ,Nq. The tracking-error residual

bound which we refer to as URRq̂
t , is evaluated through determining an upper-bound on the

time, TUB, required to cover each firespot in the Nh human-defined vicinities of priority (Line

7). In our feasibility test, TUB is compared to the maximum time allowable for each fire track
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Figure 5.1: A flowchart diagram representing the URR checking process as the analytical
safety condition. If the URR bound is not satisfied for a node in gt , the graph is partitioned
into two sub-graphs g1

t and g2
t (i.e., through k-means clustering), and accordingly into two

paths, and another UAV is called-in from the available UAVs in the team. The process is
repeated until URR is satisfied for all sub-graphs.

to propagate before measurement, so that the post-measurement residual is less than the

residual after the last time a given firespot was observed (Line 35). As shown in Figure 5.1,

if the test is satisfied, the aforementioned process continues and a near-optimal tour is

computed via a k-opt procedure. If the test fails, the UAV divvies up the responsibilities

for covering the fire locations by partitioning graph G′t into ⟨g′1,g′2⟩, recruiting another UAV

to assist and repeating this process until URRq̂
t bound is satisfied for all sub-graphs of G′t .

The partitioning process can be performed through clustering approaches such as k-means.

UAVs’ status are updated at the end for allocated/unallocated (i.e., 1/0 respectively) UAVs.

In the meantime, the unallocated team of UAVs can be utilized for coordinated, dis-

tributed field coverage (see subsection 5.1.5 and Algorithm algorithm 3), for monitoring

the rest of the wildfire area (i.e., areas that are not specified or prioritized). To this end,

unallocated UAVs generate a search graph and cluster the hotspots to generate a time-optimal

path by leveraging the estimated temporal upper-bound TUB.
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Algorithm 2: Stages of the proposed multi-UAV coordinated dynamic field moni-
toring framework (pre-specified areas of priority) with guaranteed performance.

input :Obtain the fire-map {Qt}Nq and total number of areas to cover Nh, list of all UAVs
{UAV}Nd , set of UAV poses, velocities and observation model ⟨{pt}d ,vd

max,Ot⟩, fire
propagation model Mt

output :Assigned UAV-path pairs {A d
t }

1 // main loop //
2 while MissionDuration do
3 Update fire-map and priority areas: ⟨{Qt}N1

q ,{Qt}N0
q ⟩ ← UpdateMap({Qt}Nq)

4 Estimate fire states and dynamics: {q̂t}← Sense({Qt}Nq ,{pt}d ,Mt ,Ot)
5 Form a graph and compute path: ⟨Gt ,P

g
t ⟩ ← ComputePath({q̂t})

6 Modify graph of estimated spots: ⟨G′t ,P
g′
t ⟩ ← CETSP(Gt ,P

g
t )

7 Compute TUB for d ∈ {UAV}d to cover G′t : T g′
UB← TUB(Pg′

t ,{q̂t},vd
max)

8 Create a set from graphs and their corresponding TUBs: {G }← ⟨G′t ,T
g′

UB⟩
9 while ∃g ∈ {G } s.t.False← FeasibilityTest({G },{q̂t}) do

10 ⟨{g′1,g′2},{P ′
g1
,P ′

g2
}⟩ ← CETSP(Cluster({G }g,2))

11 {T g′1
UB,T

g′2
UB}← TUB({P ′

g1
,P ′

g2
},{q̂g

t } ∈ g,vd
max)

12 {G }← ⟨{g′1,g′2},{T
g′1

UB,T
g′2

UB}⟩
13 end
14 Assign UAVs to paths: {A d

t }= ⟨P
g′
t ,d⟩,∀d ∈ {UAV}Nd

15 end
16 // inner functions //
17 def Sense({Qt}Nq ,{pt}d ,Mt ,Ot): // dynamic fire state estimations

18 q̂t+1 = argmaxqt+1
ρ

(
qt|t−1, pt|t−1,Mt ,Ot

)
19 def ComputePath({q̂t}): // generate and optimize path
20 Gt ,P

g
t ← MST({q̂t}) // MST(.): minimum spanning tree graph

21 while TimeAvailable do
22 | Pg

t ← k-opt(Gt ,P
g
t ) // k-opt(.): to optimize path

23 end
24 def TUB(Pg

t ,{q̂t},vd
max): // temporal service upper-bound

25 Determine fire scenario according to estimated states q̂i
t

26 switch
27 Case (1): TC1

UB ←
2len(Pg

t )

vd
max

// See Equation 5.8 for details

28 Case (2): TC2
UB ←

8ζ α (|Gt |−1)len(Pg
t )

vd
max(1−4ζ α (|Gt |−1))

// See Equation 5.9 for details

29 Case (3): TC3
UB ←

−β+
√

β 2−4γδ

2γ
// See Equation 5.15 for details

30 def FeasibilityTest({G },{q̂t}):

31 if
Tr
(

St+TUB|t
)

Tr
(

St|t−1

) ≤ 1,∀g ∈ {G }, return True else, return False
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5.1.4 Coordinated Planning for Monitoring with Guaranteed Quality-of-Service

Our objective is to propose a performance-guaranteed coordinated planning framework for

collaborative wildfire tracking. Particularly, our approach consists of a probabilistically-

guaranteed, realtime coordination algorithm that provides human firefighters with real-

time information about fire states within the specified areas. We then develop a predictive

distributed coverage method for large-scale dynamic field coverage based on our probabilistic

bounds to improve the performance in both wildfire area coverage and firefront tracking.

Online Inference of Wildfire Dynamics

The online inference of the wildfire mathematical model parameters through UAVs’ envi-

ronment observation is the same as in subsection 4.1.5. As such, in this section, we briefly

summarize the process through leveraging the AEKF.

To perform a real-time inference of wildfire dynamics, we utilize the AEKF to pre-

dict a distribution over the states of observed firespots and accordingly, a measurement

covariance for each firespot (i.e., each discretized point of firefront) through non-linear

error propagation [202, 146]. In a linear system with Gaussian noise, the Kalman filter

is optimal [203]. In a system that is nonlinear, the Kalman filter can be used for state

estimation, but other methods such as the particle filter may give better results, normally

at the price of significant additional computational effort [203]. In our work, we develop

computationally lightweight algorithms to scale to large numbers of UAVs and coverage

areas. As such, we leverage a Kalman filter as it provides such low-complexity algorithm

while also performing satisfactorily.

Considering qt =
[
qx

t ,q
y
t
]

as the location of firefronts on the ground at time, t, and

pt =
[
px

t , py
t , pz

t
]

as the UAV pose, we seek to estimate a distribution over a firespot’s location

one step forward in time, q̂t+1, given the current firefront distribution and the previous

measurement (shown as qt|t−1 in our notations throughout the paper), fire propagation model

with parameters at time, t, Mt , and UAV observation model of the field, Ot . Considering the
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parameters in fire propagation model (i.e., Rt ,Ut and θt in FARSITE model in Equation 3.1),

the firespot state estimation problem can be formulated as maximizing the joint probability

density function (PDF), ρ , in Equation 5.1. Equation 5.1 describes a joint probability

density function for estimating the next-step position of a firespot, given the current firefront

distribution and the previous measurement, fire propagation model, and UAV observation

model. Therefore, maximizing this PDF means finding a value of the random variable (the

value estimate) that can occur with the highest probability.

q̂t+1 = argmax
qt+1

ρ

(
qt|t−1, pt|t−1,Mt

(
Rt|t−1,Ut|t−1,θt|t−1

)
,Ot

(
qt|t−1, pt|t−1

))
(5.1)

The PDF in Equation 5.1 is calculated through the AEKF estimator. The process model,

Mt , predicts states given its parameters (i.e., Rt ,Ut ,θt) and the observation model, Ot , maps

the predicted state estimates to observation space.

Moreover, we incorporate process and observation noises to account for error induced

by methodological uncertainties (i.e., fire propagation model and UAV observation model

inaccuracies) and other sensor errors (i.e., camera and weather forecasting equipment),

which are modeled as white noise with covariances Λt and Γt , respectively. We leverage an

adaptive update framework [146] for process and observation noise covariances in standard

EKF, which introduces innovation- and residual-based updates for Λt and Γt , respectively.

Λt = γΛt−1 +(1− γ)
(

Kt d̃t d̃T
t KT

t

)
(5.2)

Γt = γΓt−1 +(1− γ)
(

ỹt ỹT
t +HtPt|t−1HT

t

)
(5.3)

In above equations, γ is the update step-size, ỹt is the measurement residual, and d̃t

is the measurement innovation. The measurement residual is defined as the difference

between actual measurement and the predicted measurement using the posterior, while the

measurement innovation is defined as the difference between the actual measurement and its

predicted value. Moreover, Kt = Pt|t−1HT
t S−1

t is the near-optimal Kalman gain, in which,
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Pt|t−1 is the predicted covariance estimate, Ht is the observation Jacobian matrix and St is the

covariance residual. Through Equation 5.2-Equation 5.3, Λt and Γt are adaptively estimated

as the Kalman filter leverages its observations to improve the predicted covariance matrix,

Pt|t−1. Accordingly, to derive the AEKF uncertainty (i.e., measurement-residual) propagation

equations, we define the process state vector as Θ⃗t =
[
qx

t ,q
y
t , px

t , py
t , pz

t ,Rt ,Ut ,θt
]T and

Φ⃗t =
[
ϕx

t ,ϕ
y
t , R̂t ,Ût , θ̂t

]T
as the mapping vector through which the state estimates are

translated into a unified angle-parameters, as firespots on the ground are perceived by

hovering UAVs (??) [5]. Eventually, the model and observation measurement uncertainties

propagated by AEKF estimation can be shown as in Equation 5.40-Equation 5.41.

Pt|t−1 = FtPt−1|t−1FT
t +Λt (5.4)

St|t = HtPt|t−1HT
t +Γt (5.5)

Here, Pt|t−1 is the predicted covariance estimate and St|t is the innovation (or residual)

covariance matrix. Moreover, Ft and Ht are the process and observation Jacobian matrices

which include the gradients of FARSITE model equations in Equation 3.2-Equation 3.3

with respect to all state variables in Θ⃗t and the gradients of UAV’s observation model with

respect to all observation space variables in Φ⃗t , respectively (see section 4.1 for derivations).

Guaranteeing the Quality of Service

Here, we first present the CE-TSP solution for generating more efficient tour-paths for agents.

Next, we introduce and elaborate on our analytical condition for performance guarantee, i.e.,

the Uncertainty Residual Ratio (URR) bound, and then, we derive the analytical temporal

upper-bounds for a probabilistically-guaranteed coordination based on URR.

Close-enough Traveling Salesman Problem (CE-TSP) When a UAV agent is tasked to

monitor (i.e., estimate the firefront states and closely track each firespot), the first step in our

coordinated planning module is to generate a search graph, Gt , with firefront points within
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the specified areas as the vertices and distances in between as the edges. To this end, we

leverage the CE-TSP with Steiner zone [204] variable neighborhood search where the agent

only gets “close enough” to each fire-point instead of visiting their exact locations2.

In the application of aerial wildfire propagation monitoring, at each time-step, a UAV

can observe multiple firespots (i.e., nodes) within its FOV simultaneously. As such, it is not

required for the UAV to travel to the exact location of each firefront point. Instead, the UAV

first identifies the overlapping ∆-disks between k firespots as their corresponding Steiner

zone [204] and then chooses the centroid node from the identified Steiner areas as a new

vertex in its search graph instead of the original k points. Through this process the original

graph Gt is modified into a revised graph G′t (Line 5 in Algorithm algorithm 2). The variable

k can be tuned empirically and based on the background application.

Analytical Performance Guarantee Condition: Uncertainty Residual Ratio (URR)

When the modified search graph, G′t , is generated, the UAV performs tours on this graph

by visiting each graph-node. Upon reaching a new node, the UAV updates the firespot’s

state estimate and calculates two quantities: (1) the analytical upper-bound time, TUB,

required to complete a tour on G′t and arrive back at the current node considering the new

state estimates (described in paragraph 5.1.4) and (2) the current measurement residual

covariance through Equation 5.41. Leveraging these two parameters, the UAV propagates the

uncertainty residual for TUB steps into the future by repeatedly applying AEKF’s prediction

step (i.e., Equation 5.40) TUB times, and then performing an update step at the end (i.e.,

Equation 5.41). In this way, we emulate gathering a measurement again and compute the

innovation covariance at the end of the prediction steps. We introduce the Uncertainty

2Note that, this step might not be required in applications other than aerial wildfire monitoring, in which
instead of Nh fire areas, Nh specific moving points/targets need to be monitored. Accordingly, the CE-TSP step
in our framework can be replaced with a regular TSP [205].
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Residual Ratio (URRq̂
t ) in Equation 5.6, in which Tr(.) represents the trace operation.

URRq̂
t =

Tr
(

St+TUB|t

)
Tr
(

St|t−1

) and URRq̂
t ≤ 1,∀q ∈ {Qt}Nq (5.6)

The URRq̂
t bound is an indicator of the scale to which the UAV agent is capable of

tracking the firespot, qt , without losing tracking information, while performing tours on the

search graph, G′t . An unsatisfied URR bound (i.e., a URR value greater than one) indicates

growing uncertainty and demonstrates a quickly growing (or propagating) wildfire, about

which the UAV will not be capable of providing online state-estimates and without loosing

any track information, while completing a tour on G′t . Similarly, a URR smaller than one

for all firespots in the current graph indicates that online information can be provided by

the UAV while keeping track of all propagating firespots. We reiterate that, the goal of the

UAV team here is to provide firefighters with the online, high-quality information about the

propagating firefront within the specified areas such that these information can be used in

real-time for strategizing firefighting plans.

To maintain control over the measurement uncertainty, we posit that the UAV observers

would want the measurement uncertainty residual with respect to a target on the ground

not to increase from t = t0 to t = t0 + kTUB for any positive integer constant k if the UAV

observes the target from the same relative position. The reason is that the measurement

uncertainty residual as computed by the EKF in our formulation is only dependent on the

relative distance between the observer and the target and is independent of time (please refer

to Appendix A for a mathematical proof). As such, the bound in URR ratio determines

if the current uncertainty residual (the denominator of Equation 5.6) is greater or smaller

than the uncertainty residual at time t + tUB (the numerator of Equation 5.6) when the UAV

completes the tour and revisits the current target. Accordingly, if the ratio is greater than

one, it means that the uncertainty residual is increasing, indicating the UAV is falling behind

on monitoring the target and the tracking quality is getting worse.
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As demonstrated in flowchart diagram in Figure 5.1, if the URR bound is not satisfied

for a graph node (URRq
t > 1 for q ∈ {Q}Nq), the generated search graph, G′t , is partitioned

into two smaller sub-graphs ⟨g′1,g′2⟩ (i.e., through k-means clustering), and accordingly two

paths ⟨P ′
g1
,P ′

g2
⟩. Therefore, the UAV divvies up the monitoring task into smaller portions

and then recruits another UAV from the available UAVs in the team to collaborate by taking

over one of the sub-graphs for monitoring. This process is repeated for all sub-graphs and

all of their nodes until URRq̂
t is satisfied for all q ∈ {Qt}Nq and t. We note that, in our

formulation, the UAVs only begin the surveillance and tracking the URR bound when they

arrive to the determined sub-graph. As such, to minimize the time it takes a UAV to arrive

to its assigned sub-graph we solve an optimization problem. Each UAV is assigned to one

partition by solving a minimization problem with UAVs as variables, partitions as domains,

and distance to the partition centroid as constraints. This way, the closest available UAV

is selected for a sub-graph. Additionally, as described in paragraph 5.1.4, in cases where

several firespots can be observed in a UAV’s FOV at once, the URR bound is computed for

the centroid node from the identified Steiner areas.

The introduced URR bound in Equation 5.6 depends on the upper-bound traverse time,

TUB, which itself is dependent on two major factors: (1) the maximum linear velocity of

the UAV (vd
max) and (2) the propagation rate of the fire (Or in general, the motion velocity

of any dynamic target which is subject to monitoring). As such, the relations between TUB

and the aforementioned two factors need to be derived analytically for all possible scenarios.

The following section is dedicated to analyzing such scenarios in the face of the aerial fire

monitoring domain and the respective analytical temporal bounds are presented.

Probabilistic Temporal Upper-Bound for Service (TUB) In this section, we derive a

probabilistic upper-bound, TUB, on the time required by a UAV to service (i.e., visit once

and estimate states) each fire location. The TUB is used in Equation 5.6 to determine whether

a UAV can be probabilistically guaranteed to service each fire location fast enough to ensure

89



Figure 5.2: The three considered scenarios in which, a fire (i.e., target) could be stationary
(left), moving (middle) or moving-and-spreading (right). Green dots show a firespot’s current
location and red circles represent the distribution over the firespot’s next-step location. Blue
circles show the Steiner zones. Note that the black, solid and dashed lines represent a UAV’s
current and next-step tour paths, respectively.

a bounded track residual for each firespot. As described in paragraph 5.1.4, the TUB is

dependent on two major factors: (1) the maximum linear velocity of the UAV (vd
max) and

(2) the propagation velocity and growth rate of firespots. As such, we derive three bounds,

one for each of the following possible scenarios: (1) stationary target points3, (2) moving

target points, and (3) moving-spreading target points. Figure 5.2 depicts the three mentioned

scenarios subject to our study.

For the derivations, we reason about the velocity of firespots (e.g., target points), ζ ,

at the α confidence level, such that, Pr[ζ < ζ α ] = 1−α where smaller α means more

conservative. In other words, the probability of the fire being quicker than ζ α is α . As

such, we need to derive an α-dependent probability for our upper-bound service time TUB,

such that it is lower-bounded by the actual maximum time, T ∗, a UAV can go without

visiting a q ∈ {Q}Nq and not losing its track quality. Accordingly, and assuming conditional

independency between firespots’ velocities given latent fire dynamics4, the probability that

our bounds are “correct” (meaning that TUB ≥ T ∗) can be shown as in Equation 5.7. For

3The scenario designs are motivated such that they expand the applicability of our framework to domains
other than wildfire monitoring, and thus, here we use the term target points instead of firespots.

4We explicitly estimate the latent fire dynamics in our AEKF model.
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our experiments, we set α = 0.05. While, specific assumptions made for each Case are

discussed in the respective Section, we note that the accuracy of the presented bounds

depend on the level of accuracy of the utilized model for fire propagation5, or generally for

applications other than wildfire monitoring, the accuracy of the approximate motion model

used for a moving target subject to monitoring.

Pr[TUB ≥ T ∗]≤ 1− (1−α)Nq (5.7)

Case 1: Stationary Target Points – In the first scenario all firespots are almost stationary

(i.e., stationary costumers in the travelling salesman problem). In this case, the search graph,

G′t , is a static graph, and therefore, we utilize a minimum spanning tree (MST) to obtain the

initial path, Pg′
t . The MST path (i.e., the Hamiltonian cycle computed from the MST) is not

the optimal path, but it is fast to generate, and thus, it ensures a quick, sound way to obtain a

path that leads to guaranteed service. Once an initial consensus is reached upon providing

the updated firefront state estimates according to the MST path, the assigned UAVs can then

spend time improving the efficiency of their tours through the k-opt algorithm. Accordingly,

we derive the upper-bound time for a UAV with maximum linear velocity vd
max to complete

a tour on the static search graph in Case 1, as the Hamiltonian cycle of the generated MST

path, shown by its spatial cost ∆T MST as introduced in Proposition 1. The ∆T MST is the

length of the generated MST path.

Proposition 1 The upper-bound time for a UAV to complete a monitoring tour, T (C1)
UB , in

Case 1, the stationary target points, can be calculated as shown in Equation 5.8.

T (C1)
UB =

2
vd

max
∆T MST (5.8)

5Here, we used the FARSITE model which can be replaced with any other parameterized fire propagation
model, such as the correctable fire simulation model introduced in [123].
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Case 1 is presented to develop a tight bound employed under nominal fire conditions

and a foundation to derive the traverse temporal upper-bounds for the other cases. Moreover,

while there are many approaches for approximating the TSP with guarantees, such as

Christofides (O(n3)), we choose other approaches with lower complexity, such as the double

tree (O(n2)) algorithm. This is because we consider large-scale scenarios with thousands of

discrete firespots (discretization of hundreds of square-miles), which signifies the importance

of the lower upper-bound on complexity.

Case 2: Moving Target Points – In the second scenario firespots, move but do not

grow (i.e., spawn) considerably. As shown in the middle plot in Figure 5.2, the upper-bound

service time, TUB, for a UAV now depends not only on the maximum linear velocity of the

UAV, vd
max, and the number of nodes Nq (i.e., length of discretized firespot list {Q}Nq), but it

also depends on the velocity of the propagating firespots. We derive the upper-bound on the

time it takes a UAV to revisit each firespot location (i.e., each node of the search graph) for

Case 2 as introduced in Proposition 2. In Equation 5.9, q̇ξ

t

∧∣∣∣∣
α

is the estimated linear velocity

of the spot qt in the ξ ∈ {x,y} direction evaluated at confidence interval defined by α .

Proposition 2 The upper-bound time for a UAV to complete a monitoring tour, T (C2)
UB , in

Case 2, the moving target points, can be calculated as shown in Equation 5.9.

T (C2)
UB =

8ζ α
(
Nq−1

)
∆T MST

vd
max

(
1−4ζ α

(
Nq−1

)) (5.9)

In Equation 5.9, ζ α is defined as in Equation 5.10 and we assume a worst-case velocity

for all firespots propagating at the fastest fire’s rate of speed in the x- and y-directions, as

represented by ζ α . Tuning α enables control of the degree of confidence in our system at

the cost of making the UAV coordination problem more difficult. We emphasis that our

independence and uniformity of fastest and universal velocity assumptions for firespots

pose a worst-case scenario assumption. In other words, the actual service time, T ∗, will not
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become greater than our upper-bound time, TUB, if these assumptions are relaxed.

ζ
α = argmax

q,q′

√(
q̇x

t

∧∣∣∣
α

)2

+

(
q̇y

t

∧∣∣∣
α

)2

(5.10)

Proof 2 To arrive at the bound in Equation 5.9, we start by considering the temporal

cost of traveling to each firespot under the stationary case, T (C1)
UB . Moving firespots (even

with approximately similar linear velocities), will lead to graph nodes moving possibly in

different directions and therefore, the edges of the initial MST graph will shrink or expand.

As demonstrated in the middle plot in Figure 5.2, although the blue arrows, representing

velocity and direction of each moving node, have the same lengths (i.e., equal velocities), the

next-step tour of the UAV (the dashed black line) is longer than the current tour (solid black

line). In the worst case of firespots moving in opposite directions, each edge of the search

graph expands according to two times the velocity of the fastest firespot, 2ζ α . Also, if the

graph has Nq nodes for the UAV to consider, this yields (Nq−1) MST edges and 2(Nq−1)

Hamiltonian paths in-between the nodes. We note that the total expansion (shrinkage) of the

graph is a function of the time the fire is able to expand (shrink), which is a self-referencing

relation, as shown in Equation 5.11. Next, by factoring in the universal velocity of the nodes,

ζ α , and replacing T (C1)
UB in Equation 5.11 by its value in Equation 5.8 and then solving for

T (C2)
UB , we arrive at Equation 5.9, as demonstrated below.

T (C2)
UB = 4ζ

α
(
Nq−1

)(
T (C1)

UB +T (C2)
UB

)
(5.11)

T (C2)
UB

(
1−4ζ

α
(
Nq−1

))
= 4ζ

α
(
Nq−1

)
T (C1)

UB (5.12)

T (C2)
UB

(
1−4ζ

α
(
Nq−1

))
=

8ζ α
(
Nq−1

)
vd

max
∆T MST (5.13)

T (C2)
UB =

8ζ α
(
Nq−1

)
∆T MST

vd
max

(
1−4ζ α

(
Nq−1

)) (5.14)

We note that in Case 2, the UAV’s FOV becomes irrelevant as the tour is based on UAVs’
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inference of the future distribution of the fire, and the location is not growing so that it would

escape the FOV after TUB steps into the future. Moreover, in the aerial firefront tracking

application, when a fire moves to an area that is already burnt or otherwise is observed to

dissipate, the fire is pruned from consideration, and the UAV path is updated as there is no

fuel for the fire to actually move there.

Case 3: Moving-Spreading Target Points – In the third scenario that we consider,

the firespots move and grow quickly, as in a propagating and spreading wildfire. In this

case, Single nodes of fire expand over time and escape the UAV’s FOV. As such, we must

consider the time it takes for a spawning point, qt , to grow large enough to escape a UAV’s

FOV, given the maximum leaner velocity, vd
max and current FOV width, wt , of the UAV. The

FOV width for a UAV is directly related to the UAV’s current altitude, pz
t , and the camera

half-angle, φ , and can be calculated as wt = 2pz
t tanφ . We derive the upper bound for UAV’s

traversal time allowed to maintain the track quality of each firespot in Case 3 as introduced

in Proposition 3. Equation 5.15.

Proposition 3 The upper-bound time for a UAV to complete a monitoring tour, T (C3)
UB , in

Case 3, the moving-spreading target points, can be calculated as shown in Equation 5.15.

We refer to the term, V , in Equation 5.15 as the velocity ratio constant, which captures the

ratio between the velocities of the firespots and the UAV and is computed V =
2ζ α Nq

vd
max

.

T (C3)
UB =

V + sqrt

(
(1−V )2− 64V (Nq−1)∆T MST(ζ α )2

vd
maxwt

(
1−4ζ α(Nq−1)

)
)
−1

4V ζ α(wt)−1 (5.15)

Proof 3 To arrive at the bound for Case 3 as in Equation 5.15, we start by quantifying

the maximum planar width and length of the enlarging area. For a specific firespot, qt ,

the time-varying planar width and length of the enlarging area along X and Y axes can

be computed as W (t) ≤ 2 q̇x
t

∧∣∣∣
α

T (C3)
UB and L (t) ≤ 2 q̇y

t

∧∣∣∣
α

T (C3)
UB at the α confidence level,

as firespots are now allowed to spread for a maximum of T (C3)
UB units of time before the
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UAV revisits them. Assuming a vertical scanning pattern, we round up the maximum

possible W (t) and thus, the total number of passes the UAV would need to take from left

to right can be calculated as n(t)≤


2 q̇x

t

∧∣∣∣∣
α

T (C3)
UB

wt

, and the total distance traversed for each

pass is obtained by d(t) = 2 q̇y
t

∧∣∣∣
α

T (C3)
UB . Accordingly, the total pass traversed is given by

dtot(t) = n(t)d(t). Therefore, the time it takes one firespot to escape the FOV of the UAV

can be calculated as in Equation 5.16.

τq(t) =
dtot(t)
vd

max
=

n(t)d(t)
vd

max
=


2 q̇x

t

∧∣∣∣∣
α

T (C3)
UB

wt

2 q̇y
t

∧∣∣∣
α

T (C3)
UB

vd
max

(5.16)

In order to account for all of the firespots, we compute the summation over all τq in

Equation 5.16. However, the center of each spreading fire point also moves; thus, T (C2)
UB

from Equation 5.9 must also be added to this summation, as shown in Equation 5.17.

T (C3)
UB = T (C2)

UB + ∑
q∈{Q}

2
vd

max
q̇y

t

∧∣∣∣
α

TUB


2 q̇x

t

∧∣∣∣
α

T (C3)
UB

wt

 (5.17)

To solve Equation 5.17 for T (C3)
UB and find the final upper-bound, we make two simplifying

assumptions. First, we remove the ceiling operator and add one to the term inside the

operator to achieve continuity, as shown in Equation 5.18.


2 q̇x

t

∧∣∣∣
α

T (C3)
UB

wt

≤
2 q̇x

t

∧∣∣∣
α

T (C3)
UB

wt
+1 (5.18)

Second, we adopt a similar approach to Case 2 by assuming the area required to cover to

account for the growth of each fire location is upper-bounded by Nq times the area of growth
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for a hypothetical fire growing quickest (Equation 5.19).

∑
q

q̇y
t

∧∣∣∣
α

TUB


2 q̇x

t

∧∣∣∣
α

T (C3)
UB

wt

≤ Nqζ
α

2ζ αT (C3)
UB

wt

 (5.19)

With these two conservative assumptions and replacing T (C2)
UB from Equation 5.9, the upper-

bound service time in Equation 5.17 can be revised as shown below, in Equation 5.20-

Equation 5.21.

T (C3)
UB = T (C2)

UB +
2Nqζ αT (C3)

UB
vd

max

2ζ αT (C3)
UB

wt
+1

 (5.20)

T (C3)
UB −

2Nqζ αT (C3)
UB

vd
max

2ζ αT (C3)
UB

wt
+1

=
8ζ α

(
Nq−1

)
∆T MST

vd
max

(
1−4ζ α

(
Nq−1

)) (5.21)

We note that Equation 5.21 is in the form of a general quadratic equations (i.e., z−

az(bz+1) = δ ) in which z = T (C3)
UB . This form can be reorganized into γz2−β z+δ = 0,

where γ = ab =
4Nq(ζ α)

2

wtvd
max

and, β = 1− a = 1− 2Nqζ α

vd
max

and, δ =
8ζ α(Nq−1)∆T MST

vd
max

(
1−4ζ α(Nq−1)

) . The

upper-bound traversal time, T (C3)
UB , for Case 3 can be obtained from the general form of

solutions to quadratic equations, T (C3)
UB =

−β+
√

β 2−4γδ

2γ
, in which replacing γ , β and δ results

in Equation 5.22. Finally, plugging in the velocity ratio constant, V , into the Equation 5.22

and rearranging the terms obtains T (C3)
UB as presented in Equation 5.15.

T (C3)
UB =

2Nqζ α

vd
max
−1+

√(
1− 2Nqζ α

vd
max

)2
− 128Nq(Nq−1)∆T MST(ζ α)

3

wt(vd
max)

2
(

1−4ζ α(Nq−1)
)


8(wtvd
max)

−1Nq
(
ζ α
)2 (5.22)
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5.1.5 Coordinated Distributed Field Coverage Module (No Specified Areas)

UAV agents in the team which are not assigned to monitor the firefronts within specified

(human-defined) areas of priority directly (i.e., unallocated UAVs), can be used to explore

the rest of the wildfire. See Figure 3.1b as an example illustration. When we have access to

additional UAV resources that may not be needed for the performance-guaranteed coverage

of the prioritized areas, we can deploy such UAVs (i.e., unallocated UAVs) to monitor the

rest of the wildfire areas. To this end, in this section we propose a coordinated, distributed

field coverage framework for multiple UAVs to collectively cover and monitor the rest of

wildfire areas, other than areas specified by human-teams. We show that how as a corollary

of deriving our analytical upper-bound service times, TUB, these temporal values can be

leveraged to design a simple yet effective coverage strategy.

To design our proposed coordinated, collaborative field coverage algorithm we focus

on settings with Centralized Planning and Distributed Execution (CPDE) paradigm. In

other words, communication between UAV agents is not restricted during the planning

phase which is done by a centralized computer; however, during execution of the assigned

plans, each UAV only performs locally and can communicate with its neighboring UAVs.

We note that the CPDE paradigm is a standard and widely-used setting for multi-agent

planning [206, 66, 207]. The steps to our distributed coverage module for non-prioritized

areas are summarized in Algorithm algorithm 3 and are elaborated here.

After detecting the fire map and hotspots, a set of firespots based on the aforementioned

Steiner zone variable neighborhood search method are generated (see paragraph 5.1.4).

The set of nodes are partitioned (i.e., K-means clustering) according to the number of

available (i.e., unallocated) UAVs. Each UAV is assigned to one partition by solving a

simple constraint satisfaction problem (CSP) with UAVs as variables, partitions as domains,

and distance to the partition centroid as constraints (Line 12 in Algorithm algorithm 3).

Note that the partitioning step and solving the CSP problem is done centrally, during the

centralized planning phase.
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Algorithm 3: Stages of the proposed distributed field coverage module when no
area is prioritized for surveillance.

input :Obtain the fire-map {Qt}Nq , list of all UAVs {UAV}Nd , set of UAV poses, velocities, etc.
output :Assigned UAV-path pairs {A d

t }
1 objective: Unallocated UAVs, {UAV}N0

d , to cover unspecified areas, {Qt}N0
q

2 // main loop //
3 Initialize t← 0
4 while MissionDuration do
5 Update fire-map and priority areas: ⟨{Qt}N1

q ,{Qt}N0
q ⟩ ← UpdateMap({Qt}Nq)

6 Update UAVs status: ⟨{UAV}N1
d ,{UAV}N0

d ⟩ ← UpdateDroneStats({UAV}Nd)

7 CoordinatedCoverage ({Qt}N0
q ,{UAV}N0

d , t) // pass in the time t
8 Update time: t← t +1
9 end

10 // inner functions //

11 def CoordinatedCoverage ({Qt}N0
q ,{UAV}N0

d , t):
12 ⟨{T g′

UBi1
, ..,T g′

UBi
},{P ′

i1, ..,P
′
i}⟩ ← CSP(TUB(Cluster({Qt},len({UAV}N0

d ))))

13 if
(
t ≥min(T i

UB)
)

||
(

i ∈ {UAV}N0
d is deployed for human support

)
14 ⟨{P ′

i1, · · · ,P ′
inew
}⟩ ← Cluster({Qt},len({UAV}N0

d
new)) // re-clustering

15 Repeat line 12 for the new assignments

After assigning UAVs to a partition, each UAV agent starts to execute the following

tasks distributedly (Line 12 in Algorithm algorithm 3). First, an optimal path for coverage

and tracking is found by applying the k-opt algorithm. The upper-bound time, TUB, is then

calculated for a firespot in the center of a UAV’s FOV. TUB provides the UAV with an estimate

of how long it will take a fire to escape its FOV as determined by fire propagation velocity.

When a route is identified in this way, UAVs can apply this reasoning for the next TUB

time-steps before recalculating a new path (Line 13 in Algorithm algorithm 3). After TUB

has passed, the partitions are revised, and an optimal path is recalculated, since fire locations

have likely changed significantly during this time (Lines 14-15 in Algorithm algorithm 3).

Once a UAV is recruited for help to monitor firefronts within human-specified areas, one of

the unallocated UAVs is dispatched and the process is repeated from the central planning

phase. In scenarios where the centralization of the planning step does not impose an issue,

leveraging this method provides a simple, low-complexity approach that plans for multiple

UAVs at the high-level (without considering the low-level control inputs) to efficiently cover
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a dynamic field.

We emphasize that the relation between our coordinated, distributed field coverage algo-

rithm described here and the coordinated planning framework (described in subsection 5.1.4)

is that the latter coordinates UAV agents to efficiently track the firefronts within specified

disjoint areas of fire (i.e., areas prioritized by human firefighters) by using as few UAVs

as possible, while guaranteeing the performance. The algorithm described in this section

utilizes the remaining UAVs in the team (if any) to collectively surveil the rest of the wildfire

area, if needed. In general, this module may not be needed, or it can be replaced with any

other surveillance methods depending on the problem setting (e.g., if centralized planning is

possible or if it needs to be fully distributed). For instance, if the centralized planning is not

feasible in an application, the coverage method in this section can be replaced with the fully

decentralized controller in [5], or any other similar methods from the literature.

5.1.6 Empirical Evaluation

In this section, we empirically evaluate both our multi-UAV coordination and planning

framework (subsection 5.1.4) as well as the coordinated, distributed field coverage module

introduced in subsection 5.1.5 in an aerial firefront tracking and wildfire area monitoring

case-study. In our experiments, robots in a team of homogeneous, autonomous UAVs (e.g.,

omni-directional multi-rotor aircrafts such as quadcopters) are tasked to coordinate together

to: (1) track and monitor the firefront within multiple specified human-defined vicinities

of priority and provide real-time fire states and tracking information and (2) cooperatively

cover and surveil the entire wildfire area. For the field coverage we test the performance

of our approach in comparison with two state-of-the-art model-based and reinforcement

learning benchmarks (see subsubsection 5.1.6). Moreover, we demonstrate the feasibility

of our framework through implementation on physical robots in a multi-robot testbed

(subsection 5.1.7).
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Baselines

The first benchmark to which we compare is a recent distributed control framework for

dynamic wildfire tracking as proposed by [36]. The distributed control framework includes

two controller modules in which one is responsible for field coverage and the other for

path planning (i.e., in-flight collision avoidance, maintaining a safe altitude, and moving

towards new desired poses). The two controllers are defined as the negative gradients

(gradient descent) of objective functions to maximize the area-pixel density of the UAV’s

fire observations and to maintain safe flight parameters with potential field-based criteria,

respectively.

Second, we compare our approach to a reinforcement learning (RL) benchmark method

proposed in [119]. Each UAV is controlled by an independent agent, and all agent policies

are identical (scalable RL algorithm). The policy network architecture consists of three fully

connected layers with ReLU activations, following prior work [119]. The agent receives as

input an uncertainty map over the wildfire, as described in paragraph 5.1.4, and outputs a

direction to move for the next time-step. The reward function is adapted from prior work,

though elements that involve collision are removed, as we assume UAVs can occupy the

same space. We follow hyperparameter settings given in prior work, and perform a sweep

over hidden-layer dimensions, as they are not explicitly defined in prior work.

Simulation Environment and Results

Evaluating the Algorithms To evaluate the efficacy of our proposed multi-UAV planning

framework for firefront tracking, we performed a comprehensive simulation to determine

the number of UAVs needed to satisfy the uncertainty residual ratio (given in Equation 5.6)

for a range of numbers of disjoint areas specified for firefront tracking. We performed

the evaluation for all three mentioned wildfire scenarios for ten trials and calculated the

mean and standard error (SE) for each. The objective was to determine the number of

required UAVs to guarantee the performance in each case. The results for this simulations
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Figure 5.3: The left-side figure depicts a quantitative evaluation of our analytical URR
bound and shows that increasing the number of disjoint areas to be monitored resulted in
a rise in the number of UAVs required to guarantee the performance. This also held as
the wildfire propagation scenario changed and a fire propagated more aggressively. The
right-side figure demonstrates the efficacy of the coordinated, distributed coverage algorithm,
in which less cumulative uncertainty residuals (Y-axis) is better. This figure shows that
UAVs easily covered the fire map in the case of stationary wildfire, while in the case of a
fast-growing fire, more UAVs were required to cover the fire map efficiently.

are presented in Figure 5.3 (left-side figure).

For the aforementioned evaluations, we simulated one to ten (i.e., Nh ∈ {1,2, ..,10})

distant areas of fire, assuming each corresponds to one prioritized area. Each area included

20-30 (i.e., random integer in the range [20,30]) randomly placed firespots. Areas were

randomly initialized within a 500-by-500 terrain. A UAV team was randomly positioned

within a distant location at a corner of the terrain. A total number of 30 UAVs were assumed

as the goal was to determine the number of required UAVs to guarantee the quality of service

in each case. We chose the fire propagation velocity to be 0, 0.5, and 1 for wildfire Cases 1,

2, and 3, respectively. Moreover, we chose the spawning rate of the fire for Case 3 to be

at most three (i.e., each fire can produce up to three more fires). Additionally, the team of

UAVs were homogeneous in their dynamics and motion characteristics where the maximum
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linear velocity, vd
max, of the UAVs was set to 500 for all UAVs.

To further investigate the UAV-team behavior during our multi-UAV planning framework

in the above experiment, we demonstrated the computed TUB times by the UAVs in Figure 5.4.

Figure 5.4 shows the computed upper-bound times, TUB, that it takes UAVs to complete

a determined tour with respect to the three wildfire scenarios. The plots in Figure 5.4 are

averaged across UAVs and across ten separate experiment trials. As shown, the computed

upper-bound service times initially start with a high value, relative to the wildfire scenario

since, at first, only one UAV is assigned to monitor and track the entire firefront points.

As the time proceeds and the algorithm determines that more UAVs are required for a

guaranteed tracking of the firespots, the computed TUB times become smaller until the values

converge to a reasonable time respective to the fire scenario.

Additionally, to demonstrate that our derived upper-bound times, TUB, are tight with

respect to the actual maximum time it takes UAVs to complete a tour, T ∗, we computed the

TUB
T ∗ ratio for all fire scenarios in an experiment. This empirically-evaluated ratio evaluates

the tightness of the derived upper-bound times where for a tight bound, the value of this

ratio must remain close to one. Figure 5.5a shows the mean value of this ratio (± standard

error), computed over 5000 trials for each fire scenario. As shown, the value of the ratio

slightly increases as the fire scenario gets more intense. The upper-bounds for Case 1 (i.e.,

Equation 5.8), Case 2 (i.e., Equation 5.9), and Case 3, (i.e., Equation 5.15) are 1.1×, 1.18×,

and 1.48× greater than the actual maximum times, T ∗, for the respective cases. Results

show that our upper-bounds become more conservative for more aggressive fire scenarios.

We note that for this experiment, the environment parameters are as described above, in

paragraph 5.1.6, and the actual maximum times, T ∗, were computed directly in simulation

and without considering the MST paths designed in our algorithm.

We also evaluated our coordinated, distributed field coverage algorithm within a similar

framework by calculating the cumulative uncertainty residual while tasking an increasing

number of UAVs to surveil a large propagating wildfire map (i.e., no specified areas). The
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Figure 5.4: The computed upper-bound times, TUB, it takes a UAV to complete a determined
tour over the course of a simulation with respect to the three wildfire scenarios. As shown,
the computed upper-bound service times initially start with a high value, relative to the
wildfire scenario, and gradually decrease until converging to a reasonable value, as the
algorithm determines that more UAVs are required for a guaranteed tracking of the firespots.
Plots are averaged across UAVs and across ten separate experiment trials.

uncertainty residual at each timestep was calculated by inspecting the ground-truth fire

map for firespots that were not covered by any UAVs, and the respective cumulative error

residual obtained from AEKF was calculated. The uncertainty residual measure was an

indicator of how successful the team of UAVs were in cooperatively covering all firespots

and increased by the number of nodes not covered by any UAV. Figure 5.3 (right-side)

shows the results for the evaluation of our coordinated, distributed coverage algorithm. All

wildfire environment and UAV characteristics and parameters for experiments in Figure 5.3

(right-side) were similar to the description presented above and once again, the experiments

were conducted for all three aforementioned wildfire scenarios.

We further investigated the efficacy of our algorithm by: (1) assessing the boundedness

of the UAVs’ measurement residuals through cumulative uncertainties and (2) evaluating

the performance in an evolving wildfire scenario. For these experiments, we initialized

two distinct fire areas in a large 500×500 terrain, each with around 30 initial firespots.
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Figure 5.5b shows the sum of all agents’ uncertainties for all measurements, averaged over

time and across ten trials. As shown, the measurement uncertain residuals are bounded

while the values increase as the wildfire scenario becomes more aggressive. Figure 5.5d

illustrates the combined uncertainty maps in the 500×500 terrain for each of the three

wildfire scenarios by summing all the measurement residuals of all agents for all firespots

and averaging over time. Figure 5.5c compares the measurement uncertainty residuals

for our coordinated field coverage approach and [36] in an evolving fire scenario. For

this experiment, firespots start in Case 1 (i.e., stationary) and evolve into Case 2 and 3 at

t = 50 and t = 150, respectively for a total of t = 350 time-steps. A total of five UAVs

initiated at a distant location are tasked to cover and track the wildfire area at all times. As

shown in Figure 5.5c, our method outperforms the baseline in this challenging scenario by

accumulating 5.8× less uncertainty residual than the baseline over the simulation time and

on average per time-step.

Baseline Comparison Furthermore, we also evaluated our method by assessing its per-

formance in comparison with two state-of-the-art benchmark studies ([36] and [119]) for

wildfire coverage. In our simulations, we tested all three algorithms in two different fire

environments: (1) our fire environment where one area of fire including 40 randomly-placed

firespots was initialized and a total of five randomly positioned UAVs within a distant loca-

tion were assigned to cover the fire area within a 500-by-500 terrain. (2) the fire environment

utilized in [119] where a total of 16 firespots all within a 4-by-4 square in the center of a

50-by-50 terrain were initialized and a total of 10 UAVs positioned around this initial square

were assigned to cover the fire area. For both environments, UAVs were required to cover

the entire fire map as much as possible, while maintaining an altitude that was both safe

and conducive to high-quality imaging. Moreover, the fire model parameters, Rt , Ut and θt ,

were initialized as in [36] for comparison. The results for these evaluations are presented in

Figure 5.6 in which top and bottom rows correspond to (1) our fire environment and (2) that
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(a) TUB
T ∗ ratio for all fire scenar-

ios.
(b) Average sum of all uncertain-
ties over time.

(c) The uncertainty residuals in
evolving fire scenario.

(d) The combined uncertainty maps generated by all UAV agents for all firespots, averaged over time.

Figure 5.5: Figure 5.5a shows the TUB
T ∗ ratio for all fire scenarios computed over 5000 trials

for each case. This ratio evaluates the sanity of the derived upper-bound times, TUB, and
the actual maximum time it takes UAVs to complete a tour, T ∗. As shown, for a tight
upper-bound, the value of this ratio must remain close to one. Figure 5.5b shows the sum
of all UAVs’ uncertainties for all of the measurements, averaged over time. As shown,
the measurement uncertain residuals are bounded. Figure 5.5c compares the measurement
uncertainty residuals for our approach and [36] in the evolving fire scenario (i.e., fire starts
in Case 1 and evolves into Case 2 and 3 at certain time-steps). As shown, our method
outperforms the baseline in this more challenging scenario. Figure 5.5d shows the combined
uncertainty maps generated by summing all measurement residuals of all UAVs for all
firespots and averaging over time.
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Figure 5.6: This figure presents a comparison of our predictive coordinated controller to
prior works for both our fire environment (bottom row) and that of [119] (top row). First
column figures show the cumulative uncertainty residual during 100 simulation time steps
(10 trials). Middle column figures show the uncertainty residual at the end of last simulation
step over the course of 2500 episodes of 100 time-step simulation. The third column figures
show the RL agent’s loss over the course of training.

of [119], respectively.

Discussion

We investigated the sensitivity of our algorithm to the fire scenario, number of separate areas

to be monitored, and the number of UAVs available, as shown in Figure 5.3. The left-hand

figure shows that increasing the number of disjoint areas to be monitored resulted in a rise

in the number of UAVs required to guarantee the performance. This also held as the wildfire

propagation scenario changed and a fire propagated more aggressively. As represented in

Figure 5.3 (right-side figure), the UAV team was able to easily cover the fire map in the case

of stationary wildfire, while in the case of a fast-growing fire, more UAVs were required to

cover the fire map efficiently (i.e., with low cumulative measurement uncertainty residual).

As shown in Figure 5.4, the computed upper-bound service times, TUB initially start with
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a high value and gradually decrease until converging to a reasonable value, as the algorithm

determines that more UAVs are required for a guaranteed tracking of the firespots. Note that

the initial and the converged values of the TUB times have higher values for wildfire Cases 2

and 3 since the moving and moving-spreading firefronts result in expanded search graphs.

The comparison between our approach and control-theoretic [36] and reinforcement

learning-based [119] benchmarks shows that we are able to achieve a 7.5× and 9.0×

reduction in error residual for the most challenging cases, as depicted in Figure 5.6. For

all cases, our approach achieved significantly lower uncertainty residual and cumulative

uncertainty in both fire environments. These results demonstrate that our framework not

only provides probabilistic bounds on guaranteeing performance, but also achieves an

empirically more-optimal solution for maintaining a tight track on wildfire propagation.

Herein, we declare that the main objective for these benchmark comparisons is to evaluate

the soundness and feasibility of our coordinated field coverage approach in subsection 5.1.5

as compared to standard state-of-the-art approaches for this purpose and to evaluate whether

our more-informed approach can fulfill the expectations by producing comparable and/or

better results.

Moreover, we note that the reward-function specification problem and consequently

scalability issue in RL-based methods are present, as the RL agent fails to achieve good

performance even after convergence (third column from left in Figure 5.6). Possible

reasons for this include an over- or under-specified reward function from prior work, which

emphasized fixed-wing aircraft flight patterns and did not explicitly encourage maximal

coverage.

We note that, as discussed in paragraph 5.1.4, an unsatisfied URR bound means that

the uncertainty residual may grow with each tour of the UAVs, which is an indicator that

the UAVs may not be capable of monitoring the targets without losing the track quality.

Therefore, a URR greater than one only means that the tracking quality cannot be guaranteed

in the respective application. However, the strictness of this bound and whether a UAV
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can continue the tracking task with small growth in the uncertainty (e.g., 10% growth)

depend on the rate of this growth over time and if such growth is acceptable in the respective

application.

Additionally, the URR upper-bound is designed to recruit UAVs into the monitoring

team. However, the URR bound also can be readily used for dismissing UAVs in a simple

procedure such as: if URR bound is satisfied with n UAVs then check URR with n−1 UAVs

(graphs and tours must be recalculated with n−1) and set n = n−1 if URR is still satisfied.

Otherwise, n UAVs will remain. Note that, the URR bound is checked by each UAV and for

all the firespots in their assigned region. To select a UAV to be dismissed when the URR

bound is satisfied with n−1 UAVs, we can choose from regions that are close to each other.

This can be achieved, for instance, by calculating the relative distances between the region

centroids. When a UAV is dismissed in this way, the reclustering process of the regions

is performed through a centralized clustering step such as applying a k-means with n−1

desired clusters. We then assign UAVs to their new regions.

5.1.7 Demonstration: Multi-robot Testbed

In order to account for vehicle dynamics and motion constraints, we implemented and

tested our coordinated planning and distributed field coverage modules in the Robotarium

multi-agent robotic platform [151], at the Georgia Institute of Technology. The simulated

growing wildfires using the introduced FARSITE [122] model are projected on the arena

as the regions to be covered by the robot team. The fire simulation parameter setup for our

experiments are similar to the empirical evaluation case. In Figure 5.17 and Figure 5.8,

the sub-figures (1)-(4) illustrate initial to final robots standings in our experiments for (1)

coordinated planning algorithm for tracking firefronts within specified separate areas and

(2) the coordinated, distributed field coverage method, respectively. The boxes around

each robot shows their respective altitude-dependent FOV. All experiments are repeated

for the three wildfire cases and video recordings of these experiments can be found on
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Figure 5.7: This figure presents example demonstrations of the proposed coordinated
planning algorithm for human safety, implemented on physical robots. In Figure (9.4) all
URRs are satisfied and the algorithm determines that a team of three robots can collectively
provide the estimated information for the three areas without losing the track of any spot.
Link to video: https://youtu.be/zTR07cKlwRw.

https://youtu.be/zTR07cKlwRw.

For the coordinated planning algorithm with URR condition for performance guarantee,

we specified ten robots and tested the feasibility of the algorithm for all three wildfire cases.

In the first case, only three robots were needed to guarantee the quality of service at all

times, while this number was six and nine for the second and third scenarios, respectively.

Figure 5.17 presents example demonstrations of these experiments. Figure 9.1 shows the

beginning of the experiment where a single robot is required to track and monitor three

distant areas of fire (i.e., simulated firespots projected on the arena). The robot path is

also shown. In Figure 9.2 the robot determines it cannot guarantee to provide real-time

information about all three areas since the URR (shown on top left) is not satisfied and thus,

the map is partitioned and another robot is summoned. The same process is repeated in

Figures 9.3 – 9.4 until all URRs are satisfied and the three robots can collectively provide

the estimated information for the three areas without losing the track of any spot. Video
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Figure 5.8: This figure presents four sample demonstrations of our experiments for the
proposed coordinated field coverage algorithm, implemented on physical robots. Each
sub-figure 10.1 – 10.4 includes two images: (1) moderate moving fire (left-side) and (2) fast
moving-spreading fire (right-side). Figure 10.1 represents the initial step in the algorithm
in which unallocated robots are selected. Figure 10.4 shows that the robot team can
successfully cover both wildfire cases and monitor the dynamic spots, after ten minutes of
running the algorithm. Link to video: https://youtu.be/zTR07cKlwRw

recordings of these experiments for all three wildfire scenarios can be found on the first part

of the provided supplementary video.

Next, we tested the coverage performance using five and three robots, again for all three

wildfire scenarios. Figure 5.8 presents four sample demonstrations of our experiments for

the proposed coordinated field coverage algorithm, implemented on physical robots. Each

sub-figure 10.1 – 10.4 includes two images: (1) moderate moving fire (left-side) and (2) fast

moving-spreading fire (right-side). Figure 10.1 represents the initial step in the algorithm

in which unallocated robots are selected. Figures 10.2 and 10.3 show the team of robots

swarming towards the wildfire area and beginning the surveillance. Figure 10.4 shows that

the robot team can successfully cover both wildfire cases and monitor the dynamic spots,

after ten minutes of running the algorithm. Video recordings of these experiments can be

found on the second part of the provided supplementary video.
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5.1.8 Limitations and Future Work

Our coordinated planning algorithm is model-based. In our framework, UAVs quantify

their estimation uncertainty by explicitly inserting the inferred model parameters from

the environment into the model and following a nonlinear uncertainty propagation law.

According to our experiments, a mismatch between the actual model used by the algorithm

and the ground truth model can lead to significantly increasing the actual measurement

uncertainty residuals and consequently an unreliable coverage plan. While this poses a

limitation on the framework, in such cases, the best practice is to use adaptive estimation

methods such as Adaptive EKF (AEKF) where the covariances can change adaptively.

Nevertheless, the results of such methods can still be unreliable.

We performed an experiment to evaluate the performance of the AEKF in our framework

for cases when there exists a mismatch between the process model and the actual fire

propagation model. To impose a model mismatch, we altered the LB(Ut) equation in the

actual FARSITE model (introduced in section 3.2) to be LBnew = X1.LB(Ut)+X2, where

X1 ∼N (10,3) and X2 ∼N (0,3). This alteration would also alter the values of GB(Ut)

and C(Rt ,Ut). However, we did not revise the derivatives in the process Jacobian matrix,

Ft , to account for this alteration. The rest of the environment parameters were exactly the

same as in paragraph 5.1.6. We repeated the simulation for ten separate trials and recorded

the cumulative uncertainties over each run. As a result, our experiments demonstrate that

the described mismatch between the actual FARSITE model and the process model in the

adopted AEKF, on average, caused 1.48±0.4 times higher cumulative uncertainties across

wildfire scenarios, as compared to the case without a model mismatch. This increase in

uncertainty residual demonstrates that even an adaptive estimation method such as AEKF

cannot completely compensate for a model mismatch.

We discuss that in our approach both UAVs or a ground control room can be in charge

of running the algorithm. By assuming local communication between neighboring UAVs,

without losing generality, we can presume either case to be practical, assuming required
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hardware and computational resources are available. By assuming an on-board computer,

each UAV can perform the URR bound check in Equation 5.6 and communicate its local

belief of its assigned path to a ground control room, which then recruits additional UAVs

to the task. We note that distributed communications could result in bottlenecks in our

coordinated field coverage method; however, we rely on the rich literature on algorithms

available to manage wireless communication grids to address this problem (see [208, 209]).

In paragraph 5.1.4, we made a worst-case scenario assumption regarding the indepen-

dence of firespots and uniformity of fastest and universal velocity for all firespots. While

these assumptions are made to generalize the applicability of the approach, in future work,

the independence assumption can be relaxed for the wildfire monitoring application, given

that an accurate model of the correlations between firespots are in hand. Accordingly, the

calculated upper-bound service time, TUB, will become smaller and closer to the actual

service time, T ∗, making the generated monitoring plans more optimal.

5.1.9 Conclusion

We have introduced a novel analytical measurement-residual bound on fire propagation

uncertainty, allowing high-quality planning for real-time wildfire monitoring and tracking,

while also providing a probabilistic guarantee on the quality of service. Our approach

outperformed prior work for distributed control of UAVs for wildfire tracking, as well as

a reinforcement learning baseline. Our quantitative evaluations validate the performance

of our method accumulating 7.5× and 9.0× less error residual than the model based

benchmark [36] and the learning-based benchmark [119] respectively when covering a large

aggressive wildfire, over a course of 2500 episodes of 100-steps long simulations. Our

method also outperformed the best-performing baseline [36] in a challenging evolving fire

scenario by accumulating 5.8× less uncertainty residual than the baseline over the simulation

time and on average per time-step method. See subsection 5.1.6 and subsubsection 5.1.6 for

the evaluations and a discussion on the presented results. Physical implementation of our
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framework on real robots in a multi-robot testbed demonstrate and validate the feasibility of

our approaches.

We note that in this work we generalize by considering large-scale human-defined areas

of priority for monitoring and tracking moving targets (such as firespots) and investigating

three different scenarios of stationary targets (e.g., the traveling salesman problem and

search-and-rescue), moving targets (e.g., border patrol and the tracking of wildlife poachers)

and moving-spreading targets (e.g., wildfire monitoring and oil spill surveillance). We

also note that due to the modular design of our framework here, any distributed control

algorithm for dynamic field coverage, such as our introduced previous work [5], can replace

the proposed coordinated coverage module in subsection 5.1.5 to enable unallocated UAVs

to monitor the unspecified areas of wildfire.
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5.2 A Hierarchical Coordination Framework for Joint Perception-Action Tasks in

Composite Robot Teams

In this section, we propose a collaborative planning and control algorithm to enhance coop-

eration for composite teams of autonomous robots in dynamic environments. Composite

robot teams, as introduced in subsection 3.1.2, are groups of agents that perform different

tasks according to their respective capabilities in order to accomplish an overarching mis-

sion. Examples of such teams include groups of perception agents (can only sense) and

action agents (can only manipulate) working together to perform disaster response tasks.

Coordinating robots in a composite team is a challenging problem due to the heterogeneity

in the robots’ characteristics and their tasks. Here, we propose a coordination framework

for composite robot teams. The proposed framework consists of two hierarchical modules:

(1) a Multi-Agent State-Action-Reward-Time-State-Action (MA-SARTSA) algorithm in

Multi-Agent Partially Observable Semi-Markov Decision Process (MA-POSMDP) as the

high-level decision-making module to enable perception agents to learn to surveil in an

environment with an unknown number of dynamic targets and (2) a low-level coordinated

control and planning module that ensures probabilistically-guaranteed support for action

agents. Simulation and physical robot implementations of our algorithms on a multi-agent

robot testbed demonstrated the efficacy and feasibility of our coordination framework by

reducing the overall operation times in a benchmark wildfire-fighting case-study.

5.2.1 Introduction and Motivation

Multi-robot teams are able to execute time-sensitive, complex missions by cooperatively

leveraging their unique capabilities and design [52]. Heterogeneity in robots’ design

characteristics and their roles are introduced to (1) leverage the relative merits of different

agents and their capabilities [52] and, (2) deal with the dynamic and unpredictable nature of

the real-world for which designing homogeneous, versatile robot teams that can effectively
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adjust to all circumstances is difficult and costly [210]. This introduction entails the

formation of composite teams of heterogeneous, co-dependent agents, in which different

robots speciate in different parts of a compound or complex task (see Korsah et al. [211] for

a complete taxonomy of tasks in multi-robot teams).

An important instance of composite robot-teams is the collaboration between perception

(sensing) agents and action (manipulator) agents [53, 212]. In a perception-action composite

robot team, to complete a mission, perception robots are first, tasked to explore an unknown

environment to find an initial set of dynamic targets and then, exploit those targets. Estimated

target-states are required by action agents to perform a specific manipulation on those

targets. In an example aerial wildfire fighting task, perception UAVs first explore the

environment to find fire spots. Once key fire spots are identified, the perception agent

will loiter to gain a higher quality state estimate of the fire targets for an action UAV to

be able to efficiently douse each fire, thereby exploiting the targets. In this paper, we

make the common assumption that perception robots are only capable of sensing while

action robots are only capable of manipulating. We note that in dynamic environments, the

described exploration versus exploitation trade-off for perception robots needs to be decided

in a restless manner [213], in which targets’ states, such as position and velocity, evolve

over time regardless of agents’ actions. Applications of such composite robot teams are

numerous in surveillance and disaster response [53, 55, 58], search and rescue [214, 215],

manufacturing [83], and border patrol [216].

Previous studies tackle various aspects of heterogeneous multi-robot teaming by con-

sidering coordination strategies [55, 212, 217, 218], task allocation [56, 219, 33], and

path-planning and control [57, 8, 219, 220, 221]. The problem of coordination and col-

laborative planning between perception and action agents has been of keen interest to the

wireless communication research community, referring to the problem as Wireless Sensor

and Actor Networks [53, 58]. While most of this prior work studies static environments

(e.g., [222, 55, 58, 83, 214]), this assumption does not hold true in many environments of
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interest which are dynamic (e.g., including numerous, moving targets). Such dynamic envi-

ronments have attributes of both a Partially Observable Markov Decision Process (POMDP)

and a Restless Bandit Problem [59]. Unfortunately, traditional Reinforcement Learning (RL)

formulations lack the scalability and adaptability with respect to domain shift in order to

tackle real-world problems. Moreover, most of the proposed nonlearning-based approaches

(e.g., mixed-integer linear/non-linear program such as [212]) fail to handle the large-scale,

dynamic, and stochastic nature of these problems.

Efficient planning and coordination of robots with different traits in a composite team

while accounting for their collaborative behavior through specific capabilities and limitations

is of significant importance [53, 52]. This coordination becomes more challenging when the

dynamicity of the environment needs to be taken into account [83].

Contributions

Our work overcomes the limitations of prior work by proposing a novel hierarchical approach

(Figure 5.9) to tackle the (1) high-level decision-making and (2) the low-level coordinated

control problems for heterogeneous teams of autonomous robots consisting of perception-

only and action-only agents. The high-level decision-making module is centralized and is

responsible for effectively balancing the exploration (of the environment) vs. exploitation

(of found targets) trade-off for perception agents. The low-level module is a fully distributed

coordinated controller that guides the perception agents to generate action-agent-aware,

performance-guaranteed trajectories for action agents. To enable our framework, we propose

a novel RL algorithm leveraging the State-Action-Reward-State-Action (SARSA) algorithm

within a Multi-Agent Partially Observable Semi-MDP (MA-POSMDP); our approach en-

ables us to learn a policy for perception agents that addresses the high-level exploration

versus exploitation dilemma in an unknown, dynamic environment in support of action

agents. We consider an unknown, variable number of moving targets with known motion

models to be explored by the perception robots, while also tasking them to exploit the found
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targets to (1) extract (estimate) the necessary state-information, e.g. dynamics such as instan-

taneous position and velocity, (2) generate a feasible trajectory for action robots, and finally

(3) task action agents to manipulate in such a way that their performance can be guaranteed.

We augment a probabilistic-bound from prior work with perception-only teams [8] to now

capture important dynamics of perception-action teams vis-à-vis the maximum tracking

error allowed for action actions to service targets denoted by perception agents. We leverage

these upper-bound times into the high-level decision-making by explicitly modeling action

durations, as per a Semi Markov Decision Process [223]. We design an attribute-based

robot-interaction scheme between perception and action robots to increase the coordination

resiliency and efficiency.

Our comprehensive, hierarchical framework includes a learning-based solution for MA-

POSMDP, online EKF based target state estimation and uncertainty prediction at the higher

level as well as a probabilistic upper-bound time setting for target service through teaming the

perception and action robots at the lower level. Our approach enables interactive solutions

for the high-level decision-making to explore and scan an unknown environment as well as

the low-level control to coordinate co-dependent agents’ actions with low-level performance

guarantees. To our knowledge, this challenging set of problems and the development of

such a coherent system have never been approached as a whole before; our paper is the first.

We empirically validate our framework in simulation and physical-robot implementation

on the Robotarium multi-agent robot testbed [151]. Our evaluations demonstrate the efficacy

and feasibility of our coordination framework by reducing the overall operation times in a

benchmark wildfire-fighting case-study. We choose the application of wildfire fighting via

heterogeneous, autonomous UAV as the case-study and motivating application for this work.

Contributions – The primary contributions of our work are:

1. Formulating a novel algorithm MA-SARTSA to learn a high-level decision making

policy in an unknown, dynamic environment modeled by a MA-POSMDP.

2. Deriving an analytical upper-bound on tracking error that enables perception and ac-
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tion agents to cooperatively determine whether action agents can provide a probabilistically-

guaranteed service for a set of manipulation tasks given the state information received

from perception agents for those tasks.

3. Proposing an attribute-based, individualized, coordination scheme between perception

and action agents for an efficient, coordinated routing problem to set a state-of-the-art,

outperforming our baselines in performance.

5.2.2 Problem statement and Formulation

Road Map

We first provide a high-level perspective on contributions and content provided in this work

as a road-map listed as follows:

Step 1) We propose a novel formalization to describe the high-level decision making

problem, namely MA-POSMDP and develop a novel variant of SARSA called MA-

SARTSA as our learning-based solution (subsection 5.2.3). In this step, perception

agents need to select among exploration (find new targets), exploitation (execute

tasks with action agents by passing extracted target state information) or revisiting a

previous target which has been acted upon via an action agent (re-examine targets).

Re-examining a target is also dependent on the respective action agent’s upper-bound

service time (TU B) computed in Step 5 (see Figure 5.9).

Step 2) Considering the high-level exploitation and revisiting actions from Step 1, we begin

the low-level planning and control by tackling the online target state estimation through

EKF for perception agents (subsubsection 5.2.4). Here, we record measurement

uncertainties to derive a tracking error upper-bound in Step 4.

Step 3) We provide our low-level scanning framework to individualize the interaction

between perception and action robots to improve resiliency and cooperation efficiency
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(subsubsection 5.2.4). The objective of this step is to generate an action-agent-aware

trajectory to account for the heterogeneity of robots and to make the probabilistic

upper-bound service times calculated in Step 5 more accurate.

Step 4) Given EKF’s covariance matrices from Step 2, we propose our uncertainty-based

analytical tracking error upper-bound (TEBq
TU B

) which performs as a quantitative

probabilistic performance guarantee for action agents which are incapable of sensing

the dynamic targets. TEBq
TU B

will then be used with the upper-bound service times

for action agents, TU B, (subsubsection 5.2.4) in Step 5 to generate a set of target

waypoints for these agents.

Step 5) We derive a set of probabilistic upper-bound service times TU B for action agents

(subsubsection 5.2.4) to: (A) provide an upper-bound on the number of assigned tasks

to a particular action agent (incapable of sensing) and guaranteeing that it will not

miss the moving targets and (B) generate a time quantity as an input for perception

agents’ decision making in Step 1 (see Figure 5.9).

Problem Description and Formulation

To formulate the described dynamic optimization problem, consider a total of NT dynamic

targets with state-space
(

sT1
t , · · · ,sTNT

t

)
∈ {ST

t }NT (T represents target) and a known dynam-

ics model, Mt (e.g., motion model introduced in Equation 3.1), but unknown parameter

settings for the model (e.g., velocity as introduced in Equation 3.2). Further, consider a

total of N = NP +NM robots including NP perception agents (i.e., sensing UAVs) 6 with

state-space
(

sP1
t , · · · ,sPNP

t

)
∈ {SP

t }NP (P represents perception) and NM action agents (i.e.,

manipulator UAVs) with state-space
(

sM1
t , · · · ,sMNM

t

)
∈ {SM

t }NM (M represents manipu-

lation). Each robot state-vector is defined as sPi
t ∈ {SP

t }NP for perception (P) agents and

sMi
t ∈ {SM

t }NM for manipulator (M) agents and contains robots’ position, velocity and trait

6Terms "perception agent/robot" vs. "sensing UAV" and "action agent/robot" vs. "manipulator UAV" are
used interchangeably throughout.
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Figure 5.9: This figure depicts the proposed hierarchical coordination framework. Dashed
links pass control input ut to and receive state information q̂t from robots.

information. Similarly, each target state-vector, sTi
t ∈ {ST

t }NT , contains each target’s position

and velocity information alongside any other related, application-dependent state variable,

such as Rt , Ut and θt in the fire propagation model.

We note due to the dynamicity of the environment (e.g., constantly state-changing

targets), the problem resembles restless decision making problem [222]. In our restless

decision-making problem, assuming NP < NT , at each time t, there will always be a state-

changing target that is not covered by any perception agent. Here, regardless of the collective

decisions of the perception-action team, the states of all observed or unobserved targets are

constantly evolving through time. Conventionally, this restless problem would normally

result in receiving two local active and passive rewards (i.e., ractive
t and rpassive

t respectively),

by the perception agent for both observed and unobserved targets [224]. However, here

we combine these two rewards into a single overarching reward to encourage cooperation

among perception agents (see subsubsection 5.2.3) through team-based rewards.

This problem can be considered as a variant of a Partially Observable Markov Decision
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Process (POMDP). Accordingly, our objective is to find an optimal policy, π∗, over all

admissible policies in set π ∈Π, that maximizes the total expected, time-discounted reward

accumulated by all perception agents over an infinite horizon, as in Equation 5.23. We

provide detailed problem formulation and solution to this problem in subsection 5.2.3.

π
∗ = argmax

π∈Π

Eπ

[
∞

∑
t=0

γ
t
(

rP1
t + · · ·+ r

PNP
t

)]
(5.23)

For perception agent, Pi, if an action, aPi
t , at time t, is exploitation, it means the robot must

extract the state-information from an already-found target point sTi
t ∈ ST

t to be passed to

action agent M j. Perception agents explore the environment and exploit the discovered

targets to collectively generate a unified list of targets’ estimated states, Lt = {ŝ1
t , · · · , ŝ

l(t)
t },

in which ŝt are targets’ estimated state vectors. The length l(t) changes with time, since

exploring targets adds more exploitation options to the list and exploiting targets will remove

targets from the list. We note that this variable-length state vector leads to a non-trivial

dynamic-size state- and action-space representation problem in a learning-based decision

making approach. We tackle this problem and propose a solution in subsubsection 5.2.3 -

subsubsection 5.2.3.

To increase the efficiency of the composite robot team, we generalize the coordination

problem such that action robots are capable of manipulating on more than one target during

a single deployment. For example, an Airtanker UAV can fight the wildfire in more than

just one grid spot. Accordingly, each vector in the list Lt is a set of estimated target states,

ŝl
t = {q̂

m1
t , · · · , q̂mc

t }, in which m is the index of the manipulator agent and c is length of

the waypoint list ŝl
t sent to robot m. To determine the length, c, different factors such as

targets’ state transition model, Mt (Equation 3.1), action agent’s motion/flight dynamics

(e.g., maximum velocity, vmax, and turning bank, ωmax), and battery restrictions, need to

be taken into account. We note that, due to dynamicity of the targets, simply passing the

current coordinates of a sensed target from a perception agent to an action agent does not
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work. Accordingly, a probabilistic framework based on both target’s motion model and

action agent’s dynamics is needed.

In the context of dynamic-target tracking, we need to make a high-level decision on

whether to explore new targets or "exploit" known targets. Exploration implies searching

the environment for new targets, while exploitation means examining an already found

target to extract (estimate) necessary information for action agents and carry out the task by

passing state-estimates to an action agent. When a perception robot, i, with position, pPi
t ∈ sPi

t ,

exploits an already-found target, initially, the closest action robot, j, with position, pM j
t ∈ sM j

t ,

is assigned to the task. To ensure the assigned action robot with current position, pM j
t , and

maximum linear velocity, vM j
max, does not miss the moving target, τ , with estimated position,

q̂τ
t , and velocity, ˙̂qτ

t , where
(
q̂τ

t , ˙̂qτ
t
)
∈ ŝτ

t ∈ ST
t , we derive a measurement-uncertainty-based

analytical probabilistic upper-bound time TU B (see Figure 5.9), which determines the

upper-bound time required for the selected action agent to reach a close-enough proximity

of the location of the sensed target. To this end, the new location, q̂τ

t+TU B
, that the moving

target, q̂τ
t , will move to, while the manipulator agent is on its way, needs to be estimated.

To estimate q̂t+TU B
, perception agents leverage EKF’s multi-step prediction framework

to propagate the detected point for TU B time into the future based on the target’s motion

model, Mt , (e.g., fire propagation model in Equation 3.1).

Sensing robots continue to add targets to the set ŝl
t = {q̂

m1
t+TU B

, · · · , q̂mc
t+TU B

} ∈Lt , to

be sent to a selected action robot. This process is performed through executing a feasibility

test by comparing TU B to a maximum time allowable for each target track to propagate

before the measurement uncertainty residual exceeds an acceptable predefined bound. The

feasibility test, which we refer to as Tracking Error Bound (TEB) check, is preformed

while specifically accounting for motion and battery restrictions of the assigned action

manipulator robot, to jointly determine the length, c, of waypoint set, ŝl
t , and to generate

executable trajectories within regions reachable by the action agent. See subsubsection 5.2.4

and subsubsection 5.2.4 for details.
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If the TEB check is satisfied for a target point q̂t+TU B
, the target is added to the waypoint

set, ŝl
t , by perception agent and the robot then moves to execute the next action decision,

aPi
t , made by the high-level decision-maker. The TEB check is performed continuously

at each step for all the points on the waypoint list. This process continues until the first

time the TEB check fails for a point or the overall travel time to visit all the nodes on the

waypoint set reaches the assigned manipulator agent’s battery limit. Now, the generated set

of waypoints, ŝl
t , will be sent to the action agent. If the TEB check fails for the first point in a

set, the perception agent rejects the assigned action agent and recruits another closer and/or

faster robot to execute the task, if available (see subsubsection 5.2.4 and subsubsection 5.2.4

for details). For readers’ convenience, we provide Table 5.2 listing the key variables used

throughout the article. The following sections detail the steps in our framework.

5.2.3 High-level Decision-Making

As described in subsection 5.2.2, our objective in the high-level decision-making module is to

automatically balance perception agents’ effort in exploring the environment and exploiting

found targets. To this end, we propose a learning framework termed MA-SARTSA learning

to enable high-level decision-making in a MA-POSMDP. We note that while high-level

decision-making directly governs only the perception agents’ actions, manipulator agents

indirectly contribute to this decision-making process because (1) action agents’ dynamics

and motion characteristics are explicitly considered by perception agents when generating

the performance-guaranteed task trajectories (e.g., waypoint set of targets) for those action

agents and (2) action agents execute their tasks (i.e., manipulate the target) in an exploitation

action which can take an upper-bound service time of TU B to be executed7.

7When high-level decision-maker chooses exploitation as perception agent’s next action, action agents
receive the estimated state-information from perception agents and then start executing their manipulation
task, which takes an upper-bound service time of TU B to be executed.
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Table 5.2: Summary of key nomenclature used in our paper.

Notation Domain Definition and Properties

NT N+ Total number of targets

NP N+ Total number of perception agents

NM N+ Total number of manipulator agents

ˆ − Accent used for estimated variables

qτ R1×2 Location of τ-th firespot

pPi R1×3 Position of i-th perception agent

pM j R1×3 Position of j-th action agent

Lt R1×l(t) List of estimated waypoints at time t

l(t) N+ Length of Lt at time t

ŝl R1×c Estimated target state list; l-th element of Lt

c N+ Length of ŝl at time t

S Rw1×w2×k State space; w1×w2 is the world size

O Nw1×w2×k Observation space; k is number of features

a {0,1}w1×w2 Perception agent action representation

R R Total accumulated discounted reward

TU B R Upper-bound service time for an action agent

TEBq R Tracking-Error Bound (TEB) for target q

E R An acceptable threshold for TEB

Ground-Truth Environment Model

We assume that only the targets’ motion model is known and do not assume any other

prior information about targets, i.e. the number of targets or the parameters of targets’

motion model. Thus, we are learning in a partially observable environment in which the

state transition and the state transition times (as in Semi-MDP) may depend on unobserved

variables. We describe the underlying ground-truth environment model in this section (which

is not available to our agents) and move to agent’s perspective (partial observability of states

and limited set of action space) in subsubsection 5.2.3 and subsubsection 5.2.3.

As introduced in subsubsection 5.2.2, the environment’s state consists of targets’ states
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(sT1
t , · · · ,sTNT

t ), perception agents’ states (sP1
t , · · · ,sPNP

t ), and action (manipulator) agents’

states (sM1
t , · · · ,sMNM

t ). Thus, by combining all involving state variables, the full state of the

environment can be shown as in Equation 5.24.

st = (sT1
t , · · · ,sTNT

t ,sP1
t , · · · ,sPNP

t ,sM1
t , · · · ,sMNM

t )∈S = {ST
t }NT ×{SP

t }NP×{SM
t }NM (5.24)

Under a fully-observed state (i.e., full observability), the action space for each perception

agent is straightforward: aPi
t ∈ AP

t = {exploit target 1, exploit target 2, · · · , exploit target

NT }. There is no need for exploration action as we already know the state information in the

fully-observable case. In the example of wildfire, each exploitation action consists of three

phases. First, a perception agent travels to an exploration target. Second, the perception

agent extracts fire state information and generates the performance-guaranteed path for the

action agent ( subsubsection 5.2.4). Third, an action agent drops fire retardant following

the received path. The target however, may not be fully fulfilled (e.g., the fire may not be

completely extinguished) by a single manipulator’s execution, and thus the state transition

T (s′|s,a) is stochastic. Therefore, perception agents may choose exploitation again to revisit

the target. If the target has been fulfilled, the corresponding exploitation action will be

removed. If the target has not been fulfilled, the perception agent generates a new trajectory,

and calls in an action agent again. The state transition time F(s,a,s′) is dependent on the

upper-bound service time, TU B, for action agents that we derive in subsubsection 5.2.4.

Unlike most SMDP formulations that have a reward rate during the entire transition time,

in our setting, only an instant reward, rt , is given on time t, when a target’s task has been

extinguished (e.g., extinguishing the fire at a target location). We argue that our instant

reward setting is more semantically meaningful since longer execution on a target does not

necessarily mean larger rewards. Upon completing the task for a target, the environment

gives a reward proportional to the features of the target (e.g., a firespot’s heat intensity).

Thus, the total amount of reward is fixed when the initial state is given (the sum of all target
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importance). However, what we try to maximize is the discounted cumulative reward as per

Equation 5.23. The temporal discount factor γ will encourage faster completion of the tasks.

We further note that through introducing both 1) a multi-agent setting and 2) an SMDP

over the typical MDP, we create a more complex and more broadly applicable problem to

tackle. For example, consider the scenario in which Agent 1 is assigned to exploit Target

1 while Agent 2 is assigned to execute on Target 2. The execution time of each action, as

mentioned in the previous paragraph, is a random variable dependent on TU B. Therefore,

the environment’s state transition must consider the time ordering of agents’ task executions.

For the example above, if Agent 2 finishes first, the environment will transit to the state where

Target 2 is processed and query the next action for Agent 2. Otherwise, the environment

will, in turn, transit to the state where Target 1 is processed at first. We elaborate in more

detail in subsubsection 5.2.3. We emphasize that including just the multi-agent or SMDP

facets would not create this challenge. Instead, it is through the combination of both (i.e., a

multi-agent SMDP) that causes this complexity.

Discrete-Event, Continuous Time Environment Simulation

In the majority of prior decision-making work [225, 226, 119, 227, 228], time is discretized

by constant intervals (fixed-increment time progression) à la an MDP. However, discrete

time-steps are not suitable for modeling our environment. Since we are in a multi-agent

asynchronous execution setting, it is possible that before the current agent’s action finishes,

another agent finishes its task and queries for a new task, as described in the example in

subsubsection 5.2.3. Therefore, we consider a discrete-event continuous-time progression

for our environment that is more precise and efficient (see Figure 5.11).

In our setting, we define an event is when an agent finishes its current task and becomes

idle. At such event, the decision-making algorithm needs to assign a new task to the agent

given the current state. As the environment has perfect information about the targets, the

robots’ motion restrictions (e.g., maximum velocity and turning bank), and the upper-bound
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service time (TU B) (as derived in subsubsection 5.2.4), it could calculate the ground-truth

time distribution for an assigned task. Accordingly, the simulation can readily determine the

sequence of events, and thus, we can implement continuous time progress via discrete-event

callback for the decision-making algorithm. In the discrete-event simulation, we can rewrite

Equation 5.23 as R = ∑ti∈T γ tirti , in which T represents a set of times for all discrete-events.

The event set, T , is important in that it bridges the continuous time process {st ,at ,rt |t ≥ 0}

and discrete chain {sti,ati,rti|i ∈ N}.

Observation and Action Space Representations

The agents and the underlying high-level decision-making algorithm do not have perfect

information regarding the state and instead receive observations, o ∈ Ω, which contain

information about known targets. The action space available to each agent is not the entire

target list since we have no prior information about the number of targets or target locations.

Thus, we need to have an exploration action that is to find new targets. Further, the set of

potential targets we could exploit is dynamic as exploration will result in uncovering new

targets and thus increasing the target list length. Even with the simplifying assumption

such that, for a single agent, exploration adds at most one new target, a conventionally

defined action-space (e.g., discrete action set of choices to explore or which target to exploit)

will be variable-length, and a canonical neural network cannot deal with such a dynamic

length action space. Moreover, the agents also need to revisit previously exploited targets,

as described in subsubsection 5.2.3.

Accordingly, we introduce a "landscape-based" action representation, a ∈ {0,1}w1×w2

(illustrated in Figure 5.10), a w1×w2 binary matrix in which w1 and w2 represent the

environment x and y dimensions. For exploitation action, matrix A is a one-hot encoding,

and the corresponding 1 location on the terrain is the target location for exploitation. We

further define an all 0 matrix representing exploration action. In this work, perception agents

follow a predefined horizontal sweeping exploration strategy, but we also note the possibility
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Figure 5.10: This figure depicts the designed, landscape-based, action and state space
representation in the multi-agent Semi-MDP (middle). Our action-space (right side) can
be represented as A ∈ {0,1}w1×w2 , where an entry Ai, j = 1 indicates the location of an
exploitation action’s target, and when Ai, j = 0,∀i, j ∈ N an exploration action is declared
by the decision-making module. We take a similar approach to represent the state-space
(left side) as overlaid feature maps forming a feature tensor S ∈ {St}w1×w2×k.

of learning an exploration policy under our proposed framework. With such representation,

the action space A now has constant size (1+w1×w2), and semantic ambiguity will be

avoided. We can dynamically generate a small subset of available actions each time with

an observation. As shown in Figure 5.10, we take a similar approach to represent the

observation-space as overlaid feature-maps forming a feature tensor of form o ∈ Nw1×w2×k

where k is the number of features. The Observation space includes all targets that have been

discovered so far, whether or not they are currently inside the respective UAV’s FOV.

Multi-Agent Partially Observable Semi Markov Decision Process (MA-POSMDP)

We define a new problem setup termed MA-POSMDP as a 9-tuple (S ,Ω,O,A ,r,T,F,γ,ρ0).

State space S is introduced in subsubsection 5.2.3, and state st ∈S consists of all the

current information of the world for the process {st |t ≥ 0}. Observation space, Ω, is

introduced in subsubsection 5.2.3, and the current observation is given by the current

state via observation model O: ot ∼ O(·|st). A is the action-space, and we leverage the

landscape-based action representation described in subsubsection 5.2.3. We reiterate that

despite the huge size of the entire action space, the possible action space under each state
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is very limited, being l + 1 with l known targets and one explore action. γ ∈ [0,1) is the

temporal discount factor for each unit of time and ρ0(s) is the initial state distribution.

r(s,a) represents the reward when execution of action a on state s is finished, (i.e., an

impulse function which has non-zero values only when an exploitation action is finished),

and the amount of reward is relative to the priority/severity of the exploited target (e.g., fire

intensity as in section 3.2 in the aerial wildfire fighting example). As such, we do not give

explicit reward for exploration and discovering new targets, as our objective is defined on

the team’s discounted cumulative rewards instead of on each agent’s individual rewards.

This overarching reward is designed to encourage prolific cooperation between perception

and action agents, and the learning mechanism, which will be introduced in the next section,

will further enhance the collaboration. F(s,a,s′) is the time required for executing action

a in state s and transit to s′, which is determined by the introduced upper-bound time for

service TU B and robots’ dynamics (e.g., maximum velocity) in our proposed low-level

component (subsubsection 5.2.4). Transition T (s′|s,a) encodes the effect of agent’s action a

on state s and is also dependent on the time ordering as shown in subsubsection 5.2.3 and

subsubsection 5.2.3. Note: we make the assumptions that agents do not fail and that the

underlying motion model of the targets is known, and thus, the predicted duration time for

actions are reliable.

Agents start with an initial belief over states, which, depending on the underlying

application, could either encode a prior belief of some targets or be a non-informative prior.

When a perception agent Pi is idle at time t, its current observation information ot ∼ O(·|st)

is fed into the decision algorithm to query for an action at . The action is executed in the

environment which calculates the next state s′ ∼ T (·|st ,at), the required time for the action

ft ∼ F(st ,at ,s′), and a reward rt ∼ r(st ,at). Since we are in a multi-agent, asynchronous

execution setting, it is possible that before the current agent’s action finishes, another agent

finishes its task and queries for a new task. Therefore, we utilize a discrete-event simulation

as described in subsubsection 5.2.3.
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Figure 5.11: This figure depicts an example of timings and transitions in our discrete-event
simulation of continuous time progression. The top gray panel represents the transitions in
agent 1’s perspective.

We rewrite our optimization goal in subsubsection 5.2.3 to introduce the optimization

variable (policy π) in Equation 5.25:

π
∗ = argmax

π∈Π

R(π) = argmax
π∈Π

Eπ

 ∑
ti∈T

γ
tirti

 (5.25)

Despite the similarity of the objective to standard MDP, we note that ti in our MA-POSMDP

setting in Equation 5.25 is a continuous value from a finite set T containing all events’ times.

We note that, our high-level decision making is a centralized process among perception

agents. Our proposed MA-POSMDP learning process and the overall interaction between

high-level and low-level modules are summarized in the Algorithm algorithm 4.

Multi-Agent SARTSA Learning

We first assume that all perception robots are homogeneous and can thus share the same

decision-making module, specifically in this work, a NN. We note that heterogeneity

still exists between perception agents and action agents. We extend the SARSA learning

algorithm [126] for our particular MA-POSMDP formulation.

130



Algorithm 4: MA-POSMDP
1: Initialize Global_Step= 0, Q-network Qθ and target Q-network Q∗

θ

2: while not converged do
3: Obtain the upper-bound service time TU B, from one of the Equation 5.43,

Equation 5.44 or Equation 5.47 for current task and manipulator agent
4: Obtain rollout τ = {⟨ti,sti,ati,rti⟩} in which time is determined via TU B in line (3)
5: Transform rollout τ to single-agent perspective transitions ⟨sti,ati,∆ti,rt j ,st j ,at j⟩ via

Equation 5.29 and calculate Bi = ∑
j
k=i+1 γ tk−tirtk

6: Store ⟨sti,ati,∆ti,Bi,st j ,at j⟩ to replay buffer
7: for i = 1 to iters do
8: Sample transitions ⟨s,a,∆t,B,s′,a′⟩ from replay buffer
9: Train Qθ via Equation 5.30

10: Global_Step← Global_Step +1
11: if mod(Global_Step,Update_Interval) == 0 then
12: Update target network, θ ∗← θ

13: end if
14: end for
15: end while
16: return Qθ =0

SARSA learning is based on the 1-step Temporal Difference (TD) signal in a typical MDP,

relying on the transition tuple (st ,at ,rt+1,st+1,at+1) as shown in Equation 5.26.

δ
1-step TD
t = rt+1 + γQ(st+1,at+1)−Q(st ,at) (5.26)

SARSA’s learning rule is given by Equation 5.27 in which α is the learning rate.

Q(st ,at)← Q(st ,at)+αδ
1-step TD
t (5.27)

SARSA has also been extended to incorporate n-step TD error, which is a balance

between 1-step TD estimation and Monte-Carlo (MC) estimation for the entire trajectory.

δ
n-step TD
t = rt+1 + γrt+2 + · · ·+ γ

n−1rt+n + γ
nQ(st+n,at+n)−Q(st ,at)

=

(
t+n−1

∑
k=t+1

γ
k−t−1rk

)
+ γ

nQ(st+n,at+n)−Q(st ,at) (5.28)
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MC estimations update each state based on the entire sequence of observed rewards

from the current state until the end of episode and 1-step TD learning performs the updates

only based on the next-step reward. The N-step TD method, however, combines the two and

applies updates based on observed rewards in next N steps.

We have two options to consider the SARSA-like transition tuples. First we can consider

all the adjacent transitions, i.e. ⟨sti,ati,rti+1,∆ti,sti+1,ati+1⟩ in which ∆ti = ti+1− ti. However,

the transition from sti to sti+1 does not necessarily come from ati , as there might be other

actions that finish before ati . For example, in Figure 5.11, Agent 2’s second action will

transit to the end of Agent 1’s second action; however, the consequent reward is not from

Agent 2’s action. Therefore, such a transition tuple will create an incorrect signal for learning

algorithms which can be problematic.

Second, we can view transitions on a single agent’s timeline as shown in Equation 5.29,

where j > i and, t j and ti are events for the same agent. Moreover, j = mink>i k, such that

event k and event i are for the same agent and, ∆ti = t j− ti.

⟨sti,ati,∆ti,rt j ,st j ,at j⟩ (5.29)

For example, in the perspective of Agent 1, the transition of the second action is from

t2 to t5. As such, the new state st j (e.g. st5) contains the influence of ati (e.g., at2). It could

also contain other agents’ action effects (e.g., at1 of Agent 2 and 3). However, we could

view the process between ti and t j as executing the same policy π for j− i times because all

agents share the same policy. For instance, the transition between t2 to t5 could be viewed

as applying the current policy three times, and we receive r3,r4,r5 on t3, t4, t5, respectively.

Through such view, we obtain a novel TD signal (Equation 5.30) similar to the j− i step TD

error (Equation 5.28).

δ
MA-TD
t =

(
j

∑
k=i+1

γ
tk−tirtk

)
+ γ

∆tiQ(st j ,at j)−Q(sti,ati) (5.30)

132



For implementation, we propose to maintain a reward buffer Bi for each agent i to

account for any reward the team has received collectively during the period when agent i is

executing an action. For instance, B1 will record r3,r4 on t3, t4 during t2 to t5.

Thus, we could utilize δ MA-TD
t to achieve SARSA-like learning by Equation 5.27 and

all transitions in the view of each agent.

5.2.4 Low-level Coordinated Control and Planning

The lower-level in our hierarchical algorithm structure is a distributed, coordinated control

and planning framework through which robots in the composite team will execute tasks (i.e.,

exploration or exploitation as assigned by the high-level decision-maker). The low-level

control module is responsible for sequencing the tasks while accounting for robot’s specific

traits (capabilities) and motion restrictions. To this end, we first solve a coordinated routing

problem between perception and action robots (subsubsection 5.2.4). Action robots are

not capable of sensing the dynamic targets and, therefore, need to receive predicted future

target states. Thus, to maximize target track quality, a probabilistic framework is developed

in subsubsection 5.2.4 to propagate and evaluate measurement error residuals over time.

We leverage the derived tracking error upper-bound (TEB) to compute the upper-bound

time for action agents’ service, TU B, in subsubsection 5.2.4 which is also used for the

task timings in our MA-POSMDP formulation underlying the high-level decision-maker

(subsubsection 5.2.3). TU B is the upper-bound time it takes for an action agent to finish

its task (e.g., travel to fire locations and extinguish fire) after receiving the required state-

information from the perception agent.

The rest of subsection 5.2.4 is organized as follows: in subsubsection 5.2.4, we tackle

the problem of online target state estimation via UAV sensors (given the action from the

high-level decision-maker decides exploitation) through EKF estimation. We investigate the

time-dependency of EKF’s measurement uncertainty in paragraph 5.2.4 as a prerequisite

for validating our covariance-based planning. Then, in subsubsection 5.2.4, we propose our
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low-level scanning framework to improve resiliency and cooperation efficiency between

perception and action agents. Eventually, we propose our analytical tracking error upper-

bound in subsubsection 5.2.4 and derive a set of probabilistic upper-bound service times for

action agents in subsubsection 5.2.4.

Preliminaries: Target State Estimation and Measurement Uncertainty Propagation via UAV

Perception Agents

We utilize EKF as a suitable tool to both estimate the target states and to propagate the

measurement uncertainty residuals due to the model and sensor inaccuracies [229, 230]. EKF

locally linearizes the target’s nonlinear motion model, Mt (e.g., the fire propagation model

in Equation 3.1), and perception agent’s observation model, Ot (??), about the estimate of

the current mean and covariance, and thus Mt and Ot do not need to be linear functions of

the state, but may rather be differentiable functions.

Considering a dynamic target on the ground, qt = [qx
t ,q

y
t ], moving according to a nonlin-

ear model, Mt (e.g., Equation 3.1), at each time, t, the observation mapping, Ot , of a flying

perception agent with pose, pt = [px
t , py

t ] and altitude pz
t , with respect to the target’s location

can be shown as in Equation 5.31.

Ot : {qt , pt}→ ϕt : ∥qt− pt∥2 =
∥∥qz

t − pz
t
∥∥

2 tanϕt (5.31)

Given St−1 as the current joint state vector of the dynamic target and perception agent’s

states; desired is an estimated state vector, Ŝt , one step forward in time, given the current

target position distribution, qt|t−1, target’s motion model with current parameters (Mt|t−1),

and perception agent’s observation model of the target (Ot|t−1). In other words, we seek to

estimate the following joint Probability Density Function (PDF), ρ , in Equation 5.32.

Ŝt = argmax
St

ρ

(
qt|t−1, pt|t−1,Mt|t−1,Ot|t−1

)
(5.32)
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In the application of aerial wildfire monitoring where perception agents are tasked to

seek out the state information of propagating firespots, we formulate this estimation with

the EKF’s state transition and observation equations as in Equation 5.33 and Equation 5.34.

Ŝt


8×1

=

 ∂Mt

∂Si

∣∣∣∣
Ŝt|t−1


8×8

St−1


8×1

+ωt (5.33)

Φ̂t


5×1

=

 ∂Ot

∂Φi

∣∣∣∣
Φ̂t|t


5×8

Ŝt


8×1

+νt (5.34)

In these equations, St =
[
qx

t ,q
y
t , px

t , py
t , pz

t ,Rt ,Ut ,θt
]T is the joint state vector, ωt and νt

are the process and observation noises, which are modeled by zero mean white Gaussian

random variables, respectively, to account for stochasticity in fire behavior and inaccuracies

in fire propagation and perception agents’ observation models. Ft = ∂Mt/∂Si is the state

transition Jacobian matrix in which the FARSITE model introduced in section 3.2 is used as

the transition model to derive the partial derivatives with respect to all of the state variables in

St . The observation Jacobian matrix, Ht = ∂Ot/∂Φi, is a mapping model (see Figure 4.3)

through which the predicted fire propagation model parameters and UAV locations are

translated into a unified angle-parameter vector Φ̂t =
[
ϕx

t ,ϕ
y
t , R̂t ,Ût , θ̂t

]T
. We note that,

although the angle-parameters, ϕ
y
t and ϕx

t , are complementary angles, we utilize both angles

as our goal is to use these angles for tracking 2D pose uncertainty (and not just angle

uncertainties). A detailed derivation of EKF equations, Jacobian matrices, and uncertainty

propagation is provided in the Appendix A.

EKF Bayesian Posterior and Minimum Mean-Squared Error (MMSE) Estimate EKF

is an approximate Bayesian filter, and taking the resulting Gaussian distribution as the

true Bayesian posterior can be imperfect in some localization and tracking applications.

Nevertheless, we note that, in this work, we do not require the true Bayesian posterior, and

none of our planning/decision-making algorithms are based on a true Bayesian posterior.
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Figure 5.12: This figure depicts the time-dependency of measurement uncertainty as propa-
gated by EKF. The dropping uncertainty regardless of the time of visit will always have the
same value (εq

t2 = ε
q
t3), if the observing robot’s displacement to target is similar at both times.

Assuming a given map, S (e.g., a set of discrete world features or states), and a sequence of

target relative observations, Z , described by the conditional probability, p
(
Z |S ,q

)
, we

seek to estimate the PDF of the variable q, as p
(
q|S ,Z

)
through EKF. For this problem,

it can be shown mathematically [231, 232] that if we parameterize the random vectors q and

S with mean and variance, then the EKF will compute the MMSE estimate of the posterior.

In our coordination framework, this MMSE estimate is an acceptable metric, in keeping

with its use in prior localization and dynamic target tracking literature [203, 233, 234]. We

leave improvements in state estimation and accurate target tracking to future work as they

are not the focus of our current study.
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Time-dependency of EKF’s Measurement Uncertainty Our analytical upper-bound time

for service in subsubsection 5.2.4 depends on the state-estimation measurement uncertainty;

thus, we examine the time-dependency of the propagated error through the EKF. Considering

the two examples presented in Figure 5.12 in which a perception agent starts at position

(1) at time t = t1 with some distance from a target and visits the moving target either at

t = t2 or t = t3 (i.e. with ∆t = t3− t2 latency in latter case), we show that the dropping

measurement uncertainty of the target’s state, regardless of the time of visit, is only a

function of the distance between the perception agent and the target. To this end, we first

define the uncertainty drop in our scenario in Lemma 3 and in Theorem 4, we prove that

such uncertainty drop is independent of time.

Lemma 3 If the uncertainty (Kalman measurement residual) of a sensing robot observing

a dynamic point qt directly from distances ∆Xt1 and ∆Xt2 at times t1 and t2 (where t2 > t1)

are defined by E q
t1 and E q

t2 , respectively, then E q
t2 < E q

t1 if and only if ∆Xt2 < ∆Xt1 . We define

the uncertainty drop as follows in Equation 5.35.

∆ε
q
t2,t1 = E q

t2 −E q
t1 (5.35)

Proof 4 A locally optimal strategy for state estimation is obtained by driving the robot to

positions that maximize the prediction variance of the observation [147, 235, 236]. As such,

minimizing the predicted state covariance (Equation A.1) corresponds to maximizing the

covariance residual Λt in Equation A.2. According to Equation A.2, by setting the state

covariance to identity (Σt|t−1 = I) and keeping the noise covariance constant (Γt = Γ), we

see that a maximally informative position for a robot is the one that minimizes HtHT
t . In

other words, all other settings being equal, the closest possible position where dynamic

observations change rapidly as a function of robot position [147] minimizes the determinant

of the observation covariance and thus, minimizes the total uncertainty. Note that Λt is a

function of both the state estimate and the map covariance Σt|t−1.
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Next, we present Theorem 4 and a proof sketch. Please see Appendix A for a detailed

proof of Theorem 4.

Theorem 4 Measurement uncertainty drop about the states of a dynamic point qt as defined

in Lemma 3 and Equation 5.35, observed by a perception robot directly from a distance

∆X at time T (i.e. E q
T ), is independent of time. It is only a function of displacement ∆X

between the observer and the point.

Proof 5 The model and observation measurement uncertainties associated with EKF es-

timation follow the general nonlinear uncertainty propagation law in Equation A.1 and

Equation A.2 where Σt|t−1 is the predicted covariance estimate, Λt|t is the innovation (or

residual) covariance, Ft and Ht are the process and observation Jacobian matrices, and Qt

and Γt are the process and observation noise covariances, respectively.

Σt|t−1 = FtΣt−1|t−1FT
t +Qt (5.36)

Λt|t = HtΣt|t−1HT
t +Γt (5.37)

Considering Equation A.1-Equation A.2, changes in the uncertainty values occur through

changes in the gradients in the process and observation Jacobian matrices (Ft and Ht). The

gradients in the Jacobian matrices are calculated as derivatives of the target’s motion model,

Mt (Equation 3.1), and the perception agent’s observation model, Ot (Equation 5.31), as in

Equation 5.38, where S and Φ are the process and observation state-vectors, respectively.

Ft =

 ∂Mt

∂Si

∣∣∣∣
Ŝt|t−1

 and Ht =

 ∂Ot

∂Φi

∣∣∣∣
Φ̂t|t

 (5.38)

Accordingly, matrix Ft is time-invariant if the gradients in this matrix are time-invariant,

which depends on the target’s motion model. Considering position q and velocity q̇ of a

moving target as the state variables, it can readily be seen that the gradients of a numerical

motion model such as qt = qt−1 = q̇t−1δ t (similar to Equation 3.1) with respect to its state
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variables are ∂qt/∂qt−1 = 1 and ∂qt/∂ q̇t−1 = δ t and are time-invariant for all constant

time steps δ t. Moreover, considering the observation model presented in Equation 5.31 and

positions and velocities of the sensing UAV and the target as the state variables in Φ, the

gradients in Ht are only functions of the Euclidean distance between the perception agent

and the target locations. Accordingly, both Ft and Ht are time-invariant and with constant

process and observation noise covariances (Qt and Γt), the total uncertainty drop is also not

a function of time. See Appendix A for a rigorous proof.

Low-level Control Framework for Scanning

The first step in our coordinated routing framework for the perception-action composite

robot team is for the perception agents to search the environment and add newly found

targets to a list. This list will be sent to an assigned action agent as its task. Such process

of assigning tasks to action agents is generally known as a Multi-Robot Task Allocation

(MRTA) problem [211]. We approximately solve this MRTA problem by tackling a constraint

satisfaction problem with action agents as variables, tasks as domains, and constraints such

as relative distance to the task locations, battery availability, etc. In our greedy solution,

action agents are assigned to tasks based on their availability and their relative distance to

the task location, since distance based assignments are fast and deployable in real-time.

Based on the underlying application, we leverage the CE-TSP with Steiner zone variable

neighborhood search [204] so that the action agent only needs to get “close enough” to

each goal, according to a predefined ∆−disk proximity. In the application of aerial wildfire

fighting, the perception agent observes multiple firespots within its Field-of-View (FOV);

however, it does not need to pass all of these “nodes". Instead, the perception agent first

identifies the overlapping ∆−disks between k fire points as Steiner zones and then chooses

the centroid nodes as coordinates to be added to the target list Lt [8].

While scanning the environment, perception agent takes into account the specific mo-

tion/flight model of the assigned manipulator robot. This process includes accounting for
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Figure 5.13: Perception agent accounts for the assigned manipulator agent’s motion model,
including its maximum turning rate ωM

max (dashed black lines) and minimum and maximum
linear velocities

[
vM

min,v
M
max

]
(red dashed lines). Sensing agent only scans the reachable

areas for targets (green dots), enclosed by four vertices (1)-(4), (black dots).

the action agent’s maximum turning rate ωM
max and minimum and maximum linear velocities[

vM
min,v

M
max

]
. The perception agent leverages this information alongside the state-information

of the first sensed target, which is propagated TU B steps into the future according to the

target’s motion model qt+TU B
, and explores for new targets only within reachable areas

by the action agent. Note that TU B is the upper-bound time it takes for action agent M to

travel to the target location. This process is elaborated in Figure 5.13 in which the blue areas

represent the reachable polygons, the four vertex coordinates of which p⃗i s.t. i = 1, · · · ,4

can be calculated through p⃗i = p⃗M + u⃗i, in which p⃗M = qt+TU B
is the manipulator agent’s

position when it arrives at the propagated coordinates. Moreover, u⃗i represents the respective

rotation vectors, rotating point p⃗M to p⃗i according to the manipulator agent’s linear and
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angular velocities, which can be calculated according to Equation 5.39.

u⃗i = Dδ t
(

v⃗
∥v∥

)
Rϕ

z

(
(−1)i

ϕ

)
(5.39)

In Equation 5.39, ϕ is the rotation-angle of the velocity-vector for one time-step, δ t, due to

maximum angular velocity and can be calculated as ϕ = ωmaxδ t/2. D is the robot’s planar

displacement for one unit of time and equals D = vM
minδ t for i = 1,2 and is D = vM

maxδ t for

i = 3,4. Additionally, Rϕ
z (ϕ) is the rotation matrix around the z-axis. For a more detailed

discussion of the above derivations, refer to Appendix B.

Leveraging the proposed scanning procedure results in an action agent-friendly path

where a manipulator robot with motion restrictions (e.g., a fixed-wing aircraft) can directly

visit all of the determined waypoints with no limitations.

Analytical Tracking-Error Bound

When exploiting a target, the perception agent estimates targets’ states (e.g., position and

velocity) to infer targets’ motion dynamics and calculate two quantities: (1) the upper-bound

time, TU B, required for an assigned manipulator robot to reach the sensed node, q̂, and (2)

a prediction of measurement residual covariance, TU B steps into the future by repeatedly

applying EKF’s prediction and update steps TU B times (Equation 5.33 - Equation 5.34).

This process obtains an MMSE estimate of the Bayesian posterior (see paragraph 5.2.4).

Moreover, TU B is the upper-bound time it takes for an action agent to finish its task after

receiving the required state-information from perception agent.

Our tracking-error bound is inspired by the uncertainty residual ratio (URR) introduced

in section 5.1 [7, 8]; however, our uncertainty-based temporal upper-bound derivations

here are derived with a different goal in mind for a different underlying problem. In [7, 8]

(section 5.1), we introduced an analytical uncertainty-based bound that compares the time

it would take for a firespot to escape a perception agent’s FOV relative to the total time it
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would take for that perception agent to complete a tour of observations on a set of distant

nodes. In this work, however, we uniquely consider an analytical tracking-error bound that

compares the time taken for a dynamic target’s total uncertainty (e.g., error in target’s state

estimation) to grow to a predefined value, E , versus the time it takes for the action agent to

reach to the location of that target. In our application, this pre-defined value represents the

maximum uncertainty over the target’s state that would still allow for the action agent to

effectively douse the fire target with retardant. To derive our bound, we leverage the model

and observation measurement uncertainties associated with EKF estimation, shown below,

where Σt|t−1 is the predicted covariance estimate, Λt|t is the innovation covariance, Ft and

Ht are the process and observation Jacobian matrices, and Qt and Γt are the process and

observation noise covariances.

Σt|t−1 = FtΣt−1|t−1FT
t +Qt (5.40)

Λt|t = HtΣt|t−1HT
t +Γt (5.41)

We note that this multi-step uncertainty propagation process only holds for Linear Time-

Invariant (LTI) systems. In our framework, we utilize EKF, which locally linearizes the

nonlinear motion model. Moreover, according to Theorem 4 (see paragraph 5.2.4), the

measurement uncertainty as propagated by EKF is time-invariant. Now, we introduce an

analytical TEB in Equation 5.42, in which t0 is the current time, ŝl
t ∈Lt is the l-th waypoint

set of detected target coordinates shared among connected perception agents, q is the current

node in ŝl
t , E is an acceptable error threshold and Tr(.) is the trace operation to sum the

uncertainties of all state-variables in the residual covariance matrix.

TEBq
TU B

=
Tr
(

Λt0+T q
U B |t

)
E

≤ 1,∀q ∈ {ŝl
t} (5.42)

TEBq
TU B

is an indicator of the scale to which the action agent might miss the sensed dynamic

target. A TEB greater than one demonstrates a quickly/stochastically moving target for
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which the chance of being missed by the action agent is high and vice versa. We note that

selection of the parameter E is application-dependent, where it can be tuned to a small value

for highly sensitive tasks and vice versa. The perception agent will use the TEB to determine

the length, c, of the waypoint set, ŝl
t = {q̂

m1
t+TU B

, · · · , q̂mc
t+TU B

}, sent to the action agent m.

Probabilistic Upper-Bound Time for Service

In this section, we derive an analytical probabilistic upper-bound time, TU B, which de-

termines the upper-bound time required for the assigned action agent to reach to a "close-

enough" proximity to the determined coordinates and provide service (i.e., extinguishing

a fire in aerial wildfire-fighting). TU B is directly modelling the state transition times,

F(s,a,s′) (i.e., task duration), in our MA-POSMDP environment, as described in subsubsec-

tion 5.2.3. The number of waypoints in a set is chosen by determining the largest number of

waypoints that can be included such that TEB (Equation 5.42) is satisfied at each timepoint

for all targets captured by the waypoints. If the TEB bound does not hold for a target, the

perception agent stops adding targets (e.g., target states) to the set and passes the generated

trajectory to the action agent. The target’s motion model is a key element in this upper-bound

time. Accordingly, we derive three bounds, one for each of the following scenarios: (1)

stationary targets, (2) dynamic targets, and (3) moving and spreading targets. These service

upper-bound times are used both for calculating the TEB in Equation 5.42 in each scenario

as well as in our high-level decision-maker as described in subsubsection 5.2.3. We follow a

similar set of reasoning and assumptions as in section 5.1 and [7, 8].

Case 1: Stationary Targets The first scenario we consider involves multiple stationary

targets. Figure 5.14a represents the coordination scheme for this case for two different types

of UAVs as perception and action agents. Considering the time required for perception agent,

P, to traverse between points n and n+1 represented as δ ttn , we note that for a target with

location qt0 at time t0, we have qn
t0 = qn

t0+δn−2
,∀n ∈ {ŝl

t}c (c is the length of l-th waypoint set)
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(a) Case 1: Stationary Targets (b) Case 2: Dynamic Targets

Figure 5.14: This figure depicts collaborative planning for coordinating between perception
and action agents (UAVs in this case). Figure 5.14a and Figure 5.14b represent the stationary
and dynamic target scenarios, respectively. Note that the moving targets in the second case
(black arrows) in Figure 5.14b, lead to a delayed exploitation by the perception UAV.

since targets do not move significantly in this case. Accordingly, the service upper-bound

time for action agent, M, in Figure 5.14a to visit all c target locations in the l-th waypoint

set can be calculated according to Equation 5.43. pM
tn in Equation 5.43 is the n-th position

of the action agent before travelling to the (n+1)-th target position. We note that, pM
t0 , is

known as action agent’s current position and for the following targets we have pM
tn = qn

tn ,

that is, the action agent will move towards (n+1)-th target starting from the position of the

n-th target, qn
t0 . In Case 1, we have qn

tn = qn
t0 .

T
(C1)

U B =
c−1

∑
n=0


∥∥∥qn+1

t0 − pM
tn

∥∥∥∥∥vM
max
∥∥

 (5.43)

Now, T
(C1)

U B will be checked by the perception agent in the TEB bound in Equation 5.42 to

hold for each node at all times. A list of length c will be passed to the action agent if TEB is

not satisfied for point c+1.

Case 2: Dynamic Targets The second scenario includes dynamic targets with a known

motion model (e.g., Equation 3.1). In the case presented in Figure 5.14b, targets move,

which leads to a delayed exploitation with δ ttn . Consequently, the service upper-bound time

144



for an action agent to get to the point c can be calculated according to Equation 5.44.

T
(C2)

U B = TU B0 +δ t0 + · · ·+TU Bc−1 +δ tc−2 =
c−1

∑
n=0



∥∥∥∥∥qn+1
t0+T

(C2)
U Bn−1

− pM
tn

∥∥∥∥∥∥∥vM
max
∥∥

 (5.44)

We note that, pM
tn in Equation 5.44 has a similar reasoning as in Equation 5.43. In ??, δ tc−2

is the traverse time it takes perception agent, P, with position pP
t0 and maximum velocity

vP
max to get from point qc−1

t0 to point qc
t0 and can be computed as in Equation 5.45.

δ tc−2 =

∥∥∥∥∥qc
t0+T

(C2)
U Bn−1

− pP
t0+T

(C2)
U Bn

∥∥∥∥∥∥∥vP
max
∥∥ ,∀c≥ 2 ∈ {ŝl

t}c (5.45)

Note that pP
t0 = qc−1

t0 . Moreover, qn+1
t0+T

(C2)
U Bn−1

is the next target location to visit and can be

obtained as shown in Equation 5.46.

qn+1
t0+T

(C2)
U Bn−1

=
qn+1

t

(
vM

max

)2
− pM

tn

(
q̇n+1

t

)2

(
vM

max
)2−

(
q̇n+1

t

)2 (5.46)

Similar to Case 1, T
(C2)

U B is checked in TEB bound in Equation 5.42 to hold for each node

at all times. The list will be cut at node c if TEB does not hold for point c+1.

Case 3: Moving-Spreading Targets The third scenario involves the case of targets that

move and spread. This case is of particular interest in applications such as aerial wildfire

fighting and oil-spill control in oceans via composite teams of robots. Here, single nodes

of targets expand over time and thus can escape the perception agent’s FOV. Assuming

the spreading target’s centroid as a dynamic node, the service upper-bound time, TU B,

for the action agent in Case 3 can be derived through a procedure similar to Case 2 and

thus T
(C3)

U B = T
(C2)

U B holds. Nevertheless, unlike the other two cases, T
(C3)

U B cannot be used

145



directly in the TEB bound in Equation 5.42 to generate the waypoint set. We note that as

targets grow out of the perception agent’s FOV, a new Steiner area in our CE-TSP framework

will be created and thus, a new separate waypoint will form, leading to losing track for the

centroid location of the current target. Accordingly, an additional condition monitoring the

target’s spread needs to be checked in addition to TEB to determine the length c of waypoint

set in Case 3, as defined in Equation 5.47.

T
(C3)

U Bc
≤T c

max,∀c ∈ {ŝl
t}c (5.47)

Equation 5.47 is designed to check if the time it takes a spreading target, c, to escape the

perception agent’s FOV, (T c
max), is greater or smaller than the upper-bound service time,

T
(C3)

U Bc
, of the action agent. As such, while the above condition holds, the process continues

as before and a set of size c will be passed to action agent if TEB is not satisfied for point

c+1. The escaping time T c
max can be estimated as shown in Equation 5.48, following the

outline of [8].

T c
max =

−β +
√

β 2−4µδ

2µ
,∀c ∈ {ŝl

t}c (5.48)

The parameters µ , β and δ in Equation 5.48 can be calculated as µ =
4|ŝl

t |t q̇2
t

WtvP
max

, β = 1+ 2|ŝl
t |t q̇t

vP
max

and δ = 2∆Lt

vP
max

(
1−2q̇t(|ŝl

t |t−1)
) , in which |ŝl

t |t is the length of the waypoint set at time t, Wt

is the current width of the perception agent’s FOV, q̇t is the target’s current total velocity

in XY-coordinates and ∆Lt = ∑
c−1
n=0

∥∥∥qn+1
t −qn

t

∥∥∥ is the total travel distance for the action

agent between the last node added to the l-th waypoint set ŝl
t and the first node. A detailed

derivation for Equation 5.48 can be found in paragraph 5.1.4.

Finally, to account for action UAVs’ battery constraints, T BM
t , we directly compare the

service upper-bound times, TU B, calculated in Equation 5.43 and Equation 5.47, with

the remaining battery-life of action agent M at time t, by updating TU B as TU B ←

minimum
(
TU B,T BM

t

)
. The output of this update will be used in Equation 5.42 to propa-

gate the uncertainty of the target locations at most as long as it will take the action agent to
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Figure 5.15: This figure depicts our benchmark comparison results. The leftmost figure
shows a comparison on reward between our approach and benchmarks. Test repeated for
100 times. Error bars are standard error. The middle chart depicts a comparison on time
(unit time in simulation) taken to find all fires and put out all fires. Test repeated for 100
times. Error bars are standard error. The rightmost figure shows our RL agent’s training
reward over the course of training averaged over three runs, where the shaded region depicts
the standard deviation.

provide service or its battery-life allows it to operate.

5.2.5 Empirical Evaluation

In this section, we empirically evaluate both our high-level decision making and low-level

coordinated control modules in an aerial wildfire fighting case-study, in which teams of

heterogeneous, autonomous UAVs are tasked to work together to fight a propagating wildfire

efficiently, with limited resources, such as the number of available UAVs and battery-lives.

Moreover, we perform several experiments to evaluate the scalability and computational

efficiency of our framework as well as its compatibility to different exploration strategies.

In this particular simulation, we generated ten different terrains of 100×100 with 30

initial firespots of different intensities. The firespots move and propagate according to the

FARSITE model introduced in section 3.2. The parameters of FARSITE model Rt (spread

rate), Ut (wind velocity) and θt (wind azimuth) are initialized as normally distributed random

variables with ⟨µR = 6,σR = 3⟩, ⟨µU = 5,σU = 2⟩ and ⟨µθ = π/4,σθ = 1⟩, respectively.

Each UAV, d, is assigned a linear velocity range of [vd
min,v

d
max] and a maximum angular
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velocity, ωd
max. Each class of UAVs (e.g., fixed-wing or quadcopter) has its own special

characteristic, for instance for fixed-wing UAVs vmin ̸= 0 while for quadcopters, vmin = 0

and ωmax = ∞. All mobile robots in this environment are modeled as Dubins vehicles. In

our experiments, we only assign quadcopters to perception agents and fixed-wing aircraft to

action agents.

Each perception UAV is controlled by a shared NN trained via our MA-SARTSA

learning algorithm (subsubsection 5.2.3). The policy network architecture consists of two

fully connected layers (hidden units are 128 and 32, respectively) with Rectified Linear

Unit (ReLU) activations. Fire intensity increases if a firespot is left unexploited. The

NN represents the Q-function, Qθ : O ×A → R, inputting observation and action and

outputting the corresponding Q-value. For discrete action spaces, we obtain the policy via

π = argmaxa∈A Qθ (o,a). If a firespot is exploited (i.e., a perception agent travels to it,

extracts its state information, generates a guaranteed task for action agent (only for the one

target), and an action agent executes the task), fire intensity drops as a result of the action

agent’s firefighting service. Rewards, which are equal to the initial fire intensity, will only

be given when the fire is extinguished. The learning rate, α , temporal discount factor, γ , and

training epoch number were chosen empirically to be 0.001, 0.999 and 6000, respectively.

Figure 5.15 (right) demonstrates the RL agent’s cumulative reward throughout training and

indicates success.

Benchmarks

We compared our approach with two categories of heuristic benchmarks: (1) ε-greedy and

(2) myopic, as described below:

• ε-greedy: The perception agents on the composite team exploit a firespot with

probability ε and choose a known firespot according to uniform distribution. With

probability 1− ε , agents choose to explore the terrain to discover new firespots. As

an extreme case, when ε = 1, agents will only explore when there is no known fire to
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exploit.

• Myopic: The perception agents on the composite team always exploit a fire immedi-

ately after discovering it until the fire is extinguished by the action agent. When the

current fire is extinguished, the agent will choose to explore. Myopic agents do not

cooperate as each agent only exploits a fire that the agent has found.

Evaluation Results

To evaluate the performance against benchmarks, we considered three metrics: (1) the

discounted cumulative reward (our learning algorithm’s objective), (2) the time required

for agents to find all the firespots, and (3) the time required for the team to extinguish all

firespots (i.e., the perception-action cooperation objective). The results of the evaluation

over 100 trials of simulation are presented in Figure 5.15. For all three evaluation metrics,

our approach outperforms the baselines.

We performed statistical tests to show our approach’s superior performance on all three

metrics. We tested for normality and homoscedasticity and did not reject the null hypothesis

for rewards and time to find all fires using Shapiro-Wilk (p > .2) and Levene’s Test (p > .2),

but we reject normal hypothesis for time to extinguish all fires. One-way ANOVA showed a

significant difference between four groups on discounted cumulative rewards earned and time

to find all fires (p < .001). Tukey’s posthoc tests showed a significant difference between our

approach and all benchmarks. Kruskal-Wallis test showed a significant difference between

the four groups on time to extinguish all fires (p < .001), and posthoc tests showed also

showed significant improvements.

Scalability and Sensitivity Analysis – In our scalability experiments, we tested the

performance of our MA-SARTSA algorithm over various environmental and algorithmic

parameters. We tested the scalability of our algorithm on a set of different number of agents

in the composite team (5, 8 and 11 agents) and number of propagating firespots in the terrain

(10, 30 and 50 firespots). We computed the accumulated mean reward (± Standard Deviation
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Figure 5.16: This figure depicts our scalability and computation time results. The leftmost
figure shows the mean reward accumulated in nine different scenarios specified by the
number of agents in the composite team and the number of firespots in the environment.
Test repeated for 10 times and standard deviations are presented (± STD). The middle
and rightmost charts depict the training and prediction times for the same nine scenarios,
respectively. The times are shown as seconds per episodes.

(STD)) as well as the training and prediction times across nine different environment setups.

The result are represented in Figure 5.16. As shown, the training time increases as the size

of fire and number of agents increase, while the prediction time decreases when the number

of agents increases. Moreover, the accumulated average reward also increases significantly

when the number of agents and firespots increase. Accordingly, our framework scales to the

number of firespots and expectedly can achieve higher performance when the number of

agents increases. We also tested the sensitivity of our framework to different values of agents’

FOV size as a key parameter, which has a direct correlation with the ∆−disk proximity

in our CE-TSP approach. Again, we evaluated the performance by computing the mean

rewards (±STD) and computation times as described above, on our original environment

setup described in subsection 5.2.5. As represented in Table 5.3, by increasing the size of

agents’ FOVs from a 1×1 grid (e.g., only an agent’s location) to a 5×5 grid (e.g., two-hop

neighborhoods around agents), our framework is capable of achieving similar results and

thus, shows low sensitivity to values of FOV and ∆−disk.

We also evaluated our framework under different exploration approaches: (1) horizontal

sweeping, (2) diagonal sweeping and (3) spiral paths. The goal was to investigate the
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Table 5.3: Results of our Sensitivity experiment for different values of agents’ FOV sizes.
Training and predictions times unit is [Sec.

E p. ].

FOV Reward (µ±std) Training Time Prediction Time

1×1 69.97±6.12 1.7816 0.187

3×3 70.38±5.37 1.7962 0.36

5×5 70.06±7.07 1.8300 0.326

Table 5.4: Results of our performance sensitivity evaluation under horizontal sweeping,
diagonal sweeping and spiral exploration paths. Training and predictions times unit is [Sec.

E p. ].

Method Reward (µ±std) Training Time Prediction Time

Horizontal 69.97±6.12 1.7816 0.187

Diagonal 61.46±7.34 1.7882 0.537

Spiral 68.21±7.95 1.9432 0.445

sensitivity of the framework to the exploration paths taken by agents. As in our environment

setup from subsection 5.2.5 (e.g., five agents and 30 initial firespots), we computed the

total average rewards, as well as the training and prediction times for comparison between

exploration methods, as shown in Table 5.4. Our framework achieves similar performances

in terms of average total reward and computation times under different exploration methods,

demonstrating low sensitivity to the exploration approach.

5.2.6 Demonstration: Multi-Robot Testbed

We evaluated our low-level coordination module on physical robots to directly include

robot’s motion dynamics and to test the calculated timings. The coordinated control and

planning module was implemented and tested in the Robotarium multi-robot platform [151]

on two simple (dynamic targets with linear motion models) and complex (propagating

wildfire with numerous dynamic firespots) scenarios. Each case is elaborated below.
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Demonstration Scenario (A) - Dynamic Targets with Linear Motion Models:

For this case, six dynamic targets (one target is intentionally left stationary, q̇ = 0) are

randomly initialized in a terrain. Targets are assumed to have a linear motion model (moving

on a straight line) with constant velocities, and their locations are initially unknown to

four robots. The composite robot team includes two perception and two action robots that

are required to stop the targets from moving. Accomplishing this task can be achieved

by moving an action robot to the location of the respective target; however, since action

agents are unable to see targets, a collaboration between perception and action robots is

required. We apply our coordination framework to enable this collaboration. Excerpts of

this experiment are depicted and described in Figure 5.17. As a result, our composite robot

team successfully discovered (by perception robots) and stopped (by action robots) all six

initially unknown targets collectively, without losing the track of any targets. The video

recording of this experiment can be found in the first part of the provided supplementary

video as well as at https://youtu.be/qcomKuD-Hhw.

Demonstration Scenario (B) - Propagating Wildfire with Numerous Dynamic Firespots:

In this case, we evaluated our perception-action robot team coordination module in a more

complex aerial wildfire-fighting environment. Four randomly initialized distinct fire areas

are considered to be explored by two perception robots. FARSITE wildfire propagation

model has been leveraged, and the model parameters are initialized as detailed in subsec-

tion 5.2.5. We note that in our experiments we use omnidirectional robots; as such, we do

not need to leverage our scanning framework (subsubsection 5.2.4) and perception agents

pass propagated centroid nodes of discovered groups of firespots to three action robots. The

video recording of this experiment can be found in the second part of the provided supple-

mentary video as well as at https://youtu.be/qcomKuD-Hhw. For comparison, an

embedded simulated video is added on the top-left of the screen to demonstrate the wildfire

propagation simulation with similar parameters but without the composite team attempting
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Figure 5.17: (1) Two perception robots start exploring the environment for targets. (2)
Perception robots evaluate the TEB bound for an action robot. (3) The action robot starts the
task the first time TEB is violated; perception robots continue to explore. (4) Final standing
of the robot team after servicing all six initially unknown targets.

to fight the wildfire. As a result, our composite robot team successfully performed the

complex task of autonomous wildfire fighting by effectively coordinating. Figure 5.18

illustrates four sample steps (initial standing to final standing) of the mentioned process.

5.2.7 Discussion

Our empirical evaluations demonstrate the feasibility of our framework and its superior

performance in all three evaluation metrics stated in subsubsection 5.2.5, as compared

to the employed benchmarks. For the epsilon-greedy agent, we tested various epsilons,

ε ∈ {0.0,0.2,0.4,0.6,0.8,1.0} where ε = 0.8 obtained the best result among all the ε-

greedy agents; yet, our MA-SARTSA agent outperformed the 0.8-greedy agent, as well as

the greedy agent (i.e., 1-greedy). We can see from the middle bar-plot in Figure 5.15 that

the 0.8-greedy agent spends slightly less time to find all of the fire spots as compared to

the Myopic agent, while on the other hand, the Myopic agent spends slightly less time to
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Figure 5.18: This figure presents four sample demonstrations of our coordinated con-
trol and planning framework implemented on physical robots (initial to final standings)
in the complex scenario (B) described in subsubsection 5.2.6 (https://youtu.be/
qcomKuD-Hhw).

extinguish all of the fires than the 0.8-greedy agent. Accordingly, none of the Myopic or

ε-greedy policies can be concluded to be an empirically better policy than the other. The

MA-SARTSA learning algorithm successfully helps the policy to maximize the objective in

Equation 5.25 as is shown in the learning curve in Figure 5.15 (right). The figure shows that

within 2000 episodes, the algorithm has already been able to find a much better policy than

its initial policy, illustrating the empirical success of MA-SARTSA and sample efficiency.

Nevertheless, the significant improvement of our MA-SARTSA framework over both

the Myopic and the ε-greedy agents shows that the perception agents must make decisions

based on not only the state information acquired from the environment, but also according to

their collaborator action-agents’ characteristics and motion dynamics. Myopic and ε-greedy

agents do not model the time it takes for action agents to finish their tasks. Our MA-

SARTSA, however, incorporates action agents’ upper-bound service times (e.g., the time it

takes for action agents to finish their tasks), calculated in the lower-level coordinated control
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module. Moreover, in our coordinated control and planning framework, we explicitly reason

about the number of targets assigned to an action agent based on the respective action agent’s

dynamics and motion restrictions, such as maximum velocity. The effective performance of

our perception-action collaboration and the described framework is empirically validated in

our demonstrations and physical-robot experiments (presented in subsection 5.2.6).

Note: We assume that agents do not fail (e.g., UAV failure) and that the underlying

motion model of the targets is known. In order to account for model deviations, we

leverage an EKF-based system to estimate the parameters of this model, resulting in a

measurement uncertainty based analytical TEB, introduced in Equation 5.42. Accordingly,

three parameters, the process and observation noise covariances, Qt and Γt , as well as

the E in TEB, can be used to tune the reliability of the utilized motion model. If the

assumed target motion model is accurate but the UAV sensors are noisy, Qt and Γt can be

initialized with small and large values to put more weight on the model and less on the

UAV observation model, respectively (and vice versa). Moreover, the E in TEB can be

tuned to more conservative values (e.g., larger values) for when the underlying process and

observation models are less accurate, and vice versa.

In our low-level coordinated control framework we leveraged the CE-TSP for perception

agents to account for their FOV; however, we note that it is an application-specific consid-

eration to decide whether the Action agents can actually actuate at a certain distance with

respect to targets. While in some applications the exact location of a moving target may be

required, in many other cases such as our wildfire fighting case-study, oil-spill control in

oceans or search-and-rescue, there exist numerous static or dynamic targets where action

agents can actuate (e.g., dump water extinguisher on fire) close-enough to target locations.

In such cases, as discussed in paragraph 5.2.4, our EKF-based system provides the MMSE

estimate of the posterior which is assumed to be acceptable. Moreover, as noted above, the

hyper-parameter E in Equation 5.42 can also be tuned based on the background application

to improve the tracking accuracy to a satisfying threshold. Nevertheless, in our framework,
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the accuracy of the action agents moving to the exact target locations remains dependent on

the model and measurement accuracy as well as well-tuning Equation 5.42.

5.2.8 Conclusion

In this paper, we have introduced a novel hierarchical approach to tackle the high-level

decision making and low-level collaborative control problems for heterogeneous teams of

autonomous robots consisting of perception agents and action agents. In our centralized

high-level decision-making module, we propose MA-SARTSA-based learning under our

MA-POSMDP model to enable perception agents to explore an unknown environment (i.e.,

discover dynamic targets) and exploit known targets by extracting their state information.

Extracted state information is required for action agents for manipulation.

We have also introduced a measurement-uncertainty based tracking error and derived a

set of analytical upper-bound service times to ensure a probabilistically guaranteed service

for action agents in various scenarios. Additionally, we introduced a coordinated routing

problem with an attribute-based robot-interaction scheme through which the perception-

action agents cooperation is individualized to account for robots heterogeneity and improve

the composite team’s resiliency and performance.
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CHAPTER 6

LEARNING END-TO-END MULTI-AGENT COORDINATION AND

COMMUNICATION POLICIES

In previous chapters we mostly studied model-based and heuristic approaches for designing

coordinated control and planning frameworks for collaborative robot teams. Although

the agents in a multi-robot system can be programmed with hand-engineered heuristics

and behaviors designed in advance to coordinate and communicate (as in section 5.1 and

section 5.2), it is preferred that the agents can learn such new emergent behaviors from

scratch to enable adaptability to complexity and changes in the environment [237].

In this chapter, we provide several contributions towards learning multi-agent collabora-

tive policies. In particular, we study the application of MARL for learning communicative

heterogeneous policies for a team of collaborating robots. The work presented in section 6.1

introduces a heterogeneous Multi-Agent Reinforcement Learning (MARL) architecture for

learning highly efficient diverse communication among agents of a composite team [13, 10,

238].

6.1 Learning Efficient Communication for Cooperative Heterogeneous Teaming

High-performing teams learn intelligent and efficient communication and coordination strate-

gies to maximize their joint utility. These teams implicitly understand the different roles of

heterogeneous team members and adapt their communication protocols accordingly. MARL

seeks to develop computational methods for synthesizing such coordination strategies, but

formulating models for heterogeneous teams with different state, action, and observation

spaces has remained an open problem. Without properly modeling agent heterogeneity, as

in prior MARL work that leverages homogeneous graph networks, communication becomes

less helpful and can even deteriorate the cooperativity and team performance. We propose
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Heterogeneous Policy Networks (HetNet) to learn efficient and diverse communication

models for coordinating cooperative heterogeneous teams. Building on heterogeneous

graph-attention networks, we show that HetNet not only facilitates learning heterogeneous

collaborative policies per existing agent-class but also enables end-to-end training for learn-

ing highly efficient binarized messaging. Our empirical evaluation shows that HetNet sets a

new state of the art in learning coordination and communication strategies for heterogeneous

multi-agent teams by achieving an 8.1% to 434.7% performance improvement over the next-

best baseline across multiple domains while simultaneously achieving a 200× reduction in

the required communication bandwidth.

6.1.1 Introduction and Motivation

High-performing human teams benefit from communication to build and maintain shared

mental models to improve team effectiveness [239, 240]. Information sharing is key

in building team cognition, and enables teammates to cooperate to successfully achieve

shared goals [241, 12, 240]. Typical communication patterns across human teams widely

differ based on the task or role the human assumes [242]. The field of MARL [243]

has sought to develop agents that autonomously learn coordination and communication

strategies to emulate high-performing human-human teams [244, 245, 246, 247, 248]. Yet,

these approaches have fallen short in properly modeling heterogeneity and communication

overhead in teaming [75, 67, 249, 250].

Heterogeneity in robots’ design characteristics and their roles are introduced to leverage

the relative merits of different agents and their capabilities [52, 10, 9, 8] We define a

heterogeneous robot team as a group of cooperative agents that are capable of performing

different tasks and may have access to different sensory information. We categorize agents

with similar state, action, and observation spaces in the same class. In such a heterogeneous

setting, communicating is not straightforward as agents do not speak the same “language”;

we consider scenarios in which agents have different action-spaces and observation inputs
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from the environment (i.e., due to different sensors) or may not even have access to any

observation input (i.e., lack of sensors, broken or low-quality sensors). The dependency

generated via sensor-lax or sensor-void agents on agents with strong sensing capabilities

makes efficient communication protocols for cooperation a requirement rather than an

additional modeling technique for performance improvement.

While MARL researchers have increasingly focused on developing computational mod-

els of team communication [75, 82], most of these prior frameworks fail to explicitly model

the heterogeneity of composite teams and fail to explicitly quantify and reduce the team’s

communication overhead to support decentralized, bandwidth-limited teaming. In this work,

we intend to push the boundaries beyond this goal and seek to significantly reduce the band-

width needs for communication to minimize communication overhead and facilitate practical

implementation of our framework by designing a decentralized execution paradigm.

Contributions

Inspired by heterogeneous communication patterns across human teams, we propose HetNet

to learn efficient and diverse communication models for coordinating cooperative heteroge-

neous robot teams. The key to our approach is the design of an end-to-end communication

learning model with a differentiable encoder-decoder channel to account for the heterogene-

ity of inter-class messages, “translating” the encoded messages into a shared, intermediate

language among agents of a composite team. Our empirical validation shows that HetNet’s

novel graph-based architecture achieves a new SOTA in learning emergent cooperative be-

haviors in complex, heterogeneous domains. HetNet achieves this result while also reducing

communication overhead through intelligent message binarization, compressing the number

of communicated bits needed by more than 200× per round of communication over the best

performing baseline. Contributions:

1. We develop a novel, end-to-end heterogeneous graph-attention architecture for MARL

that facilitates learning efficient, heterogeneous communication protocols among
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cooperating agents to accomplish a shared task.

2. We design a differentiable encoder-decoder communication channel to learn efficient

binary representations of states as an intermediate language among agents of different

types to improve their cooperativity. Our binarized communication model achieves

200× reduction in the number of communicated bits per round of communication

over baselines while also setting a new SOTA in team performance.

3. We develop Multi-Agent Heterogeneous Actor-Critic (MAHAC) to learn class-wise

cooperation policies in composite robot teams. Our results show the per-class critic

structure achieves better performance over a centralized critic while having fewer

model parameters than a per-agent critic.

4. We present empirical evidence that show HetNet is robust to varying bandwidth limi-

tations and team compositions, setting a new SOTA in learning emergent cooperative

policies by achieving at least an 8.1% to 434.7% performance improvement over

baselines and across domains.

6.1.2 Related Work

MARL with Communication – Recently, the use of communication in MARL has been

shown to enhance the collective performance of learning agents in cooperative MARL

problems [251, 75, 67, 68, 76, 253, 244, 254, 255, 252, 5]. DIAL [66] and Comm-

Net [68] displayed the capability to learn a discrete and continuous communication vectors,

respectively. While DIAL considers the limited-bandwidth problem, neither of these ap-

proaches are readily applicable to composite teams or capable of performing attentional

communication. TarMAC [67] achieves targeted communication through an attention

mechanism which improves performance compared to prior work. Nevertheless, TarMAC

requires high-bandwidth message passing channels and its architecture is reported to perform

poorly in capturing the topology of interaction [76]. SchedNet [69] explicitly addresses the

160



bandwidth-related concerns. However, in SchedNet agents learn how to schedule themselves

for accessing the communication channel, rather than learning the communication protocols

from scratch. In our approach, we explicitly address the heterogeneous communication

problem where agents learn diverse communication protocols and intermediate language

representations to use among themselves for cooperation. Our model enables agents to

perform attentional communication and sending limited-length digitized messages through

class-specific encoder-decoder channels, addressing the limited-bandwidth issues.

MARL with Graph Neural Network (GNN) – Prior work on MARL have sought

to utilize GNNs to model a communication structure among agents [80]. Deep Graph

Network (DGN) [79] represents dynamic multi-agent interaction as a graph convolution to

learn cooperative behaviors. This seminal work in MARL demonstrates that a graph-based

representation substantially improves performance. In [81], an effective communication

topology is proposed by using hierarchical GNNs to propagate messages among groups

and agents. G2ANet [76] proposed a game abstraction method combining a hard and a

soft-attention mechanism to dynamically learn interactions between agents. More recently,

MAGIC [82, 256] introduced a scalable, attentional communication model for learning a

centralized scheduler to determine when to communicate and how to process messages

through graph-attention networks. While these prior work have successfully modeled multi-

agent interactions, they are not designed to address heterogeneous teams directly. HetNet, on

the other hand, is designed to capture the heterogeneity among agents and learn an efficient

shared language across agents with different action and observation spaces to improve

cooperativity.

Heterogeneity in Multi-agent Systems – In [85], several types of heterogeneity induced

by agents of different capabilities are discussed. As opposed to homogeneous teams,

the diversity among agents in heterogeneous teams makes it challenging to hand-design

intelligent communication protocols [85]. In [86], a control scheme is hand-designed

for a heterogeneous multi-agent system by modeling the interaction as a leader-follower
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system. More recently, HMAGQ-Net [87] utilized GNNs and Deep Deterministic Q-network

(DDQN) to facilitate coordination among heterogeneous agents (i.e., those with different

state and action spaces). Going beyond this prior work, we build our HetNet model based

upon an actor-critic framework and generalize the problem formulation for state-, action-

and observation-space heterogeneities. Moreover, HetNet facilitates learning efficient binary

representations of states as an intermediate language among agents of different types to

improve cooperativity. To the best of our knowledge, we are the first to generate a general

multi-agent coordination framework for heterogeneous robot teams that is able to learn a

communication protocol for high-performance coordination.

6.1.3 Preliminaries

Problem Formulation

Founding on a standard POMDP [257], we formulate a new problem setup termed as Multi-

Agent Heterogeneous Partially Observable Markov Decision Process (MAH-POMDP),

which can be represented by a 9-tuple ⟨C ,N ,{S (i)}i∈C ,{A (i)}i∈C ,{Ω(i)}i∈C ,{O i}i∈C ,r,T ,γ⟩.

C is set of all available agent classes in the composite robot team and the index i ∈ C shows

the agent class. N = ∑⟨i∈C ⟩N(i) is the total number of collaborating agents where N(i)

represents the number of agents in class i. {S (i)}i∈C is a discrete joint set of state-spaces.

For each class-dependent state-space, S (i), we have S (i) =

[
si1
t ,s

i2
t , · · · ,s

i
N(i)

t

]
, where

si j
t represents the state-vector of agent j of the i-th class, at time t. {A (i)}i∈C , is a dis-

crete joint set of action-spaces. For each state-dependent action-space, A (i), we have

A (i) =

[
ai1

t ,a
i2
t , · · · ,a

i
N(i)

t

]
, forming the joint action-vector of agents of class i at time t.

{Ω(i)}i∈C is similarly defined as the joint set of observation-spaces, including class-specific

observations. γ ∈ [0,1) is the temporal discount factor for each unit of time and T is the

state transition probability density function.

At each timestep, t, each agent, j, of the i-th class can receive (if the observation input

is enabled for class i) a partial observation oi j
t ∈ Ω(i) according to some class-specific
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observation function {O(i)}i∈C : oi j
t ∼ O(i)(·|s̄). If the environment observation is not

available for agents of class i, agents in the respective class will not receive any input from

the environment (e.g., lack of sensory inputs). Regardless of receiving an observation or not,

at each time, t, each agent, j, of class i, takes an action, ai j
t , forming a joint action vector

ā =
(

a11
t ,a12

t , · · · ,ai1
t , · · · ,a

i j
t

)
. When agents take the joint action ā, in the joint state s̄ and

depending on the next joint-state, they receive an immediate reward, r(s̄, ā)∈R, shared by all

agents and regardless of their classes. Our objective is to learn optimal policies per existing

agent-class to solve the MAH-POMDP by maximizing the total expected, discounted reward

accumulated by agents over an infinite horizon, i.e., argmaxπ(s̄)∈ΠEπ(s̄)

[
∑

∞
k=0 γkrt+k|π(s̄)

]
.

Actor-Critic (AC) Methods

Actor-Critic (AC) methods [258, 259] are an approach to RL that utilize function approx-

imation, in which each agent j has a policy, π
j

θ
(a|s), parameterized by θ , that specifies

which action, a, to take in each state, s, to maximize the expected future discounted re-

ward. Actor-Critic (AC) methods apply gradient ascent to the actor’s parameters, θ , based

upon a critic, Qφ (s,a), action-value function [260], parameterized by φ , where Qφ (s,a)

approximately solves the credit-assignment problem [261]. By the policy gradient theo-

rem [126], the expected reward maximization (i.e., the AC objective), J(θ), is maximized via

∇θ J(θ) =E
π

j
θ

[
∇θ logπ

j
θ
(a j

t |o
j
t )Qφ (o j

t ,a
j
t )
]
, where a j

t and o j
t are the action and observation

of agent j, respectively.

Graph Neural Networks (GNNs)

GNNs are a class of deep neural networks that capture the structural dependency among

nodes of a graph via message-passing between the nodes, where each node aggregates feature

vectors of its neighbors to compute a new feature vector [262, 78, 79]. The canonical feature

update procedure via graph convolution operator can be shown as h̄′j = σ

(
∑k∈N( j)

1
c jk

ω h̄k

)
,

where h̄′j is the updated feature vector for node j, σ(.) is the activation function and, ω
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represents the learnable weights. k ∈ N( j) includes the immediate neighbors of node j

where k is the index of neighbor, and c jk is the normalization term which depends on the

graph structure. A common choice of c jk is
√
|N( j)N(k)|. In an L-layer aggregation, a node

j’s representation captures the structural information within the nodes that are reachable

from j in L hops or fewer. However, the fact that c jk is structure-dependent can impair

generalizability of GNNs when scaling the graph’s size. Thus, a direct improvement is to

replace c jk with attention coefficients, α jk, computed via Equation 6.1. In Equation 6.1,

W̄att is the learnable weight, ∥ represents concatenation, and σ ′(.) is the Leaky-ReLU

nonlinearity. The Softmax function is used to normalize the coefficients across all neighbors

k, enabling feature dependent and structure free normalization [263, 77].

α jk = softmaxk

(
σ
′
(

W̄ T
att
[
ω h̄ j ∥ω h̄k

]))
(6.1)

6.1.4 Method

In this section, we first present an overview of the communication problems and constraints

considered in our work. We then describe how to construct a heterogeneous graph given

a problem state and present the building block layer, which we refer to as Heterogeneous

Graph-Attention (HetGAT) layer, and develop a binarized encoder-decoder communication

channel to account for the heterogeneity of messages passed among agents. Eventually, we

cover the logistics of utilizing HetGAT layers to assemble our heterogeneous policy network,

HetNet, of arbitrary depth.

Communication Problem Overview

In this work, we are concerned with the problem of coordinating a robot team via fostering

direct communication among interacting agents. We consider MARL problems wherein

multiple agents interact in a single environment to accomplish a task which is of a cooperative

nature. We are particularly interested in scenarios in which the agents are heterogeneous in
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Figure 6.1: Overview of our multi-agent heterogeneous attentional communication archi-
tecture in a Centralized Training and Decentralized Execution (CTDE) paradigm. At each
time point t = t0, each agent j of class i generates a local embedding from its own inputs, by
passing its input data through class-specific preprocessing units (i.e., a Convolutional Neural
Network (CNN) or a fully-connected NN) and a Long Short-Term Memory (LSTM) cell.
The embeddings are then passed into the HetGAT communication channels by each agent
where a Gumbel-Softmax process is used in a class-specific encoder network to convert
the message into binarized messages, m jk

t ,. The message is then sent to neighboring agents
where a class-specific decoder is used to decode all the received messages, aggregate them
and weight them according to some learned attention coefficients. The aggregated message
information is leveraged by the receiving agent to compute the action probabilities as its
policy output. These decentralized per-class policies are then used for action decisions of
different agents in each class.
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their capabilities, meaning agents can have different state, action and observation spaces in

forming a composite team.

In learning an end-to-end communication model, we take a series of problems and con-

straints into consideration: (1) heterogeneous messages, where agents of different classes

have different action and observation spaces, resulting in different interpretations of sent/re-

ceived messages; (2) Attentional and scalable communication protocols, such that agents

incorporate attention coefficients depending on the agent/class they are communicating

with for coordinating with teammates in any arbitrary team sizes; (3) Learning commu-

nication models for Low-Size, -Weight, and -Power (Low-SWAP) systems, where due to

limited communication bandwidth, agents must learn to communicate in a highly efficient

shared intermediate “language” (e.g., limited-length binarized messages); (4) Limited-range

communications, where agents can only exchange messages when they are within a close

proximity.

Heterogeneous Communication Model

GNNs previously used in MARL operate on homogeneous graphs to learn a universal feature

update and communication scheme for all agents [79, 81, 76, 82], which fails to explicitly

model the heterogeneity among agents. We instead cast the cooperative MARL problem into

a heterogeneous graph structure, and propose a novel heterogeneous graph-attention network

capable of learning diverse communication strategies based on agent classes. Compared

to homogeneous graphs, a heterogeneous graph can have nodes and edges of different

types that can have different types of attributes. This advantage greatly increases a graph’s

expressivity and enables straightforward modeling of complicated, composite teams.

Given our MAH-POMDP formulation in subsubsection 6.1.3, we directly model each

agent class i ∈ C as a unique node type. This approach allows agents to have different

types of state-space content, S (i), as input features according to their classes, as well as

enabling different types of action spaces, A (i). Communication channels between agents
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are modeled as directed edges connecting the corresponding agent nodes. When two agents

move to a close proximity of each other such that those agents fall within communication

range, we add bidirectional edges to allow message passing between them. We use different

edge types to model different class combinations of the sender and receiver agents to allow

for learning heterogeneous communication protocols and intermediate representations.

To form our novel architecture for modeling heterogeneous interactions, we add a

State Embedding Node (SEN) into the heterogeneous graph to train a critic network. SEN

serves as a central node where we aggregate all the important meta-data from the MARL

environment (i.e., number of agents, N , world size, current time step, etc.) and use the

embeddings for critic training. The SEN forms a one-way connection to the agent nodes

(i.e., from an agent to the SEN) to receive messages from them during training. The SEN’s

learned embeddings are used as input of a critic network consisting of one Fully-Connected

(FC) layer for state-dependent value estimation. We note that, since there are no edges

pointing from the SEN to any agent nodes, during the execution phase, the SEN can be

safely removed without affecting an agent’s own policy output, which complies with our

underlying CTDE paradigm.

Accordingly, we present an overview of our multi-agent heterogeneous attentional

communication architecture in Figure 6.1. At each time, t, the features of each agent

(i.e., each node of the heterogeneous graph) are generated through a class-specific feature

preprocessor. We utilize separate modules to preprocess an agent’s state-vector, si j
t , and

observation, oi j
t , since depending on the agent’s class, the environment observation input

may not be available (e.g., an action agent in a perception-action composite team). Each

preprocecssing module contains one CNN or a fully-connected unit followed by one LSTM

cell to enable reasoning about temporal information. As shown in Figure 6.1, the generated

embeddings are then passed into a HetGAT communication channel including a class-

specific encoder-decoder network and a Gumbel-Softmax [264] unit to generate a binarized

message, mt , for an agent, j.
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Binarized Communication Channels

The feature update process in a HetGAT layer is conducted in two steps: per-edge-type

message passing followed by per-node-type feature reduction. When modeling multi-agent

teams, we reformulate the computation process into two phases: a sender phase and a

receiver phase. Figure 6.2 shows the computation flow during the sender and receiver phases

for an agent, j, of class i.

During the sender phase, the agent, j, of class i∈C , processes its input feature, h j, using

a class-specific weight matrix, ωi ∈ Rd′×d , where d and d′ are the input and output feature

dimensions, respectively. The agent also transforms h j into the assigned message dimension

using a class-specific encoder, ωenc
i ∈ Rn×d , where n is the communication channel band-

width. Next, we leverage a universal binarization process utilizing Gumbel-Softmax to

convert the message into 0s and 1s for all classes as an efficient, intermediate language. The

binarized message is then sent to neighboring agents.

During the receiver phase, agent, j, of class i, processes all the received messages

using a class-specific decoder, ωdec
i ∈ Rd′×n. Next, for each type of the communication

edge that an agent is connected to, the HetGAT layer computes per-edge-type aggregation

result by weighing received messages, along the same edge-type with normalized attention

coefficients, αedgeType. The aggregation results are then merged with the agent’s own

transformed embedding, ωih j, to compute the output features. The feature update formula

for an agent is shown in Equation 6.2, where j and k are agent indexes and, i, l ∈ C are

class indexes; such that, i2l is an edgeType and means “from class i to class l”. m jk
t is the

decoded message computed by Equation 6.3 and, ∆l( j) include agent j’s neighbors that

belong to class l.

Class (i) : h̄′j = σ

(
ωih̄ j + ∑

l∈C
∑

k∈Nl( j)
α

i2l
jk m jk

t

)
(6.2)

m jk
t = ω

dec
i (GumbelSoftmax(ωenc

l hk)) (6.3)
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Figure 6.2: The sender and receiver phases of the feature update process in a HetGAT layer
for one agent, j, of class i.

Note that we have l = i for intra-class communication. When computing attention coeffi-

cients in a heterogeneous graph, we adapt Equation 6.1 into Equation 6.4 to account for
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heterogeneous channels.

α
i2l
jk = softmaxk

(
σ
′
(

W̄ T
att
[
ωih̄ j ∥ωi2l h̄k

]))
(6.4)

As discussed in subsubsection 6.1.4, we add an SEN to the graph during centralized training

with a state-dependent critic network. The feature update formula of the SEN is shown

in Equation 6.5. Here, feature vectors from all agents are passed to the SEN after being

processed with edge-specific weights, ωedgeType. The attention coefficients for the SEN are

computed in a similar manner as in Equation 6.4.

SEN : h̄′s = σ

(
ωsh̄s + ∑

i∈C
∑

j∈N(i)

α
i2sen
s j ωi2senh̄ j

)
(6.5)

To stabilize the learning process, we adapt the multi-head extension of the attention mecha-

nism [263] to fit our heterogeneous setting. We use L independent HetGAT (sub-)layers to

compute node features in parallel and then merge the results by concatenation operation for

each multi-head sub-layer in HetNet except for the last layer which employs averaging. As a

result, each type of communication channel is split into L independent, parallel sub-channels.

Heterogeneous Policy Network (HetNet)

At each timestep, t, a HetGAT layer corresponds to one round of message exchange between

neighboring agents and feature update within each agent. By stacking several HetGAT

layers, we construct the HetNet model that utilizes multi-round communication to extract

high-level embeddings of each agent for decision-making. For the last HetGAT layer in

HetNet, we set each agent’s output feature dimension to the size of its action-space, specific

to its class, i. Then, for each agent node, we add a Softmax layer on top of its output to

obtain a probability distribution over actions that can be used for action sampling, resulting

in class-wise stochastic policies. Accordingly, the computation process of each agent’s

policy remains local for distributed execution, and the SEN is no longer needed.
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6.1.5 Training and Execution

Multi-agent Heterogeneous Actor-Critic

We present our modified Multi-Agent Heterogeneous Actor-Critic (MAHAC) framework

for learning class-wise coordination policies. We assign one policy per existing class, π i ∈

{Π}C , each of which is parametrized by θ i. The trained actor network on the heterogeneous

graph contains one set of learnable weights per agent class, which due to the message-

passing nature of GNN updates, can be distributed to individual agents in the execution

phase. Accordingly, in MAHAC, the policy for each class, π i, is updated by a variant of

the basic AC objective (see subsubsection 6.1.3, shown in Equation 6.6. We leverage an

on-policy training paradigm for MAHAC.

∇θ iJ(θ i) =
1
N

N (i)

∑
j=1

T

∑
t=1

∇θ i logπ
i
(

āi j
t |ō

i j
t , m̄t

)( T

∑
t ′=t

γ
t ′−tri j(s̄i j , āi j)

)
−b(t)

 (6.6)

In Equation 6.6, āi j
t and ōi j

t represent the joint actions taken and joint observations received

(if applicable for class i) by agents at time, t. m̄t represents the message-vector received by

agent j from its neighbors. The term ∑
T
t ′=t γ t ′−tri j(s̄i j , āi j) calculates the total discounted

future reward from current timestep to end of an episode. Moreover, b(t) is a temporal

baseline function leveraged to reduce the variance of the gradient updates in MAHAC. We

utilize the value-estimates via our critic network as the baseline function [265]1.

Critic Architecture Design for HetNet

In this section, we propose and assess several MAHAC architectures to investigate the utility

of: (1) fully-centralized critic, b(t) (i.e., one critic signal for all), (2) per-class critics, bi(t)

(i.e., one critic signal per class of agents) and (3) per-agent critics, bi j(t) (i.e., individual

critic signals for each agent) to learn class-wise policies.

1We provide our code at https://github.com/CORE-Robotics-Lab/HetNet
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In the fully-centralized critic implementation for HetNet, we stack an FC layer on top of

SEN’s output feature for critic prediction of the value estimate. The same predicted critic

value is used in the policy gradient update for all agents of all classes. The target value for

training the critic output is the average returns (i.e., discounted sum of future rewards) over

all agents. Thus, in this architecture one centralized critic network “criticizes” the actions of

all agents. Note that this approach still complies with our CTDE paradigm, since the actor

network is implemented on a GNN structure.

For the per-class critic implementation, we split the critic head into one critic head per

existing agent class to separate the critic estimation for different types of agents. The critic

split is done while the critic is estimated based on a class-specific SEN’s output feature.

During training, the target value for each class of critic output is the average returns over the

same class of agents. Algorithm algorithm 5 provides a pseudocode to train HetNet with the

per-class critic architecture.

In our per-agent critic implementation for HetNet, the critic network outputs one critic

value for each agent. This is achieved by concatenating the SEN’s output feature with each

agent node’s output embedding to serve as the input of class-specific critic heads. The

per-agent critic estimation is used for each agent’s policy update where the target value for

training is the returns of that agent.

6.1.6 Empirical Evaluation

Evaluation Environments

We evaluate the utility of HetNet against several baselines in three cooperative MARL do-

mains (a homogeneous and two heterogeneous) that require learning collaborative behaviors.

Please refer to Appendix C for environment and model details.

Predator-Prey (PP) [251] – For the homogeneous domain, we adopt the Predator-Prey

(PP) [251] in which the goal is for N predator agents with limited vision to find a stationary

prey and move to its location. The agents in this domain all belong to the same class (i.e.,
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Algorithm 5: The Per-class training procedure for HetNet.

1: Input: Agent classes, i ∈ C , number of agents in each class, N (i), number of episodes
per epoch K, maximum allowed steps for each episode, T , learning rate, η .

2: Initialize: Per-class policy parameters {θ i} for {π i} and per-class critic parameters
{φ i} for {V i}, i ∈ C

3: while not converged do
4: Sample a random environment instance
5: for k = 1 to K do
6: Get initial observations {o11

1 ,o12
1 , ...,oi j

1 }, i ∈ C , j ∈N (i)

7: for t = 1 to T do
8: Perform message passing and feature reduction
9: Store critic predictions {V i

t }, i ∈ C

10: Sample actions: ai j
t ∼ π i(∗ | oi j

t ), i ∈ C , j ∈N (i)

11: Step through environment using {a11
t ,a12

t , · · · ,ai j
t }, receive next observations

and rewards: {o11
t+1,o

12
t+1, ...,o

i j
t+1}, {r

11
t ,r12

t , ...,ri j
t }

12: if environment_solved then: Terminate early end if
13: end for
14: end for
15: for i ∈ C do
16: Compute rewards-to-go Ri

t and GAE advantages Ai
t

17: ∇J(θ i) = 1
N ∑

N (i)

j=1 ∑
T
t=1 ∇ logπ i

(
ai j

t |o
i j
t

)
Ai

t

18: Critic loss: L(V i) = 1
N ∑

N (i)

j=1 ∑
T
t=1

(
V i

t −Ri
t

)2

19: Joint update: θ i = θ i +η∇J(θ i), φ i = φ i−η∇L(V i)
20: end for
21: end while=0

identical state, observation and action spaces).

Predator-Capture-Prey (PCP) – For the first heterogeneous domain, we modify the PP

to create a new environment, which we refer to as Predator-Capture-Prey (PCP), to include

a composite team. In PCP, we have two classes of predator and capture agents. Agents of

the predator class have the goal of finding the prey with limited vision (similar to agents in

PP). Agents of the capture class, have the goal of locating the prey and capturing it with an

additional capture-prey action in their action-space, while not having any observation inputs

(e.g., lack of scanning sensors).

FireCommander (FC) [54] – In the second heterogeneous domain, the FireComman-

der [54], two classes of perception and action agents must collaborate as a composite team to
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Table 6.1: Reported results are Mean (± Standard Error (SE)) from 50 evaluation trials. For
all tests, the final training policy at convergence is used for each method. As shown, HetNet
outperforms all baselines in all three domains.

Method
PP PCP FC

Avg. Cu-
mulative

R

Avg.
Steps
Taken

Avg. Cu-
mulative

R

Avg.
Steps
Taken

Avg. Cu-
mulative

R

Avg.
Steps
Taken

TarMAC [67] -0.563 ±
0.030

18.4 ±
0.46

-0.548 ±
0.031

17.0 ±
0.80

-109.2 ±
6.26

248.1 ±
6.97

IC3Net [251] -0.342 ±
0.015

9.69 ±
0.26

-0.411 ±
0.019

11.5 ±
0.37

-187.2 ±
0.79

276.0 ±
5.51

CommNet [68] -0.336 ±
0.012

8.97 ±
0.25

-0.394 ±
0.019

11.3 ±
0.34

-253.2 ±
1.01

292.7 ±
3.07

MAGIC [82] -0.386 ±
0.024

10.6 ±
0.50

-0.394 ±
0.017

10.8 ±
0.45

-267.6 ±
10.9

298.1 ±
23.3

HetNet [Ours] -0.232 ±
0.010

8.30 ±
0.25

-0.364 ±
0.017

9.98 ±
0.36

-9.862
± 2.77

46.40 ±
2.90

extinguish a propagating firespot. At each timestep, the firespot propagates to a new location

according to the FARSITE [122] model, while the previous location is still on fire. All

firespots are initially hidden to agents and need to be discovered before being extinguished.

As such, perception agents are tasked to scan the environment to detect the firespots while

action agents (no observation inputs) are required to move and extinguish a firespot that

has been discovered by a perception agent before. Note that since firespots propagate, both

perception and action agents need to continue to explore the map and collaborate until all

firespots are extinguished.

Baselines

We benchmark two variants of our framework, i.e. HetNet-Binary and HetNet-Real, against

four end-to-end communicative MARL baselines: (1) CommNet [68], (2) IC3Net [251],

(3) TarMAC [67] and, (4) MAGIC [82]. For our HetNet-Real variant, we remove the

binarization process (i.e., Gumbel-Softmax) and the encoder-decoder network from the

174



communication channel. Accordingly, agents directly send their generated embeddings

(i.e., the LSTM cell output) to a class-specific communication edge in HetGAT layers.

The HetNet-Real utilizes continuous, agent-specific embeddings to generate limited-length,

real-valued numbers which allow for greater expressivity in the message-space. The real-

valued numbers require more communication band-width and higher memory storage as

compared to HetNet-Binary (see subsubsection 6.1.6). We note that, for all four baselines,

i.e. CommNet [68], IC3Net [251], TarMAC [67] and, MAGIC [82], we directly pulled the

respective authors’ publicly available code-bases and hyperparameters for training. Note

that we observed some performance discrepancies while directly using MAGIC’s public

repository (i.e., github.com/MAGIC).

Results, Ablation Studies, and Discussion

Here, we empirically validate the performance of our frameworks, across homogeneous

and heterogeneous teaming domains and against the introduced baselines. Next, we present

an ablation study to investigate the required communication overhead for each method

(paragraph 6.1.6). We then present evidence to support the effects of communication on

collaboration performance (paragraph 6.1.6) as well as to determine the sensitivity of HetNet

to key variables such as number of agents (paragraph 6.1.6). Additionally, we investigate

the effects of the critic structures proposed in subsubsection 6.1.5 on HetNet’s performance

(paragraph 6.1.6).

Baseline Comparison Figure 6.3 depicts the average steps taken (± standard error)

by each method across episodes as training proceeds in PP and PCP domains. In both

domains, PP and PCP, HetNet outperforms all baselines by converging to a more efficient

coordination policy (i.e., fewer steps taken). We also tested the learned coordination policies

at convergence by each of the baselines in PP, PCP and FC domains. The results of this

test are presented in Table 7.1 where the reported results are mean (± Standard Error (SE))
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(a) Homogeneous Domain (PP) (b) Heterogeneous Domain (PCP)

Figure 6.3: Average steps taken (± SE) by each method across episodes and three different
random seeds as training proceeds. HetNet outperforms all baselines in both domains.

from 50 evaluation trials with different random-seed initializations. As shown, HetNet

outperforms all baselines in all three domains. Additionally, in the same experiment, the

coordination policy learned by our HetNet-Binary with 64-bits message dimensionality

achieved 9.90±0.58 average steps taken in the PCP domain; showing better performance than

all baselines while significantly compressing the communication bandwidth (see Figure 6.4).

The heterogeneous policies learned by our model set the SOTA for learning challenging

cooperative behaviors for composite teams.

Ablation Study #1: Communication Bandwidth In this experiment, we compute the

Communication Bandwidth (CB) for each baseline as the number of bits required to com-

municate messages per round of communication during evaluation (i.e., converged policies

deployed for test). As shown in Figure 6.4, HetNet facilitates binarized communication

among agents which requires significantly less CB as compared to real-valued baselines

(i.e., one bit per binary value vs. 64 bits in single-precision floating-point format [266]).

HetNet-Binary with 64 and 32-bits messages, respectively, achieve more than 100× and

200× lower CB while showing better performance than real-valued baselines.
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Figure 6.4: Communicated bits per round of communication vs. performance in PCP for
different methods. HetNet facilitates binarized messages among agents which requires
significantly less CB as compared to real-valued baselines.

Ablation Study #2: Effects of Communication We assess the impact of the communica-

tion on cooperation performance of the composite team. We present two experiments in the

PCP domain for comparing HetNet’s performance: (1) with Full, Half and No communica-

tion among agents and (2) with different binary message dimensions (number of bits). As

depicted in Figure 6.5a, HetNet performs significantly better with full communication while

the performance drop for half-communication (i.e., limited range) is not considerable. As

such, the results show that our model, HetNet has robustness to degradation in communi-

cation range. Additionally, as shown in Figure 6.5b, a gradual degradation in performance

is observed by decreasing message dimensionality rather than a sharp drop-off. HetNet’s

performance improves with longer messages as the learned intermediate language will have

greater expressivity.

Ablation Study #3: Scalability to Number of Agents in the Composite Team In this

experiment, we evaluated the scalability of our HetNet-Binary to different number of agents

in the composite team. Specifically, we tested HetNet-Binary in PCP domain with (2P, 1C),
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(a) Communication range. (b) Message dimensionality.

(c) Scalability to num. of agents.

Figure 6.5: Analyzing HetNet’s performance with and without communication (Figure 6.5a)
and across different binary message dimensions (Figure 6.5b) in the PCP domain. Com-
munication policy learned by HetNet improves the cooperativity among agents and the
performance improves with larger message sizes. Figure 6.5c depicts results for analyzing
HetNet’s ability to scale to different number of agents. As shown, HetNet-Binary can
successfully scale to different sizes of the composite team.

(3P, 3C) and (4P, 6C) team compositions, where P and C represent predator and capture

agents, to evaluate the scalability to different team sizes. The results of this experiment are

presented in Figure 6.5c. As shown, HetNet’s GNN-based architecture can successfully

scale to different combinations of the composite team by approximately converging at the

same rates.
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Ablation Study #4: Effects of the Critic Structures Finally, we investigate the utility

and performance of the three critic structures proposed in subsubsection 6.1.5 on HetNet’s

performance in the PCP domain. We utilized our HetNet-Real variant for this experiment.

Figure 6.6a shows the learning curves during training for centralized, per-class, and per-

agent critic structures in the PCP domain. The test results for coordination policies learned

by each of the critic architectures are presented in Figure 6.6b, showing the average number

of steps taken to win the game by deploying the converged policies by each critic design. As

depicted, HetNet-Real shows similar performance with per-class and per-agent critics, both

having better results than the centralized critic, decreasing the number of steps of episode

completion by 0.20 (10.01→ 9.81). The performance benefit can be attributed to the ability

to utilize individual and class-wise rewards, both of which help to capture the heterogeneity

in the received feedback from the environment.

(a) Training Performance. (b) Converged Performance.

Figure 6.6: Learning curves during training as well as the test results (average number
of steps taken) for final policies learned by centralized, per-class and per-agent critic
architectures in the PCP domain.

6.1.7 Conclusion

Motivated by the diverse communication patterns across collaborating human teams, we

present a communicative, cooperative MARL framework for learning heterogeneous co-

operation policies among agents of a composite team. We propose Heterogeneous Policy
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Network (HetNet), a heterogeneous graph-attention based architecture, and introduce the

Multi-Agent Heterogeneous Actor-Critic (MAHAC) learning paradigm for training HetNet

to learn class-wise cooperation policies. We push the boundaries beyond performance

considerations as in prior work by equipping HetNet with a binarized encoder-decoder com-

munication channel to facilitate learning a new and highly efficient encoded language for

heterogeneous communication. We empirically show HetNet’s superior performance against

several baselines in learning both homogeneous and heterogeneous cooperative policies. We

provide empirical evidence that show: (1) our binarized model achieves more than 200×

reduction in communication overhead (i.e., message bits) per round of communication while

also outperforming baselines in performance, (2) HetNet is robust to varying bandwidth

limitations and team compositions.
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CHAPTER 7

ITERATIVE REASONING FOR MULTI-AGENT DECISION-MAKING UNDER

UNCERTAINTY

In addition to communication, individuals in high-performing human teams also benefit

from the theory of mind and making strategic decisions by recursively reasoning about the

actions (strategies) of other human members. Such hierarchical rationalization alongside

with communication facilitate meaningful and strategic cooperation in human teams.

Inspired by this behavior in strategic human teams, in this chapter (section 7.1), we

propose a novel information-theoretic, fully-decentralized cooperative MARL framework,

called Informational Policy Gradient (InfoPG) [12], where agents iteratively rationalize their

action-decisions based on their teammates’ actions. We study cooperative MARL under the

assumption of bounded rational agents and leverage action-conditional policies into policy

gradient objective to accommodate our assumption.

7.1 Iterated Reasoning with Mutual Information in Cooperative and Byzantine De-

centralized Teaming

Information sharing is key in building team cognition and enables coordination and coopera-

tion. High-performing human teams also benefit from acting strategically with hierarchical

levels of iterated communication and rationalizability, meaning a human agent can reason

about the actions of their teammates in their decision-making. Yet, the majority of prior

work in MARL does not support iterated rationalizability and only encourage inter-agent

communication, resulting in a suboptimal equilibrium cooperation strategy. In this work, we

show that reformulating an agent’s policy to be conditional on the policies of its neighboring

teammates inherently maximizes Mutual Information (MI) lower-bound when optimizing un-

der Policy Gradient (PG). Building on the idea of decision-making under bounded rationality
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and cognitive hierarchy theory, we show that our modified PG approach not only maximizes

local agent rewards but also implicitly reasons about MI between agents without the need

for any explicit ad-hoc regularization terms. Our approach, InfoPG, outperforms baselines

in learning emergent collaborative behaviors and sets the state-of-the-art in decentralized

cooperative MARL tasks. Our experiments validate the utility of InfoPG by achieving higher

sample efficiency and significantly larger cumulative reward in several complex, discrete-

and continuous-space cooperative multi-agent domains.

7.1.1 Introduction and Motivation

Information sharing is key in building team cognition, and enables agents to cooperate

and successfully achieve shared goals [241]. In addition to communication, individuals

in high-performing human teams also benefit from the theory of mind [88] and making

strategic decisions by recursively reasoning about the actions (strategies) of other human

members [89]. Such hierarchical rationalization alongside with communication facilitate

meaningful cooperation in human teams [90]. Similarly, collaborative MARL relies on

meaningful cooperation among interacting agents in a common environment [91]. Most of

the prior works on collaborative MARL are based on the maximum utility theory paradigm

which assumes perfectly informed, rational agents [92]. Nevertheless, even under careful

handcrafted or machine learned coordination policies, it is unrealistic and perhaps too strong

to assume agents are perfectly rational in their decision-making [93, 94, 95, 96].

Recently, strong empirical evidence has shown that Mutual Information (MI) is a statistic

that correlates with the degree of collaboration between pairs of agents [97]. Researchers

have shown that information redundancy is minimized among agents by maximizing the

joint entropy of agents’ decisions, which in turn, improves the overall performance in

MARL [267]. Therefore, recent work in MARL has sought to integrate entropy regulariza-

tion terms as means of maximizing MI among interacting agents [98, 268, 99]. The formulaic

calculation of MI relies upon the estimation of action-conditional distributions. In most
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prior work, agents are equipped with conventional state-conditional policies, and researchers

employ techniques, such as variational inference, for estimating an action-conditional policy

distribution to quantify MI [100, 98]. However, agents are not explicitly given the ability to

reason about their teammates’ action-decisions and, instead, have to learn implicitly from

sparse rewards or hand-engineered regularization and auxiliary loss terms.

Contributions

In this work, we propose a novel information-theoretic, fully-distributed cooperative MARL

framework, called InfoPG, by reformulating an agent’s policy to be directly conditional on

the policies of its instantaneous neighbors during Policy Gradient (PG) optimization. We

study cooperative MARL under the assumption of bounded rational agents and leverage

action-conditional policies into PG objective function to accommodate our assumption.

By leveraging the k-level reasoning [269] paradigm from cognitive hierarchy theory, we

propose a cooperative MARL framework in which naive, nonstrategic agents are improved

to sophisticated agents that iteratively reason about the rationality of their teammates for

decision-making. InfoPG implicitly increases MI among agents’ k-level action-conditional

policies to promote cooperativity. To learn collaborative behavior, we build InfoPG on a

communicative fully-decentralized structure where agents learn to achieve consensus in their

actions and maximize their shared utility by communicating with their physical neighbors

over a potentially time-varying communication graph. We show the effectiveness of InfoPG

across multiple, complex cooperative environments by empirically assessing its performance

against several baselines. The primary contributions of our work are as follows:

1. We derive InfoPG, an information-theoretic policy gradient framework that leverages

cognitive hierarchy and action-conditional policies for maximizing MI among agents

and maximizing agents’ individual rewards. We derive an analytical lower- and an

upper-bound for MI estimated during InfoPG and provide mathematical reasoning

underlying InfoPG’s performance.
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2. We propose a fully-decentralized graph-based communication and k-level reasoning

MARL architecture based on LSTM networks to enable theory of mind for coordinat-

ing agents and maximizing their shared utility.

3. We propose a generalized variant of InfoPG and derive an MI upper-bound to modulate

MI among agents depending on cooperativity of agents and environment feedback. We

demonstrate the utility of this generalization in solving an instance of the Byzantine

Generals Problem (BGP), in a fully decentralized setting.

4. We present quantitative results that show InfoPG sets the SOTA performance in

learning emergent cooperative behaviors by converging faster and accumulating

higher team rewards than information-based and decentralized MARL benchmarks.

7.1.2 Related Work

Cooperative MARL studies can be subdivided into two main lines of research, (1) learning

direct communication among agents to promote coordination [66, 67, 68, 69] and, (2) learn-

ing to coordinate without direct communication [70, 71, 10]. Our work can be categorized

under the former. Hierarchical approaches are also prevalent for learning coordination in

MARL [5, 73, 74, 9]. We consider MARL problems in which the task in hand is of coop-

erative nature and agents can directly communicate, when possible. Unlike these studies,

however, we improve our interacting agents from coexisting to strategic by enabling the

recursive k-level reasoning for decision-making.

Researchers have shown that maximizing MI among agents leads to maximizing the

joint entropy of agents’ decisions, which in turn, improves the overall performance in

MARL [267, 98]. As such, prior work has sought to increase MI by introducing auxiliary

MI regularization terms to the objective function [98, 268, 99]. These prior works adopt

a centralized paradigm, making them less relevant to our fully decentralized training and

execution setting. Model of Other Agents (MOA) was proposed by [99] as a decentralized
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approach that seeks to locally push the MI lower-bound and promote collaboration among

neighboring agents through predicting next-state actions of other agents. In all of the

mentioned approaches, the amount of MI maximization objective that should be integrated

into the overall policy objective is dictated through a β regularization parameter. In our

work, however, we reformulate an agent’s policy to be directly conditional on the policies

of its neighbors and therefore, we seek to reason about MI among agents in our PG update

without ad-hoc regularization or reward shaping.

Among prior work seeking to enable k-level reasoning for MARL, [100] presented

Probabilistic Recursive Reasoning (PR2), an opponent modeling approach to decentralized

MARL in which agents create a variational estimate of their opponents’ level k−1 actions

and optimize a joint Q-function to learn cooperative policies without direct communication.

[93] later extended the PR2 algorithm for generalized recursive depth of reasoning. In

InfoPG, we establish the inherent connection between k-level reasoning and MI, a link that

has not been explored in prior work. Moreover, we bypass the need for modeling other

agents through direct communication and k-level action-conditional policies, and giving

InfoPG agents the ability to recursively reason about their teammates’ actions through

received messages and with any arbitrary rationalization depths.

7.1.3 Preliminaries

Problem Formulation – We formulate our setup as a Multi-Agent Fully Decentralized

POMDP (MAF-Dec-POMDP), represented by an 8-tuple ⟨{Gt}t≥0,N ,S ,A ,Ω,{Ri}i∈N ,P,γ⟩.

N is the set of all interacting agents in the environment in which index i represents the

index of an agent. Gt = ⟨N ,Et⟩ is a time-varying, undirected communication graph in

which agents i, j ∈N are vertices and Et ⊆ {(i, j) : i, j ∈N , i ̸= j} is the edge set. The

two agents i and j can only share information at time t if (i, j) ∈ Et . State space S is a

discrete set of joint states, A represents the action space, Ω is the observation space, and

γ ∈ [0,1) is the temporal discount factor for each unit of time.
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At each step, t, an agent, i, receives a partial observation, oi
t ∈Ω, takes an action, ai

t ∈A ,

and receives an immediate individual reward, ri
t ∈ {Ri}i∈N . Taking joint actions, ā, in the

joint states, s̄, leads to changing the joint states to s̄′ ∈S , according to the state transition

probabilities, P
(
s̄′|s̄, ā

)
. Our model is fully decentralized since agents take actions locally

and receive individual rewards for their actions according to their own reward function.

Moreover, each agent is also equipped with a local optimizer to update its individual policy

through its local reward feedback. Accordingly, we can reasonably assume that agents’

choices of actions are conditionally independent given the current joint states [63]. In

other words, if π̄ : S ×A → [0,1] is the joint state-conditional policy, we assume that

π̄(ā|s̄) = Πi∈N π i(ai|s̄). Note that Decentralized POMDPs are allowed to facilitate local

inter-agent communication [63, 91, 270].

Policy Gradient (PG) and Actor-Critic (AC) Methods – The policy gradient meth-

ods target at modeling and optimizing the policy π i directly by parametrizing the policy,

π i
θ
(ai

t |st). Actor-Critic (AC) is a policy gradient method in which the goal is to maximize

the objective by applying gradient ascent and directly adjusting the parameters of policy,

π i
θ

, through an actor network. The actor, updates the policy distribution in the direction

suggested by a critic, which estimates the action-value function Qw(st ,ai
t) [260]. By the

policy gradient [126], the gradient by which the objective in AC, J(θ), is maximized can be

shown as ∇θ J(θ) = E
π i

θ

[
∇θ logπ i

θ
(ai

t |oi
t)Q

w(s̄t ,ai
t)
]
, where ai

t and oi
t are agent i’s action

and observation.

Mutual Information (MI) – MI is a measure of the reduction in entropy of a probability

distribution, X , given another probability distribution Y , where H(X) denotes the entropy of

X and H(X |Y ) denotes the entropy of the conditional distribution of X given Y [271, 272].

By expanding the Shannon entropy of X and X |Y , we can compute the MI as in Equation 7.1.

I(X ;Y ) = H(X)−H(X |Y ) = ∑
y∈Y

pY (y) ∑
x∈X

pX |Y=y(x) log

(
pX |Y=y(x)

pX(x)

)
(7.1)
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In our work, X and Y are distributions over actions given a specific state, for two interacting

agents. In an arbitrary Markov game with two agents i and j and with policies πi and π j,

if πi gains MI by viewing π j, then agent i will make a more informed decision about its

sampled action and vice versa.

7.1.4 Mutual Information Maximizing Policy Gradient

In this section, we first present an algorithmic overview of the InfoPG framework and

then introduce the InfoPG objective by covering the logistics of building an iterated k-

level decision making strategy for agents with bounded rationality. We then explore the

relation of InfoPG with MI and derive an analytical lower-bound on the MI between the

action-conditional policies of interacting agents.

Algorithmic Overview

Consider an MAF-Dec-POMDP introduced in subsection 7.1.3, with N agents where each

agent is equipped with an encoding and a communicative policy (see Figure 7.1). At the

beginning of a new rollout, each agent receives a state observation from the environment

and produces an initial action (i.e., a guess action) using its encoding policy. Each agent

i has a neighborhood of agents it can communicate with, shown with j ∈ ∆i
t where |∆i

t | is

the number of agent i’s physical neighbors (i.e., within close proximity). Next, depending

on the level of k in the decision hierarchy, agents communicate their action guesses (high-

dimensional latent distributions) with their neighbors k times and update their action guess

iteratively using their communicative policy. The level-k action is then executed by all

agents and a local reward is given to each agent separately. This process continues until

either the environment is solved successfully, or some maximum number of cycles has been

attained. For each timestep, t, of the policy rollout and for each agent i, the gradient of the

log probability is computed, scaled by the instantaneous advantage, Ai
t , and the encoding

and communicative policies are updated. This process repeats until convergence of the
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Figure 7.1: An instance of the information flow in a k-level decision hierarchy between
two agents i and j for calculating their level-k strategies. Level-zero actions (e.g., ai,(0))
represent the naive non-strategic actions.

cumulative discounted rewards across all agents. Please refer to Appendix, section D.1 for

pseudocode and details of our training and execution procedures.

Deep Reasoning: Decision-Making Under k-Level Rationalization

We leverage from cognitive hierarchy theory [11] and strategic game theory [273], wherein

each agent has k-levels of conceptualization of the actions its neighbors might take under

bounded rationality. k-level reasoning assumes that agents in strategic games are not fully

rational and therefore, through hierarchies of iterated rationalizability, each agent bases its

decisions on its predictions about the likely actions of other agents [269]. According to k-

level theory, strategic agents can be categorized by the depth of their strategic thought [274].

For example, consider the two agent case shown in Figure 7.1, with k = 2. At k = 1 agent

i makes decisions based off its own observed state, and a guess of what agent j will do

(Agent i will assume agent j is naive and non-strategic). A more sophisticated agent i with

a strategy of level k = 2 however, makes decisions based off the rationalization that agent

j has a level-one guess of i’s strategy. Inductively, this line of reasoning can be extended

to any k. Notice that the conditioning of agent i’s policy on agent j’s perceived actions is

an action-conditional distribution. In InfoPG, we give agents the ability to communicate

with their latent guess-action distributions in k iterated reasoning steps and rationalize their

action decisions at level k to best respond to their teammates’ level k−1 actions.
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In the following, we represent the level of rationality for an agent by the superscript (k)

where k ∈ N. Denoting π j,(k) as the level-k policy of agent j, it can be shown that under the

k-level reasoning, agent i’s policy at level k+1, π i,(k+1), is precisely the best response of

agent i to agent j’s policy π j,(k) [92]. In other words, π i,(k+1) ∈ BestResponse(π j,(k)). In

theory, this process can iteratively proceed until we obtain π i,(k+2) = π i,(k), which corre-

sponds to reaching the equilibrium strategies. In practice, however, for scenarios with many

collaborating agents, the level of k is usually set to a reasonably small number for computa-

tional efficiency; since, in order to calculate the policy π i,(k), agent i must calculate not only

its own policy at level k, but also all policies of all its neighbors for all k ∈ {1,2,3, · · · ,k−1}

at each time-step t.

InfoPG Objective

Our approach, InfoPG, equips each agent with an action-conditional policy that performs

actions based on an iterated k-level rationalization of its immediate neighbors’ actions. This

process can be graphically described as presented in Figure 7.1, in which the information

flow in a k-level reasoning between two agents i and j is shown. Note that in practice, any

number of agents can be applied. Considering agent i as the current agent, we represent i’s

decision-making policy as π i
tot = [π i

enc,π
i
com], in which π i

enc(a
i
t |oi

t) is the state-conditional

policy that maps i’s observed states to actions. π i
com(a

i,(k)
t |ai,(k−1)

t ,a j,(k−1)) is the action-

conditional policy that maps agent i’s action at level (k−1) along with the actions of i’s

neighbors (in this case agent j) at level k−1, to an action for agent i in the (k)-th level of

decision hierarchy, ai,(k)
t . Therefore, pursuant to the general PG objective, we define the

basic form of our modified information-based objective, as in Equation 7.2, where ∆i
t is the

set of i’s immediate neighbors in communication graph at time t and Gt is the return.

∇
InfoPG
θ J(θ) = E

π i
tot

Gi
t(o

i
t ,a

i
t) ∑

j∈∆i
t

∇θ log(π i
tot(a

i,(k)
t |ai,(k−1)

t ,a j,(k−1)
t , . . . ,ai,(0)

t ,a j,(0)
t ,oi

t))


(7.2)
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Equation 7.2 describes the form of InfoPG’s objective function. Depending on the use

case, we can replace the return, Gi
t , with action-values, Qi

t , shown in Equation 7.3, and

present the InfoPG as a Monte-Carlo PG method. We can also replace the returns with the

advantage function, Ai
t , as shown in Equation 7.4, and present the AC variant of the InfoPG

objective [126].

Gi
t(o

i
t ,a

i
t) = Qi

t(o
i
t ,a

i
t) s.t. Qi

t(o
i
t ,a

i
t)≥ 0 (7.3)

Gi
t(o

i
t ,a

i
t) = Ai

t(o
i
t ,a

i
t) = Qi

t(o
i
t ,a

i
t)−V i

t (ot) (7.4)

Leveraging Equation 7.3 and Equation 7.4, we present two variants of the InfoPG objective.

The first variant is the MI maximizing PG objective, which utilizes Equation 7.3. The

non-negative action-value condition in Equation 7.3 implies non-negative rewards from

the environment, a common reward paradigm utilized in prior work [275, 76, 276]. By

applying this condition, InfoPG only moves in the direction of maximizing the MI between

cooperating agents (see Theorem 6). We refer to the second variant of our InfoPG objective

shown in Equation 7.4 as Advantage InfoPG (Adv. InfoPG), in which we relax the non-

negative rewards condition. Adv. InfoPG modulates the MI among agents depending on

cooperativity of agents and environment feedback (see Theorem 7).

Bayesian Expansion of the Policy

The action-conditional policy conditions an agent’s action at the k-th level of the decision

hierarchy on the actions of other agents at level k− 1; however, to relate our k-level

formulation to MI, we seek to represent an agent’s action at a particular level k to be

dependent on the actions of other agents at same level k. We present Theorem 5 to introduce

the gradient term in the InfoPG objective in Equation 7.2 which relates level-k actions of the

cooperating agents in their respective decision hierarchies. Please refer to the Appendix D,

section D.5 for a detailed proof of Theorem 5.
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Theorem 5 The gradient of the log probability’s level-k action-distribution in the InfoPG

objective (Equation 7.2) for an agent, i, with neighbors j ∈ ∆i
t and policy π i

tot that takes the

Maximum a Posteriori (MAP) action ai,(k)
t , can be calculated iteratively for each level k of

rationalization via Equation 7.5.

∇ log(π i
tot(a

i,(k)
t = MAP | ai,(k−1)

t ,a j,(k−1)
t , . . . ,oi

t)) ∝ ∇ log(π i
com(a

i,(k)
t = MAP | a j,(k)

t = MAP))

(7.5)

InfoPG and Mutual Information Lower-Bound

Using the fact that ∇ log(π i
tot(a

i,(k)
t |.)) is directly proportional to ∇ log(π i

com(a
i,(k)
t |a j,(k)

t ))

from Eq. Equation 7.5, we can show that the gradient of our communicative policy implicitly

changes MI. Since MI is empirically hard to estimate, we instead derive a lower-bound for

MI which is dependent on the action-conditional policy of an agent. We show that increasing

the probability of taking an action from the action-conditional policy will increase the

derived lower-bound, and consequently, the MI.

Theorem 6 Assuming the actions (ai,(k)
t ) and a j,(k)

t to be the Maximum a Posteriori (MAP)

actions, the lower-bound to MI, I(k)(i; j), between any pair of agents i and j that exist in the

communication graph Gt can be calculated w.r.t to agent i’s communicative policy as shown

in Equation 7.6.

π
i
com(a

i,(k)
t |a j,(k)

t ) log(π i
com(a

i,(k)
t |a j,(k)

t ))≤ I(k)(i; j) (7.6)

Proof – Without loss of generality, we consider two agents i, j ∈N with action-conditional

policies π i(ai|a j) and π j(a j|ai) (note that the time, t, and the rationalization level, (k),

indices are removed for notational brevity). We refer to the marginalizations of i’s and

j’s action-conditional policies as priors which can be denoted as p(ai) = ∑a j∈A π i(ai|a j)

and p(a j) = ∑ai∈A π j(a j|ai). We assume uniformity of the priors, as done previously
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by [277], such that p(ai) = p(a j) = 1
|A | , where |A | is the action-space dimension. For a

detailed discussion on the validity of the uniformity of priors assumption, please refer to the

Appendix, section D.6. Since MI is a marginalization across all actions in the action-space,

a lower-bound exists at a particular ai
max, which is the MAP action. As such, starting from

the basic definition of MI in Equation 7.1, we derive:

I(i; j) = ∑
a j∈A

p(a j) ∑
ai∈A

π
i(ai|a j) log

(
π i(ai|a j)

p(ai)

)
(7.7)

= ∑
a j∈A

1
|A | ∑

ai∈A
π

i(ai|a j) log(|A |π i(ai|a j)) (7.8)

≥ 1
|A|

[∑
a j

∑
ai

π
i(ai|a j)log(π i(ai|a j))] (7.9)

≥ π
i(ai

max|a j)log(π i(ai
max|a j)) (7.10)

We now seek to relate the last term in Equation 7.10 to the gradient term ∇ log(π i
com(a

i,(k)
t |a j,(k)

t ))

and variation of MI. By monotonicity of log, maximizing log(π i(ai
max|a j)) is equivalent to

maximizing the π i(ai
max|a j) term. Therefore, according to Theorem 6 and Equation 7.10,

the gradient updates will raise our lower-bound, which will maximize the MI. Since the

sign of environment rewards and therefore, the sign of Qt(ot ,at) in Equation 7.3 is strictly

non-negative, the gradient ascent updates will always move log(π i
com(a

i,(k)
t |a j,(k)

t ) either up

or not-at-all, which will have a proportional effect on the MI given the lower-bound. Note

that we leveraged the non-negative reward condition so that the rationalization of ai,(k)
t given

a j,(k)
t is only non-negatively reinforced. As such, if agent i’s action-conditional policy on

agent j’s action does not obtain a positive reward from the environment, the lower-bound of

MI stays constant, and thus so does MI. Conversely, if a positive reward is received by the

agent, then the lower-bound of MI will strictly increase, leading to lowering the conditional

entropy for taking the action that yielded the positive feedback from the environment.
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Advantage InfoPG and the Byzantine Generals Problem

While continually maximizing MI among agents is desired for improving the degree of

coordination, under some particular collaborative MARL scenarios such MI maximization

may be detrimental. We specifically discuss such scenarios in the context of Byzantine

Generals Problem (BGP). The BGP describes a decision-making scenario in which involved

agents must achieve an optimal collaborative strategy, but where at least one agent is

corrupt and disseminates false information or is otherwise unreliable [278]. BGP scenarios

are highly applicable to cooperative MARL problems where there exists an untrainable

fraudulent agent with a bad policy (e.g., random) in the team. Coordinating actions with

such a fraudulent agent in a collaborative MARL setting can be detrimental. We note that

BGPs are particularly challenging to solve in the fully decentralized settings [279, 280].

Here, we elaborate on our Adv. InfoPG variant introduced in Equation 7.4 and show its

utility for intelligently modulating MI depending on the cooperativity of agents. Intuitively,

the advantage function evaluates how much better it is to take a specific action compared to

the average, general action at the given state. Without the non-negative reward condition

in InfoPG, the Adv. InfoPG objective in Equation 7.4 does not always maximize the MI

locally, but, instead, benefits from both positive and negative experiences as measured by the

advantage function to increase the MI in the long run. Although instantaneous experiences

may result in a negative advantage, Ai
t , and reducing the MI lower-bound in Equation 7.6,

we show that Adv. InfoPG in fact regularizes an MI upper-bound, making it suitable for

BGP scenarios while also having the benefit of learning from larger number of samples. In

Adv. InfoPG we equip each agent with an action-conditional policy and show that under

k-level reasoning, the tight bounds of MI between agents is regularized (shifted up and

down) depending on the sign of the received advantage. We note that despite this local MI

regularization, in the long run we expect the MI bounds to increase since policy gradient

seeks to maximize local advantages during gradient ascent.

Upper-Bound of MI – Here, we derive an MI upper-bound dependent on the action-
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conditional policy of an agent and show that the gradient updates in Adv. InfoPG have a

proportional effect on this upper-bound. We show that under k-level rationalization, the tight

bound of MI between agents is regularized (shifted up or down) depending on the sign of

the received advantage value, Ai
t .

Theorem 7 Assuming the same preliminaries as in Theorem 6, the upper-bound to MI,

I(k)(i; j), between agents i and j w.r.t agent i’s level-k action-conditional policy can be

calculated as in Equation 7.11.

I(k)(i; j)≤ 2log(|A |)+2log(π i
com(a

i,(k)
t |a j,(k)

t )) (7.11)

Proof – We start from the definition of conditional entropy. The conditional entropy is

an expectation across all ai and considering the fact that the − log(.) is a convex function,

Jensen’s inequality [281] can be applied to establish an upper-bound on conditional entropy.

We derive:

H(π i|π j) =− ∑
ai∈A

π
i(ai|a j) log(π i(ai|a j)) = ∑

ai∈A
π

i(ai|a j)(− log(π i(ai|a j))) (7.12)

Jensen’s inequality−−−−−−−−−−→ H(π i|π j)≥− log( ∑
ai∈A

π
i(ai|a j)2) (7.13)

Now, we leverage the basic MI definition in Equation 7.1. We note that H(p(ai)) has a

constant value of log(|A ||) given the uniform prior assumption. Accordingly, plugging in

the bound in Equation 7.13 and evaluating at the MAP action results in an upper-bound for

MI, as shown below.

I(i; j) = H(p(ai))−H(π i|π j) =−H(π i|π j)+ log(|A |)≤ log( ∑
ai∈A

π
i(ai|a j)2)+ log(|A |)

(7.14)

≤ log
(
|A |π i(ai

max|a j)2
)
+ log(|A|)≤ 2log(|A |)+2log

(
π

i(ai
max|a j)

)
(7.15)
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Considering the Adv. InfoPG objective in Equation 7.4, depending on the sign of Ai
t ,

the gradient ascent either increases or decreases log(π i
com(a

i,(k)
t |a j,(k)

t ), which will have a

proportional regulatory effect on the MI given our bounds in Equation 7.6 and Equation 7.11.

Specifically, when agent i receives negative advantage from the environment, it means agent

i’s reasoning of ai,(k)
t given a j,(k)

t , resulted in a negative outcome. Therefore, to reduce

agent j’s negative influence, our gradient updates in Equation 7.4 will decrease the MI

upper-bound between i and j so that the conditional entropy at level k is increased. This

bears similarity to Soft actor-critic [226], where regularization with entropy allows agents

to explore more actions. As such, during Adv. InfoPG updates, the MI constraint becomes

adaptive to instantaneous advantage feedback. Such property can be effective in BGP

scenarios to reduce the negative effects of misleading information received from a fraudulent

(or broken in other applications) agent.

7.1.5 Empirical Evaluation

Evaluation Environments – We empirically validate the utility of InfoPG against several

baselines in four cooperative MARL domains that require high degrees of coordination and

learning collaborative behaviors. Our testing environments include: (1) Cooperative Pong

(Co-op Pong) [282], (2) Pistonball [282], (3) Multiwalker [283, 282] and, (4) StarCraft

II [284], i.e., the 3M (three marines vs. three marines) challenge. We modified the reward

scheme in all four domains to be individualistic such that agents only receive a local reward

feedback as per our MAF-Dec-POMDP formulation in subsection 7.1.3. For environment

descriptions and details, please refer to Appendix D, section D.8.

Baselines – We benchmark our approach (both InfoPG in Equation 7.3 and Adv. InfoPG

in Equation 7.4) against four fully-decentralized baselines: (1) Non-communicative A2C

(NC-A2C) [126], (2) Consensus Update (CU) [63], (3) Model of Agents (MOA) [99] and,

(4) Probabilistic Recursive Reasoning (PR2) [100]. In the NC-A2C, each agent is controlled

via an individualized actor-critic network without communication. The CU approach shares
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(a) Training Performance

(b) Mutual Information Variations

Figure 7.2: (Top Row) Team rewards obtained across episodes as training proceeds. The
shaded regions represent standard error. Our Adv. InfoPG continually outperforms all
baselines across all domains and in both training and testing (see Table 7.1). (Bottom Row)
The MI ablation study results, comparing the MI variations between InfoPG and MOA
(MI-based baseline) where InfoPG demonstrates a higher final average MI estimate across
all domains. The shaded blue region represents the area between InfoPG’s lower and upper
bounds on MI.

the graph-based communication among agents with InfoPG but lacks the k-level reasoning

in InfoPG’s architecture. Thus, the CU baseline is communicative and non-rational. MOA,

proposed by [99], is a decentralized cooperative MARL method in which agents benefit

from action-conditional policies and an MI regularizer dependent on the KL-Divergence

between an agent’s prediction of its neighbors’ actions and their true actions. PR2, proposed

by [100] is an opponent modeling approach to decentralized MARL in which agents create

a variational estimate of their opponents’ level k−1 actions and optimize a joint Q-function

to learn cooperative policies through k-level reasoning without direct communication.
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7.1.6 Results, Ablation Studies, and Discussion

In this section, we assess the performance and efficiency of our frameworks in the four

introduced domains and against several recent, fully-decentralized cooperative MARL ap-

proaches. Following an analysis of performance under k-level reasoning and an MI ablation

study, we present a case-study, namely the fraudulent agent experiment, to investigate the

utility of our MI-regularizing InfoPG variant (i.e. Adv. InfoPG in Equation 7.4) against

MI-maximizing baselines, such as MOA [99] and InfoPG, in BGP scenarios. We provide

further ablation studies, such as a level-k policy interpretation for InfoPG and a scalability

analysis in the Appendix, section D.7.

Baseline Comparison – The top row in Figure 7.2 depicts the team rewards obtained by

each method across episodes as training proceeds. In all four domains, both InfoPG and Adv.

InfoPG demonstrate sample-efficiency by converging faster than the baselines and achieving

higher cumulative rewards. Table 7.1 presents the mean (±standard error) cumulative

team rewards and steps taken by agents to win the game by each method at convergence.

Table 7.1 shows that InfoPG and Adv. InfoPG set the state-of-the-art for learning challenging

emergent cooperative behaviors in both discrete and continuous domains. Note that, while

in Pistonball fewer number of taken steps means better performance, in Co-op Pong and

Multiwalker more steps shows a superior performance.

Mutual Information Variation Analysis – The bottom row in Figure 7.2 shows our

MI study results comparing the MI variations between InfoPG and MOA (the MI-based

baseline). The MI for InfoPG is estimated as the average between lower and upper bounds

defined in Equation 7.6 and Equation 7.11. As depicted, InfoPG demonstrates a higher final

average MI estimate across all domains. Note the concurrency of InfoPG’s increase in MI

estimates (bottom row) and agents’ performance improvements (Figure 7.2, top row). This

concurrency supports our claim that our proposed policy gradient, InfoPG, increases MI

among agents which results in learning emergent collaborative policies and behavior.

Deep Reasoning for Decision Making: Evaluating k-Level InfoPG – We evaluate
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Table 7.1: Reported results are Mean (Standard Error) from 100 testing trials. For all tests,
the final training policy at convergence is used for each method and for InfoPG and Adv.
InfoPG, the best level of k is chosen.

Domain InfoPG Adv. InfoPG MOA CU NC-A2C PR2-AC
R #Steps R #Steps R #Steps R #Steps R #Steps R #Steps

Co-op Pong 0.127 202.9 0.25 212.9 -
0.3

58.2 0.13 152.0 0.04 102.925 -
0.84

36.8

(0.00) (1.35) (0.00) (1.24) (0.00) (0.32) (0.00) (0.96) (0.00) (0.93) (0.00) (0.34)

Pistonball 7.47 17.44 7.33 28.31 4.10 91.66 1.06 136.3 0.89 138.3 1.90 140.4
(0.02) (0.29) (0.02) (0.43) (0.03) (0.76) (0.04) (0.83) (0.04) (0.83) (0.02) (0.68)

Multiwalker3.56 474.2 11.81 500.0 0.66 489.3 -
1.7

490.2 -66 80.75 -84 94.17

(0.20) (1.39) (0.11) (0.80) (0.15) (1.09) (0.26) (1.30) (0.18) (0.20) (0.37) (1.40)

StarCraft II 4.40 30.79 3.73 44.5 2.78 27.7 0.24 58.72 0.00 60.0 0.64 27.4
(0.01) (0.05) (0.02) (0.13) (0.02) (0.07) (0.00) (0.06) (0.00) (0.00) (0.00) (0.08)

the performance of our method for deeper levels of reasoning k ∈ {2,3} in Co-op Pong,

Pistonball and Multiwalker domains. The training results are presented in Figure 7.2. As

discussed in subsubsection 7.1.4, in the smaller domain with fewer collaborating agents,

the Co-op Pong, agents reach the equilibrium cooperation strategy (i.e., π i,(k+2) = π i,(k))

even with one step of reasoning, and increasing the level of k does not significantly change

the performance. However, in the more complex domains with more agents, Pistonball and

Multiwalker, as the level of rationalization goes deeper in InfoPG (i.e., k = 2 and k = 3),

agents can coordinate their actions better and improve the overall performance.

The Fraudulent Agent Experiment: Regularising MI – To assess our Adv. InfoPG’s

(Equation 7.4) regulatory effect based on agents’ cooperativity, we perform an experiment,

demonstrated in Figure 7.3a, which is performed in the Pistonball domain and is intended to

simulate an instance of the BGP in which the middle piston is equipped with a fully random

policy throughout the training (i.e., the Byzantine piston is not controllable by any InfoPG

agent). Maximizing the MI with this fraudulent agent is clearly not desirable and doing such

will deteriorate the learning performance.

Figure 7.3b presents the fraudulent agent experiment training results for Adv. InfoPG,

InfoPG and MOA. As shown and comparing with Figure 7.2, existence of a fraudulent
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agent significantly deteriorates the learning performance in MOA and InfoPG as these

approaches always seek to maximize the MI among agents. This is while InfoPG still

outperforms MOA since by only using strictly non-negative rewards, the coordination in

InfoPG is only positively reinforced, meaning that InfoPG only increases MI when the

reward feedback is positive. Adv. InfoPG shows the most robust performance compared

to InfoPG and MOA. Adv. InfoPG modulates the MI depending on the observed short-

term coordination performance. As discussed in subsubsection 7.1.4, if the advantage is

negative, the gradient ascent in Adv. InfoPG will decreases the MI upper-bound between

agents, leading to increasing the conditional entropy and taking more exploratory (i.e., less

coordinated) actions.

(a) The Fraudulent Agent Experiment: Scenario (b) The Fraudulent Agent Experiment: Result

Figure 7.3: The fraudulent agent experiment scenario (Figure 7.3a) and training results
(Figure 7.3b) in the Pistonball domain, comparing the team reward performance for Adv.
InfoPG (Equation 7.4), InfoPG (Eq.Equation 7.3) and MOA.

7.1.7 Limitations and Future Work

Useful MI between agents becomes hard to capture in cases, such as Co-op Pong do-

main, where an agent’s action influences its neighbors with some delay. Moreover, MI

maximization by applying the strictly non-negative reward condition in InfoPG objective

(Equation 7.3) comes at the cost of zeroing out negative experiences which may have an

impact on sample-efficiency (also relevant to other MI-based methods such as MOA [99]).

Moreover, for environments with many interacting agents, as the rationalization level, k,

increases, the computational overhead of calculating the action-conditional distributions
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also raises. Lastly, the action-conditional policies in InfoPG’s architecture are limited to

homogeneous action-spaces.

7.1.8 Conclusion

We leverage iterated k-level reasoning from cognitive hierarchy theory and present a col-

laborative, fully-decentralized MARL framework which explicitly maximizes MI among

cooperating agents by equipping each agent with an action-conditional policy and facilitating

iterated inter-agent communication for hierarchical rationalizability of action-decisions. We

analytically show that the design of our MI-based PG method, increases an MI lower-bound,

which coincides with improved cooperativity among agents. We empirically show InfoPG’s

superior performance against various baselines in learning cooperative policies. Finally, we

demonstrate that InfoPG’s regulatory effect on MI makes it Byzantine-resilient and capable

of solving BGPs in fully-decentralized settings.
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CHAPTER 8

LEARNING HETEROGENEOUS TEAMING FROM HUMAN DEMONSTRATION

Traditional controller design for deploying robot teams typically consists of an army of

expert consultants who design, build, and program robots for each application [285]. As

such, in the previous chapter, we investigated data-based and RL to automatically learn such

distributed controllers for multi-robot team coordination. Nevertheless, MARL also suffers

from several problems, including designing an expressive reward function [286] and are

typically hard to train with increased domain complexity [285].

As multi-robot systems become increasingly prevalent in our communities and work-

place, aligning the values motivating their behavior with human values is critical [287].

Learning from Demonstration (LfD) attempts to learn the correct behavior (policy) from a

set of expert-generated demonstrations rather than a reward function, which can result in

lower sample complexity and directly learning human’s preferred strategy [288, 287]. As

such, in this chapter, we propose a novel Multi-agent LfD approach to learning high-quality

collaborative multi-robot policies directly from human-expert generated data [289].

8.1 Mixed-Initiative Multi-Agent Apprenticeship Learning for Human Training of

Multi-Robot Teams

Extending recent advances in Learning from Demonstration (LfD) frameworks to multi-

robot settings poses critical challenges such as environment non-stationarity due to partial

observability which is detrimental to the applicability of existing methods. Although prior

work has shown that enabling communication among agents of a robot team can alleviate

such issues, creating inter-agent communication under existing Multi-Agent LfD (MA-LfD)

frameworks requires the human expert to provide demonstrations for both environment

actions and communication actions, which postulates an existing efficient communication
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strategy on a known message spaces. To address this problem, we propose Mixed-Initiative

Multi-Agent Apprenticeship Learning (MixTURE). MixTURE enables robot teams to learn

from a human expert-generated data a preferred strategy to accomplish a collaborative task,

while simultaneously learning end-to-end emergent inter-agent communication to enhance

team coordination. The key ingredient to MixTURE’s success is automatically learning an

inter-agent communication policy, enhanced by a mutual-information maximizing reverse

model, that rationalizes the underlying expert demonstrations without the need for human

generated data or an auxiliary reward function. MixTURE outperforms a variety of baselines

on data generated by human experts as well as expert-designed heuristics by achieving 22%

higher performance and more than 10× lower sample complexity in complex heterogeneous

domains. MixTURE is the first to enable learning high-quality multi-robot collaborative

policies directly from real human generated data, resulting in 44% less human workload,

and 46% higher usability score.

8.1.1 Introduction

In recent years, Multi-Agent Reinforcement Learning (MARL) has been predominantly used

by researchers to optimize a reward signal and learning multi-robot tasks. Nevertheless, RL

generally suffers from key limitations such as the difficulty of designing an expressive and

suitable reward function for complex tasks [110, 286] which can lead to undesirable robot

behavior [290, 110, 113], high sample complexity [291], and safety concerns due to direct

robot-environment interactions for optimizing the policy [113]. These problems are further

exacerbated in multi-robot scenarios where inter-robot interactions and environment dynam-

ics can be more complex and task descriptions and objectives more ambiguous [110]. As

such, accurate models of human strategies and behaviors achieved via imitation and inverse

RL methods are increasingly important for safely and effectively deploying autonomous

systems and align values motivating their behaviors with human values [287, 292].

As multi-robot systems become increasingly prevalent in our communities and work-
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place, aligning the values motivating their behavior with human values is critical [287].

Learning from Demonstration (LfD) attempts to learn the correct behavior (policy) from a set

of expert-generated demonstrations rather than a reward function, which can result in lower

sample complexity and directly learning human’s preferred strategy [288, 287]. Different

variants of LfD include Imitation Learning (IL) and Inverse Reinforcement Learning (IRL).

IL intends to learn a direct state-action mapping from a set of demonstrations, either offline

through Behavioral Cloning (BC) [106] or online from human critique (i.e., DAgger [107]).

IRL [108], on the other hand, assumes that the expert is approximately optimizing an under-

lying reward function and aims to infer a reward that rationalizes the demonstrations [110].

Unfortunately, extending these single-agent paradigms to multi-robot settings poses several

challenges such as environment non-stationarity and existence of multiple equilibrium solu-

tions (an agent’s optimal policy depends on other agents’ policies) [293, 294, 110]. One can

adopt such frameworks directly in a centralized multi-agent system. However, centralized

systems are not scalable, are prone to single-node failure, and pose significant computation

overhead, and therefore, decentralized approaches (e.g., limited-range communication and

local computations) have been more desired in multi-robot systems [295].

Prior work has shown that enabling communication among agents of a robot team creates

a shared mental model of joint action-spaces and task objectives and therefore, allowing

coordinated action decisions [239]. Building a truly collaborative robot team capable of

accomplishing more than just the sum of its components’ abilities requires developing a

social dexterity and understanding among the robots of a team, where each agent needs to

reason about its counterparts’ intentions, beliefs, and goals to take appropriate actions at the

right time in response to their teammates’ actions. Such social dexterity and coordination

can be achieved through communication without which, a multi-robot team can easily fail

in tasks due to challenges such as partial observability and environment dynamicity [296,

13]. While MARL has been shown to be capable of learning such communication policies

through environment interactions [68, 66, 13], it suffers from high sample complexity and
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reward shaping. On the other hand, although LfD can resolve these problems in RL, the

task of MA-LfD can be even more onorous for the humans as they have to control multiple

robots and imagine and simulate an appropriate theory of mind to create a communication

strategy for the robot team.

Nevertheless, introducing the inter-agent communication under current state-of-the-

art (SOTA) Multi-Agent LfD (MA-LfD) frameworks such as Multi-Agent Generative

Adversarial IL (MA-GAIL) [110] or Multi-Agent Adversarial IRL (MA-AIRL) [111]

requires the human expert to provide demonstrations for both environment actions and

communication actions. Such approaches assume that the human expert has access to an

efficient communication strategy on a known finite message space in addition to a known

strategy for taking environment actions. This assumption, however, is unrealistic since in a

general dynamic environment with multiple interacting agents there can be many unforeseen

states and designing a cohesive and comprehensive inter-agent communication protocol

seems exhaustive. Even if such efficient communication strategy exists, demonstrating both

the task strategy as well as the communication strategy could potentially pose significant

workload on the human expert, which in turn can affect the performance and quality of

demonstrations provided by the expert. These issues become even more severe when the

robot team is heterogeneous or of composite nature (i.e., agents with different observation-

and action-spaces as well as different tasks and objectives) where agents must rely on

communication to operate and fulfill their tasks correctly [297, 13, 87].

To address these challenges, we develop a distributed MA-LfD framework to efficiently

incorporate a human expert’s domain-knowledge of teaming strategies for collaborative robot

teams and directly learn team coordination policies from expert human teachers. To this end,

we propose Mixed-Initiative Multi-Agent Apprenticeship Learning (MixTURE). MixTURE

enables robot teams to learn an expert’s preferred strategy to act in an environment, while

simultaneously learning end-to-end emergent communication for the robot team to enhance

team coordination, without the need for human generated data or an auxiliary reward
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function. To improve the quality of the learned inter-agent communication protocol, we

reduce the entropy of a generated message given joint states and actions by maximizing

the Mutual Information (MI) between messages and joint states. We demonstrate through

empirical evaluation and a human subject experiment that MixTURE benefits from the

merits of LfD methods over RL such as reward function independence and low sample

complexity, while significantly alleviating the human demonstrators’ workload and time

required to provide demonstrations, as well as increasing the System Usability Score (SUS)

and overall collaboration performance of the robot team. Our key contributions are as

follow:

1. We propose the MixTURE framework for learning robot teaming strategies from hu-

man expert demonstrations while simultaneously learning inter-agent communication

through online interactions during training, without the need for expert data or an

auxiliary reward.

2. We develop an MIM-based emergent communication learning model which reduces

the entropy of a generated message for an agent given joint state-observations.

3. We train and evaluate MixTURE on real human data collected in an IRB-approved

human subject experiment with 55 subjects in a complex, heterogeneous firefighting

domain. Our results certify MixTURE’s ability to learn high-quality multi-agent

coordination policies, by achieving 22% higher performance and more than 10×

lower sample complexity, despite the heterogeneity and variance within human dataset.

4. We investigate the effects of demonstrating both environment actions and commu-

nication actions on a human expert’s workload, demonstration quality, and system

usability score. Our results show that a high-workload demonstration process in

classic MA-LfD approaches significantly (p < .001) reduces an expert’s demonstra-

tion quality (measured by performance) and the system’s usability score. MixTURE
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significantly improves these results; increasing a human’s performance and experience

engaging in MA-LfD.

8.1.2 Related Work

Learning from Demonstration (LfD) explores techniques for learning a task policy from

examples provided by a human teacher [101, 102]. Ho et al. [103] and Fu et al. [104]

formulated the LfD problem under generative adversarial learning setting [105] to tackle

the limitations in classic LfD frameworks such as BC [106], DAgger [107], and IRL [108].

Generative Adversarial IL (GAIL) [103] collects state-action pairs from executing the learned

policy to shift the trajectories closer to the desired behavior. In GAIL, a discriminator model

is trained to distinguish between state-action pairs provided by the expert and a deceiving

generator model (i.e., the learned policy) that learns to imitate the expert. Standard RL

algorithms are leveraged to optimize over the output of the discriminator (i.e., treated as

a reward signal), encouraging the agent to match the expert-data in expectation, over full

trajectories. Adversarial IRL (AIRL) [104] follows a setup similar to the GAIL but addresses

the reward signal ambiguity in GAIL by leveraging a specific discriminator structure.

The literature for Multi-Agent LfD (MA-LfD) primarily aims to address the complexity

of simultaneously training multiple agents. In [109], a coordinated IL approach is proposed

which learns a latent coordination model along with the individual policies. In [110] the

single-agent GAIL framework, described above, is extended for multi-agent scenarios along

with a practical actor-critic method for multi-agent imitation. Yu et al. [111] extend the

AIRL method to the multi-agent settings and propose a scalable framework. In [112] a

scalable multi-agent LfD approach is proposed where a model-based heuristic method

for automated swarm reorganization is leveraged to improve multi-agent task allocation

problem. In [113] authors create an advising system to incorporate sub-optimal model-based

heuristic policies to help improve MARL performance. More recently, Hoque et al. [114]

proposed Fleet-DAgger , formalizing interactive fleet learning setting, in which multiple
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robots interactively query and learn from multiple human supervisors.

Nevertheless, applicability of these prior work in the collaborative multi-agent problems

are considerably limited since none of these works explicitly address the inter-agent com-

munication in complex domains where agents not only need to take task-related actions, but

also need to communication and share information for coordination. Enabling inter-agent

communication in these prior work requires the human expert to provide demonstrations for

both environment actions and communication actions, which postulates an existing efficient

communication strategy on a known message spaces. Additionally, none of these prior work

consider a partially observable domain (common for realistic multi-robot systems) which ne-

cessitates the need for inter-agent communication and do not leverage real human-generated

data for training to evaluate the approach against heterogeneity and variance in human data.

These limitations can alleviate applicability of the mentioned works to multi-robot scenarios.

In our work, we address the limitations in prior work by relaxing the need for demon-

strating a communication strategy by the expert. Using our method, a human expert can only

teach the robot team how to accomplish a task collaboratively via demonstrations and the

team will automatically learn a communication strategy suitable for the cooperation policy

underlying the expert’s demonstrations. The learned communication protocol will then help

the robot team to deal with the partial observability, reasoning about action-decisions to best

respond to teammates’ policies, and alleviate the effects of environment non-stationarity.

We also collect real human data and evaluate MixTURE’s ability to cope with demonstration

heterogeneity due to different expert styles and strategies.

8.1.3 Problem Formulation: General MA-LfD with Heterogeneous Agents

We ground our problem formulation in a Markov Game (MG) [298] generalized to include

partial observability and heterogeneous agents. We define a set of heterogeneous agents in a

composite robot team (i.e., composed of different classes of robots) as agents that can have

arbitrarily different state-, observation-, and action-spaces which can also have different
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task objectives while their tasks are co-dependent on accomplishing an overarching mission.

Accordingly, we define our generic MG as a 9-tuple:

⟨C ,N ,{S (c)}c∈C ,{A (c)}c∈C ,{Ω(c)}c∈C ,{O(c)}c∈C ,r,T ,γ⟩. C is set of all available

agent classes in the composite robot team and the index c ∈ C shows the agent class.

N = ∑⟨c∈C ⟩N(c) is the total number of collaborating agents where N(c) represents the

number of agents in class c. {S (c)}c∈C and {A (c)}c∈C are discrete joint sets of state-

and action-spaces, respectively. {Ω(c)}c∈C is the joint set of observation-spaces, including

class-specific observations. Agents of the same class have similar S , A , and Ω. γ ∈ [0,1)

is the temporal discount factor for each unit of time and T is the state transition probability

density function. At each timestep, t, each agent, j, of the c-th class can receive a partial

observation oc j
t ∈ Ω(c) according to some class-specific observation function {O(c)}c∈C :

oc j
t ∼ O(c)(·|s̄). Next, each agent, j, of class c, takes an action, ac j

t , forming a joint action

vector ā =
(

a11
t ,a12

t , · · · ,ac1
t , · · · ,ac j

t

)
. When agents take the joint action ā, in the joint

state s̄ and depending on the next joint-state, they receive an immediate reward, r(s̄, ā) ∈ R,

shared by all agents regardless of classes. Each agent, j, of a class, c, achieves its own

objective by sampling actions from a stochastic policy π
(c)
j . The objective of each agent is

then to maximize the team return (expected sum of discounted rewards), i.e., Eπ

[
∑

T
t=0 γ trt

]
.

To directly learn the human’s preferred strategy (i.e., value alignment) and resolve

the reward specification problems [286], in LfD, we leverage a demonstration dataset, D,

provided by an expert, rather than the ground truth reward signal r. Note that, unlike [111,

110] or [299], we do not assume multiple human experts in our MG to avoid the need for

further coordination amongst the experts, which cane be time consuming and expensive. D is

a set of trajectories {τc
j}N

(c)

j=1 , where τc
j = {(o

c j
t ,ac j

t )}T
t=1 is an expert trajectory collected by

sampling ac j
t ∼ πE(a

c j
t |ōt) in which πE is the expert policy and ōt is the joint observation that

the expert has access to at time t. We further assume that D contains the entire supervision to

the learning algorithm (i.e., no online interactions during training). We build the MixTURE

architecture on the generative adversarial training [105], leading to the GAIL framework.
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Our distributed GAIL objective underlying MixTURE is shown in Equation 8.1 where D
(c j)
θ

is a local discriminator that classifies expert and policy trajectories for agent j of a class c,

and π
(c j)
φ

is the parameterized policy of agent j of a class c.

L
D

(c)
θ

=−Eτ∼πE ,(ō,ā)∼τ

[
logD

(c j)
θ

(ō, ā)
]
−E

τ∼π
(c j)
φ

,(ō,ā)∼τ

[
log
(

1−D
(c j)
θ

(ō, ā)
)]

(8.1)

According to [105], under the GAIL objective in Eq. Equation 8.1 and at optimality, the dis-

tribution of generated state-action pairs by π̄φ should match the distribution of demonstrated

state-action pairs.

8.1.4 Mixed-Initiative Multi-Agent Apprenticeship Learning (MixTURE)

Motivation and Problem Overview

Consider a generic composite team of robots including agents with heterogeneous character-

istics and task objectives. Without loss of generality, consider a robot team composed of

perception-only and action-only robots. Under our problem formulation in Section subsec-

tion 8.1.3, perception robots and action robots create two separate class of agents that need

to collaborate on an overarching. For instance, in an application of wildfire fighting, robots

of the perception class (e.g., quadcopters) need to search an environment for firespots, while

the action robots (e.g., fire-extinguishing ground robots) who cannot sense the environment

are required to extinguish the firespots found by the perception robots [13, 10, 9, 53]. Note

that neither of the robot classes are capable of accomplishing the task without the other

class.

To teach a collaborative multi-agent coordination strategy to such a robot team, one can

leverage demonstrations from a team of humans where each member is an expert in one of

the class-specific tasks. Using a team of human experts, however, poses further challenges:

(1) simultaneous access to several human experts is expensive and can be time consuming,

and (2) a communication strategy (e.g., natural language) among the human demonstrators
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is also required for coordination, which can be challenging to translate to robot domain due

to ambiguity, colloquialisms, and context-dependent use [300, 301]. Additionally, humans’

communications might not make sense to the robot agents as humans could be unaware of

all agents’ full local state spaces.

Alternatively, we can leverage the demonstrations from a single human with full domain-

knowledge regarding the entire mission objective. For example, a trainer/coach can play

a simulated game of firefighting using the aforementioned perception and action robots

and provide expert demonstrations for how to efficiently distributed and prioritize tasks

for searching the environment and putting out the propagating firespots. The challenge

of using a single human expert, however, is that in this case the human would also need

to demonstrate communication-actions (i.e., what information should an agent broadcast

at each state) on top of the environment-actions (i.e., moving around or dousing fire) to

deal with environment dynamicity and agents’ partial observability. Not only providing

such communication-action demonstration leads to an increased action-space dimension

and requires an expert heuristic communication strategy over a known message-space,

humans would also have to maintain a theory-of-mind (ToM) of each agent, which increases

workload greatly [302, 303].

To resolve this problem, we propose taking separate initiatives for teaching the robots in

the team how to operate (environment actions, at , per observation, ot) and how to commu-

nicate (communication message, zt , per state, st) such that a human expert would only be

required to provide environment-action demonstrations and the robot team would automati-

cally unravel a suitable communication policy for the underlying expert demonstrations. We

call our approach Mixed-Initiative Multi-Agent Apprenticeship Learning (MixTURE). Next,

we describe the MixTURE architecture.
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Figure 8.1: The proposed MixTURE architecture for human training of robot teams with
MIM-based learned differentiable inter-agent communication for a two-agent example
scenario. At each timestep, each agent generates an embedding from its local observation,
which are then passed into local recurrent policies (to handle partial observability) for
each agent. To learn from the expert demonstrations stored in the dataset DE , we build a
distributed multi-agent GAIL architecture (i.e., per agent discriminators, Dθ ). We enable
inter-agent communication by adding an attentional communication module enhanced by a
MI maximization reverse model.

MixTURE Architecture

The proposed MixTURE architecture for human training of robot teams is shown in Fig. Fig-

ure 8.1 for a two-agent example scenario. At each timestep, each agent generates an

embedding, representing agent’s belief space, from its local observation. To handle agents’

partial observability, the local observation embeddings are then passed into local recurrent

policies (i.e., GRU) for each agent. Each GRU policy receives the preprocessed features from

the local observations as well as its own hidden state from previous timesteps. Therefore,

the policy output depends only on the history of local observations and actions.

To learn from the expert demonstrations stored in the dataset DE , as shown in Fig. Fig-

ure 8.1, we build a distributed multi-agent GAIL architecture, similar to [110], where each

agent is equipped with a parametrized discriminator, Dθ . The discriminators are trained via

a Binary Cross Entropy (BCE) loss to distinguish between state-action pair samples from
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the expert dataset and those generated by the generator (i.e., local policies). The output

of the discriminators are treated as local rewards, which are then combined to generate a

shared reward signal for the team. Such a shared reward scheme incentifies collaboration

and teaming behaviour among agents [69]. To learn the agent policies through this reward

signal, we leverage the Proximal Policy Optimization (PPO) [304].

We enable inter-agent communication by adding an attentional communication module

in which each agent is equipped with a fully-connected network that processes action-

embeddings generated by the recurrent policies of an agent and those generated by its

teammates (i.e., messages, z) to output an action-decision. We enable this message-passing

by creating differentiable communication channels among agents. To maintain locality,

these communication channels can be leveraged locally (i.e., a communication graph where

edges only exist when robots are spatially within close proximity). For an agent, i, the

action-embedding messages received from a teammate, j, are weighted by some learned

attention coefficients, α ji, to impose message importance. Therefore, the input message

for agent i at time, t, can be computed as m j→i
t = ∑

Nt(i)
j=1 α jizt

ji where Nt(i) represents the

neighbors, j, of agent i at current timestep. in this equation, α ji are the learned attention

coefficients that are computed via Eq. Equation 8.2 where W̄att are the learnable weights of

the attention network, ∥ represents concatenation, σ is an activation function nonlinearity,

and h̄ represents the hidden states. The Softmax function is used to normalize the coefficients

across all neighbors j.

α ji = softmax j(σ(W̄att [ω h̄i ∥ m̄ j→i])) (8.2)

Such attentional communication can enhance the action-decision quality, specially with

increased number of agents or when the states may significantly vary in different parts of

the environment [67]. Our entire communication module is differentiable, and messages are

learned via backpropagation.
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Mutual Information Maximization-Based Differentiable Communication

A challenge with the communication strategy learned via the end-to-end differentiable

channels described in Section subsubsection 8.1.4 is that, the distribution of the messages

sent by an agent, i, to a teammate, j, given the state-observations, ρ(zi j|ō), can have a

high variance. The desired behavior, however, would be to have a cohesive communication

strategy where an agent is consistent with regards to sending a specific message when it

observes relatively similar states at two different timesteps.

To resolve this issue, we propose maximizing the Mutual Information (MI) between

an agent’s outgoing message and the joint state-observations. The MI is a measure of the

reduction in entropy of a probability distribution, X , given another probability distribution,

Y , such that I(X ;Y ) = H(X)−H(X |Y ), where H(X) denotes the entropy of X and H(X |Y )

is the conditional entropy of X given Y [271]. In our work, by maximizing the MI between

the distribution of an agent’s message, ρ(zi j|ō), and the joint observations, we reduce the

entropy over messages and encourage the model to be more consistent. Maximizing the

MI in this way encourages zi j to correlate with semantic features within the observation

distribution (i.e., mode discovery) [305, 306].

Unfortunately, a direct MI Maximization (MIM) between the message distributions

and joint observations as formulated above, I(zi j; ō) = H(zi j)−H(zi j|ō), is intractable as it

requires access to the true posterior, ρ(zi j|ō). Therefore, researchers employ the Evidence

Lower Bound (ELBO) of the MI instead. As shown in prior work [305], by minimizing a

Mean-Squared Error (MSE) loss between a sample from the current message embedding

and the approximate posterior, modeled as a normal distribution with constant variance,

is equivalent to maximizing the likelihood of the posterior. This is because with constant

variance, the exponential function in approximate normal distribution is monotonic, and

thus, minimizing the exponent will maximize the likelihood of the posterior [305].

In practice, we build a distributed reverse model in the MixTURE architecture (shown

in Fig. Figure 8.1) to accommodate the mentioned MSE loss. The distributed reverse model
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for each agent has access to the local received messages as well as the global joint-actions

taken by all agents such that the optimization results in a communication entropy-reduction

mechanism at the team level. Since actions and generated messages are functions of the

state-observations, each reverse model can take in the joint actions, ā, and all received

messages, z ji, to estimate the outgoing message for agent, i, as ẑi j. As such, we derive the

ELBO that is used for MIM between messages, ẑi, for agent, i, and joint observations, ō, as

in Eq. Equation 8.3, where Θi is the reverse model for agent i.

I(ẑi; ō) = H(ẑi)−H(ẑi|ō)≥ Eẑi∼N (⃗µ ,⃗σ2)

[
log
(
Θi(ẑi|ō)

)]
+H(ẑi) = LMIM(π i

φ ∥Θi) (8.3)

Maximizing the evidence lower-bound in Eq. Equation 8.3 is equivalent to maximizing the

MI, I(ẑi; ō).

Training and Execution

We build the MixTURE framework in a Centralized Training for Decentralized Execution

(CTDE) paradigm [66] to accommodate for the global joint-action inputs to the MI maxi-

mizing reverse models during training. We note that, the MIM reverse model is only used

during training and is cut during the execution, and therefore, the learned policies can be

executed fully decentralized. To optimize the policies based on the reward signal generated

by the discriminators, we leverage the PPO algorithm [304]. Moreover, to enhance and

stabilize the training we propose combining an offline BC loss with the online GAIL loss.

As shown by prior work [307], through this combination, the offline BC helps preserving

ground knowledge that should be respected during training, while the online part helps

with learning of new information encountered during execution. As such, putting together

our distributed GAIL loss in Eq. Equation 8.1, the PPO loss, the offline BC loss, and the

MIM loss introduced in Eq. Equation 8.3, we present the full loss expression to train the

MixTURE architecture as follows in Eq. Equation 8.4, where N is the total number of
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agents and λ is a tunable scaling parameter.

Ltotal =
N

∑
i=1

L
D

(ci)
θ

+λPPOLPPO(ci) +λBCLBC(ci)−λMIMLMIM(ci) (8.4)

8.1.5 Evaluation

We break the problem of evaluating our proposed architecture for teaching multi-agent

coordination policies to (heterogeneous) robot teams into three research questions (RQ):

RQ1 Can MixTURE learn useful multi-agent coordination strategies from synthetic

data (e.g, models of human experts / Oz-of-Wizard [308])? Evaluate the quality of

learned policies against SOTA baselines and ablations to confirm performance and

sample efficiency.

RQ2 Is the MixTURE architecture applicable to learning from real human expert

data? Evaluate the performance against baseline with expert demonstrated communi-

cation.

RQ3 How challenging is it for a human expert to provide multi-agent demonstration

and does MixTURE alleviate the challenge? Compare Workload and System

Usability Score (SUS) for when a human subject utilizes MixTURE vs. a classic

MA-LfD architecture.

Evaluation Environments

In keeping with prior work in MARL and MA-LfD [110, 13], we selected three multi-agent

domains that are partially observable, require collaboration among agents, and include

heterogeneous agents (see Section subsection 8.1.3). Please refer to the supplementary

material for more details about the environments.

1. Predator-Prey (PP) [251]: the goal in this homogeneous (i.e., same class agents)
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domain is for N predator agents with limited vision to find a stationary prey and

move to its location.

2. Predator-Capture-Prey (PCP) [13]: a new class of capture-agents, are introduced to

the PP. In this heterogeneous domain, the goal of predator agents is the same, while

capture agents must move to the prey location and capture it, without having any

observation inputs.

3. FireComander (FC) [13]: two classes of robots, perception and action robots, are

required to collaborate to extinguish a propagating firespot. Similar to the PCP domain,

perception robots search the domain to find hidden firespots, and action robots, which

do not have any observation inputs, must relay on communication to put out the

firespots using an extra action when on a fire. Unlike the PCP, in this complex domain

firespots randomly spread over time and thus, the team must continue until all firespots

are found and extinguished.

Baselines

To investigate our RQ1, we benchmark our method in the three environments introduced in

Section subsubsection 8.1.5 against a variety of baselines described below. All baselines

utilize the combined offline BC and online loss training scheme described in Section subsub-

section 8.1.4. The expert heuristic for environment action is a near-optimal search algorithm

and for the communication heuristic it is an anticipatory observation sharing mechanism

inspired by prior work [309, 310]. Please refer to the supplementary material for more

details on the expert heuristics design for each domain.

• MARL [304]: MA-PPO optimizing both environment-action and communication

policies .

• BC+DC [106]: MixTURE ablation trained only via offline BC loss on synthetic

dataset.

216



Figure 8.2: Full evaluation results for MixTURE and the baselines in the all difficult levels
(i.e., easy, moderate, and hard) of the three environments (i.e., PP, PCP, and FC).

• NC MA-GAIL [110]: Non-communicative ablation of the MA-GAIL [110] trained

on synthetic data w/o communication (i.e., independent agents).

• MA-GAIL [110]: Full MA-GAIL trained on full synthetic dataset w/ communication.

Human-Subject Experiment: Conditions and Procedure

To investigate our RQ2 and RQ3, we conducted an IRB-approved human-subject user study

in the FireCommander domain. For more details about the study and the environment, please

refer to the supplementary material.

Domain, Setup, and Procedure – We built a heterogeneous multi-agent environment in

the FireCommander (FC) domain [13] in which a human expert played different difficulty
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levels and modes of the FC as a strategic game to provide demonstrations for training the

composite robot team. Depending on the level of difficulty (i.e., easy, moderate, hard), there

can be multiple initial firespots, hidden from the human, that propagate randomly based

on a fixed wall-clock rate. The human expert was responsible to strategically move the

simulated robots to find and extinguish all firespots as fast as possible using perception and

action agent. The human subject was shown a performance score at the end of each round,

computed based on existing, found, and extinguished fires. Each subject began by filling in

a pre-questionnaire form followed by reading through a series of detailed game instructions

and objectives as well as a few expert tips and guidance. The subject then was allowed to

practice different modes of the game. Next, each subject played six different rounds of the

game (i.e., two modes/conditions and three difficulty levels). The demonstration data was

fully stored for all of the non-practice rounds to be later used for training. Finally, each

subject was asked to fill some post-measurement forms.

Participants – We recruited 55 participants in an IRB-approved experiment, whose ages

range from 20 to 32 (25.0%±2.67). All participants were recruited through on-university-

campus advertisement including 34.5% females. All participants were trained equally for

the task through instructions, tips, videos, and practice rounds.

Conditions – In this study, we seek to determine: (1) if MixTURE can learn multi-agent

collaborative policies from diverse human generated data w/o demonstrated communication

and its performance against classic MA-GAIL w/ expert demonstrated communication,

and (2) how does demonstrating versus not demonstrating the communication strategy

affect the human expert’s performance, workload, and system usability measures. As

such, we utilize a 1× 2 within-subjects design varying across two abstractions: (1) only

demonstrating environment actions for each robot at each time step (i.e., noComm condition),

2) demonstrating both environment actions and communication actions for each agent at

each time step ((i.e., withComm condition)).

Metrics – To evaluate our RQ2, the demonstration data collected from the human
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subjects for both noComm and withComm conditions are used to train out MixTURE and the

classic MA-GAIL [110], respectively. The algorithms are compared in terms of performance

(i.e., number of steps taken to find and extinguish all fires where lower is better), KL-

Divergence, DKL, between the marginal state distribution in human data and the learned

policy rollout distribution (i.e., lower is better) [285], and the log-likelihood, LL, metric as

the probability of demonstrated action over given states, using the learned policy (i.e., higher

is better) [285]. Additionally, to address our RQ3, we leverage the NASA-TLX Workload

Survey [311] and the System Usability Scale (SUS) [312] post measurements.

Results and Discussion

Baseline Comparisons on Synthetic Dataset – We evaluated the MixTURE against all

baselines (Section subsubsection 8.1.5) in all three domains introduced in Section subsub-

section 8.1.5 and under three different difficulty levels: (1) easy (5×5 domain, 3 robots),

(2) medium (10×10 domain, 6 robots), and (3) hard (20×20 domain, 10 robots). More

environment details are provided in the supplementary material. Table Table 8.1 presents the

full evaluation results for MixTURE and baselines including the KL-Divergence (DKL) and

Log-Likelihood (LL) metrics. The results show the mean values across metrics calculated

over ten trials of running the best models stored during training. As shown, MixTURE

achieves significant improvement over all baselines and in all domains. Our evaluations

confirm MixTURE’s ability to learn highly complex collaborative policies in heterogeneous,

partially observable, and dynamic environments. We believe our model provides a strong

step towards learning collaborative policies in multi-robot systems by setting a new SOTA

in complex heterogeneous tasks.

Fig. ?? shows the training and evaluation results for MixTURE and the baselines in the

medium case, for PP, PCP, and FC domains. Each epoch on the x-axis represents 40K data

samples. As shown, MixTURE outperforms all non-communicative, communicative with

expert heuristic, and communicative with differentiable communication channels in learning
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Figure 8.3: Evaluation results for MixTURE and MA-GAIL [110] on real human data.
From left to right, the figures present results for easy, moderate, and hard scenarios (see
Section subsubsection 8.1.5). MixTURE can learn high-quality multi-agent policies from
human demonstration.

collaborative teaming policies. Under the similar training schemes, not only MixTURE

outperforms the baselines at the convergence, it also shows significantly lower sample

complexity. We note that the medium case of the FC domain was reported to be very

challenging in prior work [13] even for MARL methods with differentiable communication

channels. As we can see, by combining knowledge acquired from the expert demonstration

as well as the introduced MIM-based end-to-end communication, MixTURE can learn a

high-quality policy for a heterogeneous team of robots in this challenging domain.

Training and Evaluation Results on Human-Subject Dataset – We train MixTURE

and MA-GAIL [110] on data collected in our human-subject user experiment to investigate

our RQ2. The results are presented in Fig. Figure 8.3. From left to right, the figures present

results for easy, moderate, and hard scenarios (see Section subsubsection 8.1.5). As shown,

MixTURE can learn high-quality multi-agent collaboration policies from human demonstra-

tions. This is while purely relaying on human demonstrations for both environment- and

communication-action strategies, as suggested in prior work [110, 111], does not succeed

in this task. We note that, although humans generally tend to be diverse in styles, prefer-
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Easy

Predator-Prey Predator-Capture-Prey FireCommander

Heu. Diff. # Steps DKL LL # Steps DKL LL # Steps DKL LL

MARL ✓ - 15.57 1.044 -67.54 23.38 1.050 -57.70 78.77 0.871 -36.65
BC+DC - ✓ 11.84 0.919 -0.81 15.38 0.887 -1.44 38.95 1.059 -0.11
NC MA-GAIL - - 17.48 1.129 -9.75 27.60 1.070 -8.45 76.49 1.112 -7.60
MA-GAIL ✓ - 11.68 1.074 -4.29 16.43 1.094 -10.08 77.46 1.059 -15.00
MixTURE - ✓ 11.16 0.908 -3.19 13.08 0.850 -3.81 22.31 0.896 -4.58

Medium

Predator-Prey Predator-Capture-Prey FireCommander

Heu. Diff. # Steps DKL LL # Steps DKL LL # Steps DKL LL

MARL ✓ - 17.93 1.061 -1.50 56.04 0.964 -3.48 79.09 0.920 -123.09
BC+DC - ✓ 21.28 1.019 -0.35 61.54 0.907 -0.27 44.70 1.060 -12.47
NC MA-GAIL - - 60.38 1.086 -2.73 77.77 1.125 -4.43 79.47 1.060 -7.51
MA-GAIL ✓ - 20.39 1.059 -1.84 44.84 1.035 -3.34 79.02 1.062 -104.45
MixTURE - ✓ 13.15 1.023 -0.73 17.27 1.016 -1.59 34.82 1.061 -7.39

Hard

Predator-Prey Predator-Capture-Prey FireCommander

Heu. Diff. # Steps DKL LL # Steps DKL LL # Steps DKL LL

MARL ✓ - 47.40 1.057 -2.33 79.76 0.979 -4.09 80.00 0.992 -193.18
BC+DC - ✓ 46.16 1.044 -0.84 79.75 0.953 -2.04 72.87 1.062 -27.69
NC MA-GAIL - - 79.52 1.064 -5.03 80.00 1.064 -9.49 79.98 1.061 -12.68
MA-GAIL ✓ - 49.08 1.055 -2.99 79.86 1.036 -6.86 80.00 1.059 -157.58
MixTURE - ✓ 28.73 1.055 -1.06 36.41 1.046 -1.99 56.49 1.063 -9.89

Table 8.1: Full evaluation results for MixTURE and baselines in all domains and all difficulty
levels on expert heuristic dataset. Heu. and Diff. indicate the models access to heuristic or
differentiable communication, respectively. Bolded values indicate the best models.
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ences, and strategies for LfD tasks [285, 306], such diversity and heterogeneity seems to

have a minimal effect on the performance of MixTURE. We hypothesize that MixTURE’s

MIM-based differentiable communication channels provide the model with ability to reason

about the underlying human demonstrations and cope with trajectory distribution through

automatically finding a suitable communication protocol. We believe that this strong re-

sult shows great potential for the MixTURE model in teaching multi-agent coordination

and collaboration policies to robot teams through human demonstrations effectively and

efficiently.

Statistical Analysis – We investigate the our RQ3 by quantifying the workload and

SUS measures reported by the human subjects. We hypothesize that:

H1 Demonstrating both an environment-action and a communication-action strategy for the

robot team increases the human experts workload, measured by NASA-TLX [311].

H2 Demonstrating both an environment-action and a communication-action strategy for

the robot team decreases the system’s usability scale [312].

H3 Demonstrating both an environment-action and a communication-action strategy for

the robot team negatively affects the demonstration quality.

H1: We test for normality and homoscedasticity and do not reject the null hypothesis in

either case, using Shapiro-Wilk test (p > 0.32 and p > 0.38). We perform a paired t-test

and find that using the MixTURE model w/o communication demonstration was rated

statistically significantly lower than using Multi-Agent Generative Imitation Learning (MA-

GAIL) w/ demonstrated communication by the expert (p < 0.001) on NASA-TLX workload

scale. As shown in Fig. Figure 8.4, relaxing the need for demonstrating a communication

strategy reduced the humans’ workload by 44.3% in our experiment.

H2: We test for normality and homoscedasticity and do not reject the null hypothesis in

either case, using Shapiro-Wilk test (p > 0.96 and p > 0.08). We perform a paired t-test and

find that using the MixTURE model w/o communication demonstration led to a statistically
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Figure 8.5: Statistical analysis for the human subject data, supporting the H3. Results
indicate that using the MixTURE model w/o communication demonstration leads to signifi-
cantly higher performance, more tasks completed and a better ability to scale to the more
complex scenarios with more tasks, and significantly lower demonstration time per step.

significantly higher SUS than using MA-GAIL w/ demonstrated communication by the

expert (p < 0.001). As shown in Fig. Figure 8.4, relaxing the need for demonstrating a

communication strategy increased the systems’ usability scale by 46.1% in our experiment.

Figure 8.4: Workload and SUS measures,
compared for against the experiment condi-
tions.

H3: We perform a statistical analysis

on: (1) human’s performance score in the

game, (2) total tasks completed (i.e., fires

killed), and (3) average demonstration time

per step. We perform a Kruskal–Wallis and

confirm that (see Fig. Figure 8.5) in our ex-

periments, relaxing the need for demonstrat-

ing a communication strategy through Mix-

TURE leads to significantly higher perfor-

mance (p < 0.001), more tasks completed

and a better ability to scale to the more com-

plex scenarios with more tasks (p < 0.001), and significantly lower demonstration time per

step (p < 0.001).
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Limitations and Future Work

A limitation of the proposed MixTURE architecture is that is does not directly attempt to

tackle the problem of heterogeneity and different styles in human demonstrations. Demon-

strating multi-agent strategies can be considered a highly involved and high-workload task,

which in turn can affect a human’s situational awareness and optimality of demonstrations.

An interesting future direction is then to leverage existing approaches for learning from

suboptimal demonstration such as the Self-Supervised Reward Regression (SSRR) [285] to

enable MixTURE to learn optimal policies from suboptimal human demonstrations.

8.1.6 Conclusion

We proposed the MixTURE model to learn multi-agent collaborative policies for a robot

team, directly from human expert demonstrations. Using our method, a human expert can

only teach the robot team how to accomplish a task collaboratively via demonstrations

and the team will automatically reason for and learn a communication strategy suitable for

the underlying demonstrations. The learned communication protocol will then help the

robot team to deal with the partial observability, reasoning about action-decisions to best

respond to teammates’ policies, and alleviate the effects of environment non-stationarity.

We provided several empirical and experimental results, confirming MixTURE’s strong

ability to learn from expert heuristics and real human generated data and outperform all

baselines in several complex domains with heterogeneous robots and tasks.

224



CHAPTER 9

LIMITATIONS AND FUTURE WORK

Our coordinated planning algorithms, presented in chapter 5, is model-based. Model-based

methods can generally be implemented efficiently in real-time, however, their reliance

on model accuracy and communication reliability (see chapter 5) makes the performance

of such methods vulnerable to uncertainties and disturbances of the system and environ-

ment [313]. In our model-based frameworks, UAVs quantify their estimation uncertainty by

explicitly inserting the inferred model parameters from the environment into the model and

following a nonlinear uncertainty propagation law. According to our experiments reported

in section 5.1, a mismatch between the actual model used by the algorithm and the ground

truth model can lead to significantly increasing the actual measurement uncertainty residuals

and consequently an unreliable coverage plan. While this poses a limitation on the proposed

frameworks, in such cases, the best practice is to use adaptive estimation methods (e.g.,

AEKF). Nevertheless, the results of such methods can still be unreliable [7].

With increased domain complexity and dimensionality, data-driven and learning-based

approaches such as MARL can greatly suffer from high sample complexity, dramatic

increase of wall-clock training time, and non-generic reward shaping. Particularly, our

proposed HetNet model in chapter 6 also demonstrated such problems when trained on larger

environments (e.g., 20×20 state space) or more complex domains such as FireCommander.

The learned binary communication protocol shared among agents can also susceptible

to noisy (e.g., bit flip) and lossy communications. The sample efficiency and wall-clock

training time issues can be positively addressed by modifying the training architecture to

incorporate multi-processing and parallel computation paradigms. Further, incorporating

advanced RL methods such as PPO can help with the quality of learned solutions. We note

that we are currently investigating such improvements to the HetNet architecture and an
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enhanced version of this model will be published in a journal extension soon.

Our InfoPG model for iterated multi-agent decision rationalization, proposed in chapter 7,

can also suffer from a few computational limitations. MI maximization by applying the

strictly non-negative reward condition in InfoPG objective (Equation 7.3) comes at the

cost of zeroing out negative experiences which may have an impact on sample-efficiency.

Moreover, for environments with many interacting agents, as the rationalization level, k,

increases, the computational overhead of calculating the action-conditional distributions

also raises. Lastly, the action-conditional policies in InfoPG’s architecture are limited to

homogeneous action-spaces.

Lastly, a limitation of our proposed MixTURE architecture, in chapter 8, is that is does

not directly attempt to tackle the problem of heterogeneity and different styles in human

demonstrations. Demonstrating multi-agent strategies can be considered a highly involved

and high-workload task, which in turn can affect a human’s situational awareness and

optimality of demonstrations. MixTURE also does not directly formulate a solution to

address learning from sub-optimal demonstrations. As such, an interesting future direction

is to leverage existing approaches for learning from suboptimal demonstration such as the

Self-Supervised Reward Regression (SSRR) [285] to enable MixTURE to learn optimal

policies from suboptimal human demonstrations. It is also interesting to investigate the

effects of added levels of autonomy to the agents in the robot team to a human demonstrator’s

solution optimality and workload in time-sensitive tasks, such as FireCommander.
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CHAPTER 10

CONCLUSION

In this thesis, I presented several contributions towards enabling true teamwork and collabo-

ration for robot teams. By transitioning from single to multi-robot systems, I studied how to

leverage interactions between robots to do even more than what one single robot could do

on its own. This includes studying higher order goals; goals that can be potentially only be

achieved through a collective of autonomous agents.

In chapter 4, we presented two model-based multi-robot coordinated control frameworks.

First, in [5] we combined a node-level control criteria and an ensemble-level control criteria

to introduce a novel coordinated control algorithm for human-centered active sensing of

wildfires, providing high-quality, online information to human firefighters on the ground.

In our approach, we took advantage of AEKF’s error propagation capability to generate an

uncertainty map, incorporating uncertainties about firefront dynamics and areas of human

activity. We showed that our approach outperformed prior work for distributed control

of UAVs for wildfire tracking as well as a reinforcement learning baseline. Next, we

developed an adaptive coordinated control strategy in [207] for the leader-follower systems

with uncertain communication network structures. The proposed approach provides a novel

coordinated controller to be applied to disconnected and/or non-communicative teams of

robots with uncertain communication graph structure for which the conventional consensus-

based networked controllers fail. We achieved this result by bypassing the connectedness

condition at the cost of a simple centralized model-reference. Simulation and experiments

confirm the benefits of the proposed scheme over conventional methods that fail at achieving

consensus.

In chapter 5, we built on our works in previous chapter by moving the focus of the algo-

rithm design from the low-level control input to the high-level decision-making and planning
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under uncertainty. First, in [7, 8] we introduced a novel analytical measurement-residual

bound on fire propagation uncertainty, allowing high-quality planning under environment un-

certainty for real-time wildfire monitoring and tracking, while also providing a probabilistic

guarantee on the quality of service. Our approach outperformed prior work for distributed

control of UAVs for wildfire tracking, as well as a reinforcement learning baseline. Physical

implementation of our framework on real robots in a multi-robot testbed demonstrated and

validated the feasibility of our approaches. Next, we extended this work to include heteroge-

neous robots (i.e., robots with different observation- and action-spaces as well as different

tasks and objectives). In [9], we introduced a novel hierarchical approach to tackle the high-

level decision making and low-level collaborative control problems for heterogeneous teams

of autonomous robots consisting of perception agents and action agents. In our centralized

high-level decision-making module, we proposed MA-SARTSA-based learning under a

MA-POSMDP model to enable perception agents to explore an unknown environment (i.e.,

discover dynamic targets) and exploit known targets by extracting their state information.

We also introduced a measurement-uncertainty based tracking error and derived a set of

analytical upper-bound service times to ensure a probabilistically guaranteed service for ac-

tion agents in various scenarios. Additionally, we introduced a coordinated routing problem

with an attribute-based robot-interaction scheme through which the perception-action agents

cooperation is individualized to account for robots heterogeneity and improve the composite

team’s resiliency and performance.

In chapter 6, we moved beyond model-based approaches and incorporated data-driven

methods, such as MARL to address the challenges in model-based methods such as model

inaccuracies and failure. In [13, 10], motivated by the diverse communication patterns

across collaborating human teams, we presented a communicative, cooperative MARL

framework for learning heterogeneous cooperation policies among agents of a composite

team [54, 121]. We proposed Heterogeneous Policy Network (HetNet), a heterogeneous

graph-attention based architecture, and introduced the Multi-Agent Heterogeneous Actor-
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Critic (MAHAC) learning paradigm for training HetNet to learn class-wise cooperation

policies. We pushed the boundaries beyond performance considerations as in prior work by

equipping HetNet with a binarized encoder-decoder communication channel to facilitate

learning a new and highly efficient encoded language for heterogeneous communication. We

empirically showed HetNet’s superior performance against several baselines in learning both

homogeneous and heterogeneous cooperative policies. We provided empirical evidence that

show: (1) our binarized model achieves more than 200× reduction in communication over-

head (i.e., message bits) per round of communication while also outperforming baselines in

performance, (2) HetNet is robust to varying bandwidth limitations and team compositions.

In addition to communication, individuals in high-performing human teams also benefit

from the theory of mind and making strategic decisions by recursively reasoning about

the actions (strategies) of other human members [198]. Such hierarchical rationalization

alongside with communication facilitate meaningful and strategic cooperation in human

teams.

As such, in chapter 7, we proposed a novel information-theoretic, fully-decentralized

cooperative MARL framework, called Informational Policy Gradient (InfoPG) [12], where

agents iteratively rationalize their action-decisions based on their teammates’ actions. We

studied cooperative MARL under the assumption of bounded rational agents and leveraged

action-conditional policies into policy gradient objective to accommodate our assumption.

We leveraged iterated k-level reasoning from cognitive hierarchy theory and presented a

collaborative, fully-decentralized MARL framework which explicitly maximizes MI among

cooperating agents by equipping each agent with an action-conditional policy and facilitating

iterated inter-agent communication for hierarchical rationalizability of action-decisions. We

analytically showed that the design of our MI-based PG method, increases an MI lower-

bound, which coincides with improved cooperativity among agents. We empirically showed

InfoPG’s superior performance against various baselines in learning cooperative policies.

Finally, we demonstrated that InfoPG’s regulatory effect on MI makes it Byzantine-resilient
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and capable of solving BGPs in fully-decentralized settings.

Finally, in chapter 8, we presented a MA-LfD architecture to learn heterogeneous

teaming strategies directly from human experts with domain knowledge. MARL suffers

from several problems, including designing an expressive reward function [286] and are

typically hard to train with increased domain complexity [285]. As such, in the previous

chapter, we proposed the MixTURE model to learn multi-agent collaborative policies for a

robot team, directly from human expert demonstrations. Using our method, a human expert

can only teach the robot team how to accomplish a task collaboratively via demonstrations

and the team will automatically reason for and learn a communication strategy suitable for

the underlying demonstrations. The learned communication protocol will then help the

robot team to deal with the partial observability, reasoning about action-decisions to best

respond to teammates’ policies, and alleviate the effects of environment non-stationarity.

We provided several empirical and experimental results, confirming MixTURE’s strong

ability to learn from expert heuristics and real human generated data and outperform all

baselines in several complex domains with heterogeneous robots and tasks.
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APPENDIX A

TIME INDEPENDENCY OF THE EKF’S MEASUREMENT RESIDUAL

Our analytical URR bound in Equation 5.6 depends on the state-estimation measurement

residual computed at different time-steps. To maintain control over the measurement

uncertainty, we posit that the UAV observers would want the measurement uncertainty

residual with respect to a target on the ground not to increase from t = t0 to t = t0 + kTUB

for any positive integer constant k if the UAV observes the target from the same relative

position. Therefore, we examine the time-dependency of the propagated error through our

EKF formulation. To this end, we follow the mathematical proof and discussions provided

in [9] and [5, 8]. We state that the measurement uncertainty about the states of a dynamic

point qt , observed by a flying UAV is independent of time and is only a function of distance

between the observer and the point. In the following, we mathematically proof this point.

First, we present how the uncertainty residual is quantified by an EKF. The total uncer-

tainty residual propagated by EKF is composed of a model and an observation measurement

uncertainties, both of which follow the general nonlinear uncertainty propagation law, shown

in Equation A.1-Equation A.2, where Σt|t−1 is the predicted covariance estimate, Λt|t is

the innovation (or residual) covariance, Ft and Ht are the process and observation Jacobian

matrices, and Qt and Γt are the process and observation noise covariances, respectively.

Σt|t−1 = FtΣt−1|t−1FT
t +Qt (A.1)

Λt|t = HtΣt|t−1HT
t +Γt (A.2)

Considering Equation A.1-Equation A.2, the gradients in the process, Ft , and observation,

Ht , Jacobian matrices are responsible for alterations in the uncertainty values. To compute

these gradients, we calculate the derivatives of fire’s propagation model, Mt , and UAV’s ob-
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servation model, Ot , with respect to the state variables. As discussed in subsubsection 5.1.4

and considering the introduced state vectors, we first derive the process and observation

Jacobian matrices (Ft and Ht) as follows in Equation A.3-Equation A.4, respectively. In

Equation A.3-Equation A.4, t ′ = t−1.

∂Mt

∂Si

∣∣∣∣
Θ̂t|t′

=

qx
t ′ qy

t ′ px
t ′ py

t ′ pz
t ′ Rt ′ Ut ′ θt ′



qx
t 1 0 0 0 0 ∂qx

t
∂Rt′

∂qx
t

∂Ut′
∂qx

t
∂θt′

qy
t 0 1 0 0 0 ∂qy

t
∂Rt′

∂qy
t

∂Ut′
∂qy

t
∂θt′

px
t 0 0 0 0 0 0 0 0

py
t 0 0 0 0 0 0 0 0

pz
t 0 0 0 0 0 0 0 0

Rt 0 0 0 0 0 1 0 0

Ut 0 0 0 0 0 0 1 0

θt 0 0 0 0 0 0 0 1

(A.3)

∂Ot

∂Φi

∣∣∣∣
Φ̂t

=

qx
t qy

t px
t py

t pz
t Rt Ut θt



ϕx
t

∂ϕx
t

∂qx
t

∂ϕx
t

∂qy
t

∂ϕx
t

∂ px
t

∂ϕx
t

∂ py
t

∂ϕx
t

∂ pz
t

0 0 0

ϕ
y
t

∂ϕ
y
t

∂qx
t

∂ϕ
y
t

∂qy
t

∂ϕ
y
t

∂ px
t

∂ϕ
y
t

∂ py
t

∂ϕ
y
t

∂ py
t

0 0 0

R̂t 0 0 0 0 0 1 0 0

Ût 0 0 0 0 0 0 1 0

θ̂t 0 0 0 0 0 0 0 1

(A.4)

In Equation A.3-Equation A.4, we define the process state vector as Θ⃗t =
[
qx

t ,q
y
t , px

t , py
t , pz

t ,Rt ,Ut ,θt
]T

and Φ⃗t =
[
ϕx

t ,ϕ
y
t , R̂t ,Ût , θ̂t

]T
as the mapping vector. As such, we calculate the partial deriva-

tives in Equation A.3 by using Equation 3.1-Equation 3.2 and applying the chain-rule to

compute the derivatives of qx
t and qy

t with respect to parameters Rt−1, Ut−1, and θt−1. The
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partial derivatives are then derived as in Equation A.5-Equation A.7, where D(θ) is sinθ

and cosθ for X and Y axis, respectively.

∂qt

∂θt−1
= C(Rt ,Ut)

∂D(θ)

∂θ
δ t (A.5)

∂qt

∂Rt−1
=

(
1− LB(Ut)

LB(Ut)+
√

GB(Ut)

)
D(θ)δ t (A.6)

∂qt

∂Ut−1
=

Rt ′

(
LB(Ut ′)

∂GB(Ut′)
∂Ut′

−GB(Ut ′)
∂LB(Ut′)

∂Ut′

)
(

LB(Ut ′)+
√

GB(Ut ′)
)2 D(θ)δ t (A.7)

To compute the partial derivatives in the observation Jacobian matrix in Equation A.4, we

first need to derive the relation between the angle parameters, ϕx
t and ϕ

y
t , and the UAV pose.

The angle parameters contain information regarding both firefront location [qx
t ,q

y
t ] and UAV

coordinates [px
t , py

t , pz
t ]. According to Figure 4.3, by projecting the looking vector of UAV to

planar coordinates, the angle parameters are calculated as shown in EquationsEquation A.8-

Equation A.9 for X and Y axes respectively, where qt = [qx
t ,q

y
t ] and pt = [px

t , py
t ].

ϕ
x
t = tan−1

(
pz

t

∥qt− pt∥

)
(A.8)

ϕ
y
t = tan−1

(
∥qt− pt∥

pz
t

)
(A.9)

The partial derivatives in the observation Jacobian matrix Ht for X-axis, presented in

Equation A.4, are derived as in Equation A.10-Equation A.12 and for Y-axis derivatives, we
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can derive as in Equation A.13-Equation A.15.

∇qt ϕ
x
t =

1

1+
(

pz
t

∥qt−pt∥

)2

(
−pz

t (qt− pt)

∥qt− pt∥3
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=

[
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t
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,
∂ϕx

t

∂qy
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]
(A.10)

∇pt ϕ
x
t =

1

1+
(

pz
t

∥qt−pt∥

)2

(
pz

t (qt− pt)

∥qt− pt∥3

)
=

[
∂ϕx

t
∂ px

t
,
∂ϕx

t

∂ py
t

]
(A.11)
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)2
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−∥qt− pt∥

(pz
t )

2
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(A.15)

Now, considering EKF’s covariance propagation Equations in Equation A.1-Equation A.2

as well as the gradients in process Jacobian matrix Ft as calculated in Equation A.5-

Equation A.7, we can see that the gradients in process Jacobian matrix are only functions of

fire propagation model parameters (e.g., the FARSITE model in this case) such as fuel coeffi-

cient, Rt and wind velocity and direction, Ut and θt . Consequently, while these parameters do

not vary significantly with time, the uncertainty drop due to process model is time-invariant.

We note that FARSITE [122] assumes locality in time (i.e., within seconds or few minutes),

making the assumption of time-invariant fire parameters fairly acceptable [149]. Moreover,

the gradients in the observation Jacobian matrix, Equation A.10-Equation A.15, are only

functions of the Euclidean distance between the UAV pose and firespot coordinates. We

also know that, since at the time of visiting a firespot the planar displacement between UAV

and fire locations are approximately zero and the only distance between the two equals
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to the UAV altitude. Accordingly, both Ft and Ht are locally time-invariant and the total

measurement uncertainty residual variations between two different time-steps (e.g., t = t0

and t = t0 + kTUB) is not a function of time and is only a function of the UAV observer’s

altitude.
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APPENDIX B

CALCULATING COORDINATES OF REACHABLE POLYGON’S VERTICES IN

SCANNING FRAMEWORK

Figure B.1 is presented to elaborate on the calculation of coordinates enclosing the reachable

areas by the manipulator agent. To calculate the X-Y coordinates of the four vertices,

shown in Figure B.1, we first need to form the reachable polygon. As such, we draw two

circles centered at the agent’s current position (green arches in Figure B.1) with radius

Dmin = vM
minδ and Dmax = vM

maxδ t. Dmin and Dmax are the agent’s lower and upper-bound

planar displacement for one unit of time, δ t, if the agent is moving with its minimum or

maximum velocity. We call these two circles, the planar displacement circles. Next, we need

to account for the action agent’s angular velocity, ωmax (e.g., turning bank). Accordingly, we

draw two more circles (blue dashed-circles in Figure B.1) from the agent’s current location

in clockwise and counter-clockwise directions. We refer to these two circles as angular

motion circles. The area enclosed by the intersections of these four circles is the reachable

area by the action agent, M, with velocity range of
[
vM

min,v
M
max

]
and maximum turning bank

of ωmax.

Accordingly, the desired coordinates of the four vertices of the reachable polygon can

be obtained by projecting the agent’s current XY coordinates according to the joint angular-

planar rotation mappings, as described in subsubsection 5.2.4. In Equation 5.39, (−1)i is to

account for the clockwise and counter-clockwise directions of the angular velocity, ωmax,

and Rϕ
z (ϕ) is the rotation matrix around the z-axis as in Equation B.1.

Rϕ
z (ϕ) =

 cos(ϕ) sin(ϕ)

−sin(ϕ) cos(ϕ)

 (B.1)

To calculate the angle, ϕ , according to Figure B.1, we consider the velocity-vector
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Figure B.1: Vertex coordinates of the reachable polygon, introduced in Figure 5.13, are
calculated to generate fixed-wing-friendly paths.

tangent to the angular motion circle. The planar position rotation angle ∆θ can be calculated

as ∆θ = ωmaxδ t, and therefore, the angle between the tangent velocity vector and planar

displacement line, ϕ , can be calculated as ϕ = ∆θ

2 = ωmaxδ t
2 . The proposed scanning

framework is of particular interest for action robots that have restricted motions (i.e.,

fixed-wing UAVs with non-zero minimum velocity, vmin ̸= 0, and ω ∈ [−ωmax,ωmax]).

In such cases, our coordinated scanning framework leads to action agents being able to

directly traverse between any two points inside the reachable polygons with near-linear

approximation. In the case of omni-directional robots (e.g., multi-rotor UAVs), the proposed

scanning approach can be ignored.
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APPENDIX C

SUPPLEMENTARY INFORMATION (chapter 6)

C.1 Evaluation Environment: Additional Details and Parameters

Here we provide additional details regarding the employed evaluation environments for train-

ing and testing InfoPG and cover the associated environment parameters related to our ex-

periments. For reproducibility, we publicly provide our code at github.com/HetNet1.

C.1.1 Predator-Prey (PP) [251]

The objective within this homogeneous environment is for N predator agents with limited

vision to find a stationary prey and move to its location. The agents in this domain are

homogeneous in their state, observation, and action spaces and thus, all agents are of

the same class. All agents are able to sense/observe the environment and each agent’s

observation is a concatenated array of the state vectors of all grids within the agent’s Field

of View (FOV). The predator agents’ action-space is of dimension five, including cardinal

movements and a null action, and is the same for all agents. Each predator agent will receive

a small penalty per timestep until it has discovered the prey. A higher-performing algorithm

in this domain is defined as one that minimizes the average number of steps taken by agents

to complete an episode.

Within our evaluation, we evaluate in a grid size of 5x5 with 3 predators. We set the

maximum steps for an episode to be 80. For the reward, each agent receives -0.05 per time

step before they find the prey. An episode is considered unsuccessful if the prey is not

discovered within the maximum steps.

1Available online at: https://github.com/CORE-Robotics-Lab/HetNet
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C.1.2 Predator-Capture-Prey (PCP)

In our second domain, we have two classes of agents: predator agents and capture agents.

The first class of agent, called the predator agents, have the goal of discovering the prey

and have an action-space of dimension five, including cardinal movements and a null (stay)

action. Predator agents have an observation space similar to the agents in PP domain. The

second class of agents, called the capture agents, have the objective of locating the prey

and capturing it. Capture agents differ from the predator agents in both their observation

and their action spaces. Capture agents do not receive any observation inputs from the

environment (i.e., no scanning sensors) and have an additional action of capture-prey in their

action-space. This additional action must be used at a prey’s location to capture the prey.

Note that this domain is an explicit example of the perception-action composite teams. An

episode is deemed successful once all agents have completed their class-specific objectives.

Each predator agent is penalized with -0.05 reward every timestep until it has discovered

the prey. Each capture agent is also penalized with -0.05 every timestep until it has captured

(i.e., find the prey and then capture it) the prey. Note the difference in reward scheme, a

capture agent may have discovered the prey but will receive a negative reward until the

capture-action is utilized.

We utilize PCP as a testbed for several test heterogeneous interactions. In our head-to-

head evaluation against baselines, we utilize a problem with two predator agents and one

capture agent within a 5x5 grid. We set the maximum steps for an episode to be 80.

C.1.3 FireCommander (FC) [54]

We also evaluate the performance both our HetNet variants, HetNet-Binary and HetNet-

Real, in a new cooperative multi-agent environment with heterogeneous agents, called

FireCommander (FC) [54, 9]. FireCommander can be categorized as a strategic game, in

which a composite team of robots (i.e., UAVs) must collaboratively find hidden areas of

propagating wildfire and extinguish the fire in such areas as fast as possible. The robot
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team in FC is composed of two classes of agents: (1) perception agents (class P), which can

only sense the environment and detect areas of fire and, (2) action agents (class A), which

can only manipulate the environment by extinguishing a firespot which has already been

detected by class P agents. Neither class P, nor class A agents are capable of accomplishing

the task on their own, and therefore must communicate and collaborate.

Under the notations in our problem formulation in section 6.1, we have C = {P,A}

where, A (P) = {1,2, · · · ,4} representing the four primitive motions and A (A) = {1, · · · ,5},

representing the four primitive motions and an extra action which corresponds to extinguish-

ing fire by dousing water. Agents of class P are equipped with fire detection sensors and can

observe the environment, receiving an input vector of length 29 for each grid within their

FOV. Agents of class A, do not receive any observation from the environment. The reward

scheme in this domain includes a small temporal penalty of -0.1 per timestep for all agents,

a false water-drop penalty of -0.1 for action agents, a -0.1 penalty per new firespot for all

agents, and a positive reward of +10 for all agents per each extinguished firespot.

In our head-to-head evaluation against baselines, we utilize a problem with two percep-

tion agents and one action agent within a 5x5 grid and one initial firespot that propagates to

a new location at each timestep, leaving the previous grid on fire. We set the maximum steps

for an episode to be 300. An episode of the game is marked as successful only if all the

active firespots within the map are discovered and extinguished. Please refer to the provided

FireCommander supplementary document for further details.

C.2 Supplementary Results and Ablation Studies

In this section, we provide our supplementary results. We first provide the implementation

and model details for our experiments and then, present the results of an ablation study on

the binarization process for digitizing the communication messages. For reproducibility, we

publicly provide our code at github.com/HetNet2.

2Available online at: https://github.com/CORE-Robotics-Lab/HetNet
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Figure C.1: Performance comparison for two different binarization methods: (1) STE and
(2) Gumbel-Softmax, for 8-bits and 16-bits message dimensions.

C.2.1 Implementation and Model Details

For our empirical results, our HetNet implementation consists of three multi-head HetGAT

layers stacked on top of the feature preprocessing modules. The first two multi-head layers

use L = 4 attention heads computing 16 features each (for a total of 64 features merged by

concatenation). The final layer also uses K = 4 attention heads, but the output dimension is

set to the size of an agent’s action-space and is merged by averaging. We used the Adam

optimizer [314] through training with a learning rate of 10−3 for all our experiments and

results presented here. We leverage the per-class critic architecture (chosen as a result of

a sensitivity analyses detailed in 6.3.5) for all our experiments in Section 6. Algorithm 1

provides a pseudocode to train HetNet with the per-class critic architecture. The policy

and critic network parameters are initialized per class (line 2) and the communication steps

through HetGAT layers are performed at each step of an episode (line 8). The rest of training

procedure implements an on-policy advantage AC procedure except that the gradient updates

are class-specific (lines 15-20). We implement HetNet using PyTorch [315] and Deep Graph

Library [316]. All of our experiments are performed across three random seeds (0, 1 and 2)

and the presented results are averaged across all seeds.
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C.2.2 Message Binarization Method: An Ablation Study

Learning a communication model that sends binary messages requires a differentiable

approach to convert data from continuous-scale to a discrete (binarized) representation.

We experiment with two different techniques that enable binarization: Straight-Through

Estimators (STE) with a fixed threshold function [317] and Gumbel-Softmax [264]. The

STE binarizes the activations of a layer during forward-pass and directly passes gradients

similar to the identity function during backpropagation [318, 319, 319, 320, 321, 322]. The

Gumbel-Softmax utilizes a differentiable sampling approach to produce binarized messages

from a continuous distribution via categorical reparameterization. By analyzing the results

of HetNet with each approach across multiple message dimension sizes (8 and 16 bit), we

conclude that Gumbel-Softmax allows for better performance.
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APPENDIX D

SUPPLEMENTARY INFORMATION (chapter 7)

D.1 InfoPG Pseudocode

Here, we provide a pseudocode to train our MI maximizing PG algorithm, InfoPG, in

algorithm 6.

Consider a MAF-Dec-POMDP introduced in section 7.1, with N agents where each agent

is equipped with an encoding and a communicative policy (πenc and πcom, respectively), such

that πtot = [πenc,πcom] (lines 1-2). At the beginning of a new rollout, and for each timestep,

t, within the allowed maximum number of steps, max_cycles, each agent i receives a state

observation oi
t from the environment and produces an initial "guess" action, ai,(0)

t using its

encoding policy (lines 5-8). Each agent i has a neighborhood of agents it can communicate

with, shown with j ∈ ∆i
t where |∆i

t | is the number of agent i’s physical neighbors (i.e.,

within close proximity). Accordingly, agents obtain the list of their neighbors by using the

adjacency graph, Gt (line 11).

Next, depending on the specified level of iterated rationalizability in the decision hi-

erarchy, K, agents communicate their action guesses as higher-dimensional latent vector

distributions with their neighbors K times and update their action guess iteratively using

their communicative policy (line 9-14). The level-k action is then executed by all agents

and a local reward is given to each agent separately (line 15). This process continues

until either the environment is solved successfully, or the allowed maximum number of

steps, max_cycles, has been attained. For each timestep, t, of the policy rollout and for

each agent i, first the advantage value, Ai
t , is computed using the critic network (line 17)

and then, the gradient of the log probability is computed and scaled by the instantaneous

advantage (line 18). Note that the ReLU function in line 18 is proposed to enforce the
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Algorithm 6: Training the Mutual Information Maximizing Policy Gradient (In-
foPG).

1: Input: Number of agents, N , max_cycles and agents’ level of iterated
rationalizability, K

2: Initialize: For all agents {π1
tot ,π

2
tot , · · · ,πN

tot } and {V 1,V 2, · · · ,V N }
3: while not converged do
4: for t = 1 to max_cycles do
5: Reset environment and receive initial observation set: {o1

t ,o
2
t , ...,o

N
t }

6: for i = 1 to N do
7: Sample initial "guess" action: ai,(0)

t ∼ π i
enc(∗ | oi

t), where π i
enc ∈ π i

tot
8: end for
9: for k = 1 to K do

10: for i = 1 to N do
11: Identify neighbors by obtaining neighbor list, j ∈ ∆i

t , using the adjacency
graph, Gt

12: Sample MAP: ai,(k)
t ∼ π i

com(∗ | a
i,(k−1)
t ,{a j,(k−1)

t | j ∈ ∆i
t}), where π i

com ∈ π i
tot

13: end for
14: end for
15: Step through environment using {a1,(k)

t ,a2,(k)
t , · · · ,aN ,(k)

t }, and receive next states
and rewards: {o1

t+1,o
2
t+1, ...,o

N
t+1}, {r1

t ,r
2
t , ...,r

N
t }

16: for i = 1 to N do
17: Ai

t = ri
t +V i(oi

t+1)−V i(oi
t)

18: ∇π i
tot = ReLU(Ai

t)∇ log(π i
tot(a

i,(k)
t | · · ·)) % For Adv. InfoPG remove the

ReLU
19: ∇V i = (Ai

t)
2

20: Update: π i
tot = π i

tot +η∇π i
tot

21: Update: V i =V i +η∇V i

22: end for
23: {o1

t ,o
2
t , ...,o

N
t }= {o1

t+1,o
2
t+1, ...,o

N
t+1}

24: end for
25: end while=0

non-negative reward feedback condition in InfoPG, Equation 7.3. However, other mech-

anisms could achieve the same effect (e.g., shaping the reward function to only include

positive values). Line 19 is showing the gradient of our value estimate. The loss for our

value estimate V (st) is the cumulative discounted rewards subtracted by the true value of

st , which is the advantage (the TD error). Therefore, the gradient in line 19 is the sum of

squared individual advantages. Next, the encoding and communicative policies are updated

245



(line 20) and eventually, the critic network is updated (line 21). This process repeats until

convergence of the cumulative discounted rewards across all agents. We provide our code

at https://github.com/CORE-Robotics-Lab/InfoPG

D.2 InfoPG for Continuous Action-Spaces

To deploy InfoPG in continuous action-spaces, we follow common practice for continuous

action-space actor-critic methods. Continuous policies are presented as probability distribu-

tions with floating values in a certain range (e.g., (−1,1)). In this case, in order to facilitate

exploration we will sample agents’ actions from a normal probability distribution. As such,

in continuous action-spaces, the policy network (Actor) will normally have two output heads,

instead of one. The two outputs of the policy network are µ and σ , the mean and standard

deviation (STD) of the probability distribution, respectively. The sampled actions will be

centered around the µ and the σ determines on average, how far from the center the sample

values will be. As the network gets more certain, the σ gets smaller, meaning that we tend

to exploit good actions rather than exploring.

In discrete action-spaces the loss-function was based on the log-probability (Equa-

tion 7.3). In continuous action-spaces, the log-probability of a normal distribution is used,

as shown in Equation D.1.

logπθ
(a|s) =−(x−µ)2

2σ2 − log
√

2πσ2 (D.1)

In Equation D.1, the first and second term are the negative log-probability and the entropy

bonus, respectively. By substituting the log-probability of the normal distribution in Equa-

tion D.1 back into the original InfoPG objective in Equation 7.2, we can directly deploy

the InfoPG objectives in continuous domains, such as the introduced Multiwalker. Note

that, in practice and for simplicity, the policy network can only output the mean value, µ ,

while the STD value is fixed to a reasonable constant. Finally, to compute the MAP action
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for a continuous action-space (Line 12 in algorithm 6) we note that, theoretically, the MAP

action for a continuous space is just the mean action without any standard deviation from

the normal distribution.

D.3 InfoPG Objective Function Derivation (Equation 7.2)

The InfoPG definition as presented in Equation 7.2 consists of a summation across all

agents within the communication range. This equation is a simplification from the original

form which uses the assumption of independence between each agents’ (k−1)-level action

probability distributions. To arrive at the InfoPG objective function in Equation 7.2, we start

from Equation D.2 and convert the log probability of the conditional distributions across all

neighbors to a summation of log probability across all neighbors. The process can be shown

as in Equation D.2-Equation D.4.

∇
InfoPG
θ J(θ) = E

π i
tot

Gi
t(o

i
t ,a

i
t)∇θ log(π i

tot(a
i,(k)
t |∀0→k∀ j∈∆i

t
[ai,(k−1)

t ,a j,(k−1)
t ],oi

t))

 (D.2)

= E
π i

tot

Gi
t(o

i
t ,a

i
t)∇θ log(∏

0→k
∏
j∈∆i

t

π
i
tot(a

i,(k)
t |ai,(k−1)

t ,a j,(k−1)
t ,oi

t))

 (D.3)

= E
π i

tot

Gi
t(o

i
t ,a

i
t) ∑

j∈∆i
t

∇θ log(π i
tot(a

i,(k)
t |ai,(k−1)

t ,a j,(k−1)
t , . . . ,ai,(0)

t ,a j,(0)
t ,oi

t))


(D.4)

D.4 Convergence Proof Sketch for Equation 7.2

Following the approach in prior work [323, 63], we present a convergence proof sketch for

InfoPG through the Two-Time-Scale (TTS) stochastic approximation method, proposed

by [324]. We note that the convergence proof for InfoPG closely follows the general

Policy Gradients (PG) convergence approach presented in [323] and [63], and we therefore

only focus on presenting the core idea underlying convergence of InfoPG with k-level
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rationalizability. Herein, we state that since InfoPG and Consensus Update (CU) share the

graph-based local communication and the fully-decentralized actor-critic training paradigm,

all assumptions made by [63] also apply to our work and therefore, we directly adopt the set

of assumptions (i.e., specifically, assumptions 4.1 – 4.4) presented in [63] without restating

them.

For an actor-critic algorithm, e.g. InfoPG, showing convergence of both the actor and

critic simultaneously is challenging because the noisy performance of the actor can affect

the gradient on the critic and vice versa. As such, we leverage the TTS approach, which

states that in PG methods, the actor learns at a slower rate than the critic [324]. Therefore,

according to TTS, we can show the convergence of InfoPG in two steps: (1) first, we fix the

policy and analyze the convergence of the critic and, (2) with a converged critic, we analyze

the convergence of the actor.

Step 1: Critic Convergence – We use bar notation in the following to denote vec-

torized quantities across agents in the environment such that, π̄θ = [π1
θ
, · · · ,πN

θ
], where

N is the number of agents. Moreover, a level-k policy in InfoPG includes two parts: a

state-conditional policy at level k = 0 and an action-conditional policy for higher levels of k.

InfoPG first applies the level zero state-conditional policy to get the initial “guess" action

and then recursively applies the action-conditional policy k times to recursively improve the

level-k action-decision. We can show this process as π i
θ
= π

i,(k≥0)
θ

(
π

i,(k=0)
θ

(si
t)
)

. PG seeks

to maximize the objective function J̄(θ), shown in Equation D.5, where d̄π(s̄t) denotes the

stationary distribution of the MDP and R̄ denotes the joint reward function, including local

rewards for each agent. Additionally, we denote the transition probability of the MDP as

p̄(s̄t+1, r̄t+1|s̄t , āt). Since the formulation of PG objective in Equation D.5 is biased, it is

commonly replaced with the unbiased estimate of the rewards, or Q̄(s̄t , āt)− V̄ (s̄t , āt), as
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shown in Equation D.6

J̄(θ) = ∑
s̄t∈S̄

d̄π(s) ∑
āt∈ ¯A

π̄θ (āt |s̄t)∗ R̄(s̄t , āt) (D.5)

= ∑
s̄t∈S̄

d̄π(s) ∑
āt∈ ¯A

π̄θ (āt |s̄t)∗ (Q̄(s̄t , āt)−V̄ (s̄t)) (D.6)

The unbiased estimator in Equation D.6 can be replaced with the state-value function by

using the recursive definition of the action-value function [126]. This substitution results

in a form known as the TD-error [64], where the bracketed term in Equation D.8 is the

TD-error.

Q̄(s̄t , āt) = E
s̄t∼d̄π āt∼π̄θ

[
R̄(s̄t , āt)+ γV̄ (s̄t+1)

]
(D.7)

J̄(θ) = ∑
s̄t∈S̄

d̄π(s) ∑
āt∈ ¯A

π̄θ (āt |s̄t)∗

R̄(s̄t , āt)+ γ ∑
s̄t+1∈S̄

p̄(s̄t+1|s̄t , āt)V̄ (s̄t+1)−V̄ (s̄t)


(D.8)

Next, following the prior work [323, 63], we assume linear function approximation

since the TD-learning-based policy evaluation may fail to converge with nonlinear function

approximation [325, 63]. We note that the value function is a mapping of states (of

some dimensionality) to R. Therefore, we define V̄ (s̄t) = ω̄T φ(s̄t), where ω̄ is a one

dimensional weight vector and φ(s̄t) is a feature map that transforms the state vector to

RK : φ(s̄t) = [φ̄1(s̄t), · · · , φ̄K(s̄t)]. Now, following [323], we define the Ordinary Differential

Equation (ODE) associated with the recursive update of ω̄ via Equation D.9, which then
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can be simplified to Equation D.10 using a matrix notation described in the following.

˙̄ω = ∑
s̄t∈S̄

d̄π(s) ∑
āt∈ ¯A

π̄θ (āt |s̄t)∗

R̄(s̄t , āt)+ γ ∑
s̄t+1∈S̄

p̄(s̄t+1|s̄t , āt)ω̄
T

φ(s̄t +1)− ω̄
T

φ(s̄t)


(D.9)

˙̄ω = Φ
T D[T (Φω̄)−Φ(ω̄)] (D.10)

Finding the asymptotic equilibrium of the critic, ω is equivalent to solving the above

equation, when ˙̄ω = 0, which is simplified when switching to matrix vector notation de-

scribed below:

1. D ∈ R|S̄|×|S̄| is a diagonal matrix with d̄π(s̄t) for all s̄t ∈ S̄ as its elements.

2. P ∈ R|S̄|×|S̄||Ā| is the probability matrix where p̄(s̄t+1|s̄t , āt)π̄θ (s̄t |āt) represents an

individual element.

3. Φ ∈ R|S̄|×K̄ is the feature map whose rows are φ(s̄t) for all s̄t ∈ S̄.

4. R ∈ R|S̄|×|Ā| is a matrix where R̄(s̄t , āt) represents an individual element.

5. Ω ∈ R|K̄|×|K̄| is a diagonal matrix with discount factor γ as its elements.

6. T : RN → RN is an operator which is a mapping of the form: T (ω̄) = R+PΩω̄ .

Next, following [63], we make two assumptions that apply to InfoPG and are essential

to the rest of the convergence proof presented in the following.

Assumption 1 – The update of the policy parameter θ includes a local projection

operator, Γ : RN → χ ⊂ RN , that projects any θ onto the compact set χ . Also, we assume

that χ is large enough to include at least one local minimum of J̄(θ).

Assumption 2 – The instantaneous reward ri
t is uniformly bounded for any i ∈N and

t ≥ 0. We note that the reward boundedness assumption is rather mild and is in accordance

with prior work [63].

250



In analogous matrix-vector notation, and under the aforementioned assumptions made

above and by [63], for a static policy in the TTS convergence setting, the limt→∞ ω̄ = ω̄⋆

almost surely, where ω̄⋆ satisfies the equilibrium constraint ˙̄ω = 0 shown below. We note

the solution seen below satisfies a similar convergence equation as seen in [323].

˙̄ω = Φ
T D[T (Φω̄

⋆)−Φ(ω̄⋆)] = 0 (D.11)

= Φ
T DT (Φω̄

⋆) = Φ
T DΦ(ω̄⋆) (D.12)

The above ODE explains the rate of change of the critic, and when the derivative reaches

zero, the critic has reached a stable equilibrium, and therefore, has converged.

Step 2: Actor Convergence – According to the TTS [324], for the actor step, we assume

a fixed, converged critic and show a stabilized equilibrium of the policy. We assume there

exists an operator, Γ, which projects any vector x ∈RN → χ ⊂RN , where χ represents

a compact set bounded by a simplex in RN . The use of this projection is critical to the

convergence of stochastic TTS algorithms as stated by [323, 63], since policies that exist

outside of the set can cause unstable equilibrium. Empirically, we apply the compactness of

the set of policy gradients by defining a maximum gradient norm, as stated in section D.8.

In Equation D.13, we define the Γ operator for the vector field x(.) ∈ θ , which is assumed

to be a continuous function.

Γ̂(x(y)) = lim
0≤η→0

Γ(y+ηx(y))− y
η

(D.13)

If the above limit does not converge to a singular value, we state Γ̂(x(y)) results in a

set of convergent points. With this notation we state the ODE of the policy, after being

projected onto a compact set, and note that given the assumptions made above and by [63],

PG almost surely moves θ̄ to an asymptotically stable equilibrium that satisfies the below

Equation D.14. This proof analogy closely follows the single-agent convergence proofs

presented in [323] and [325]. Nevertheless, in our work, convergence to a stationary point
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for all agents is the goal. While the TTS approach assumes the critic to have converged, the

critic does not need to be a perfect estimator. With small approximation error, [323] proves

that the below equation still converges within the neighborhood of the optimal concatenated,

joint policies for all agents. The below ODE defines the derivative of the policy over time,

and as the derivative approaches zero, the actor reaches a stable equilibrium (or a set of

equilibrium points, since in a fully decentralized setting, the actor is a vector of joint policies

for all agent) and thus, convergence of the actor is achieved.

˙̄
θ = Es̄t∼d̄π ,āt∼π̄θ

[
∇ log(π̄θ )∗ (Q̄(s̄t , āt)−V̄ (s̄t))

]
= 0 (D.14)

D.5 Full Proof of Theorem Theorem 5

Here, we derive the full proof of the Bayesian expansion of the policy (Theorem Theorem 5).

Without loss of generality, we assume a scenario with two cooperating agents i and j both

with k levels of rationalization. An important notational difference that will be used here

is p(.). Policies are conventionally considered state-conditional distributions of actions,

where the action is the random variable. A specific action is usually either sampled from

the distribution or the MAP action is selected. Here, we denote the probability distribution

of a particular random variable X as p(X). Note that, evaluating p(X = x) returns the

specific probability that X = x (and not a distribution). We first define the joint density,

p(ai,(k)
t ,a j,(k)

t ) by marginalizing p(ai,(k)
t ,a j,(k)

t ,ai,(k−1)
t ,a j,(k−1)

t ):

p(ai,(k)
t ,a j,(k)

t ) = ∑
x∈A

∑
y∈A

p(ai,(k)
t ,a j,(k)

t ,ai,(k−1)
t = x,a j,(k−1)

t = y) (D.15)
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The interior marginal can be further broken down into each agents’ conditional k-level

conditional policy through the the Bayesian formulation of the k-level decision hierarchy:

p(ai,(k)
t ,a j,(k)

t ) = ∑
x∈A

∑
y∈A

p(ai,(k)
t |ai,(k−1)

t = x,a j,(k−1)
t = y)p(

a j,(k)
t |ai,(k−1)

t = x,a j,(k−1)
t = y)p(ai,(k−1)

t = x,a j,(k−1)
t = y) (D.16)

The joint density, p(ai,(k)
t ,a j,(k)

t ) can also be formulated using its conditional definition,

which we combine with the uniform prior assumption (p(a j,k
t ) = 1

A ):

p(ai,(k)
t ,a j,(k)

t ) = p(ai,(k)
t |a j,(k)

t )p(a j,(k)
t ) (D.17)

p(ai,(k)
t |a j,(k)

t ) = |A |p(ai,(k)
t ,a j,(k)

t ) (D.18)

From here, we can substitute the joint density marginal defined in Equation D.5 into the

conditional density defined in Equation D.17. By considering |A| and the joint density within

the marginal in Equation D.5 as weightage factors, we can draw the following proportionality

relation for all ai,(k−1)
t = x,a j,(k−1)

t = y ∈A 2:

p(ai,(k)
t |a j,(k)

t ) ∝ p(ai,(k)
t |ai,(k−1)

t ,a j,(k−1)
t )p(a j,(k)

t |ai,(k−1)
t ,a j,(k−1)

t ) (D.19)

In Eq. Equation D.19, the conditional densities, whom are conditioned on the k−1 actions

of i and j, are exactly the same as the k-level communicative policy definition. These

substitutions are implemented in Equation D.20.

π
i
com(a

i,(k)
t |a j,(k)

t ) ∝ π
i
com(a

i,(k)
t |ai,(k−1)

t ,a j,(k−1)
t )π

j
com(a

j,(k)
t |ai,(k−1)

t ,a j,(k−1)
t ) (D.20)

During InfoPG, we seek to maximize the total policy, π i
tot , which is achieved by performing

gradient ascent. The total policy is a direct concatenation of the communicative policy, π i
com

and the encoding policy, π i
enc, so if we maximize the total policy, then we also maximize the
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individual communicative and encoding policies. Therefore, since we individually maximize

both terms in the RHS of Equation D.20, we can assert that we are also proportionally

increasing π i
com(a

i,(k)
t |a j,(k)

t ), as seen in Equation D.21, which is the conclusion drawn at the

end of subsubsection 7.1.4.

∇π
i
com(a

i,(k)
t |ai,(k−1)

t ,a j,(k−1)
t )∇π

j
com(a

j,(k)
t |ai,(k−1)

t ,a j,(k−1)
t )→∝ ∇π

i
com(a

i,(k)
t |a j,(k)

t )

(D.21)

D.6 Discussion on the Uniformity of Priors Assumption

Similar assumption of uniform priors as ours in ?? have been used previously by [277] for

the calculation of MI upper-bound. In our work, we defined p(ai) as a marginalization of the

action-conditional policy, π i
com(a

i|a j), across any potential a j. The marginal’s conceptual

meaning here is similar to asking the question, "What should the probability of ai be, if we

did not know a j?" For a given action-conditional policy, we could expect ai to be uniformly

random because the action-conditional policy is expected to only change the probability

of a selected action based on the k-level reasoning with other agents. If there is no action

to reason upon, the agent has no information with which to base its k-th action upon. It is

important to note here that p(ai) is not a marginalization of both the state-conditional and

action-conditional policies. Since p(ai) is only a marginalization of the action-conditional

policy, we view the uniformly-random prior assumption as a reasonable design choice.

D.7 Supplementary Results

In this section we provide our supplementary results. We start by analysing and interpreting

agents’ communicative policy in our fraudulent agent experiment in order to understand the

effect of k-level rationalization for decision-making in this scenario. Next, we present the

agent-level performances for InfoPG and compare with the baselines in all three evaluation

environments. Next, we present an scalability analysis in the Pistonball environment to
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investigate robustness to larger number of agents. Eventually, we conclude this section by

presenting a list of takeaways.

D.7.1 Policy Interpretation for the Fraudulent Agent Experiment

In this section, we present an analysis and interpretation of agents’ communicative policy in

our fraudulent agent experiment in order to understand the effect of k-level rationalization for

decision-making in this scenario. We test the learnt policy at convergence using Adv. InfoPG

in the fraudulent agent experiment, presented in ??. The results are shown in Figure D.1

in which, we present the action distributions of agents before and after rationalizing their

decisions with their neighbors through k-level reasoning. For each action distribution graph,

the Y-axis is the probability of an action and the X-axis represents actions, where u=move

up, d=move down, and s=stay constant.

In Figure Figure D.1 we present sample illustrations of a test run in a BGP scenario

for t = 0,10,25,32,37, from start to the end of the episode. At t = 0 (Figure D.1a), we can

see that the episode starts with the ball on top of the right-most pistons (i.e. pistons 3 and

4). Note that pistons are indexed left to right. With k = 1 reasoning, we show piston 3’s

rationalization for its action decision in three phases: first, ap3,(k=0), is the naive k = 0 action

(blue); second, ap2,3,(k=1), is the k = 1 rationalization that incorporates piston 2’s random

action (orange), and, third, ap2,3,4,(k=1), is the k = 1 rationalization that incorporates both

piston 2’s random action and piston 4’s k = 0 action into piston 3’s k = 1 action decision

(pink). Using a similar notation convention, ap3,4,(k=1) is piston 4’s action rationalization

given piston 3’s k = 0 action rationalization. Now, notice that the spread of ap3,(k=0) at t = 0

is relatively uniform (blue), and given that piston 2 is randomly moving, ap2,3,(k=1) remains

unchanged (orange). This indicates piston 3 has learned to ignore piston 2, which is the

fraudulent agent. Additionally, notice that ap4,(k=0) at t = 0 is bimodal and has relatively

equal probabilities of moving either up or down; however, we can see for both pistons 3 and

4, after rationalizing their actions with each other at k = 1, both action distributions become
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(a) Action distributions for pistons at t = 0

(b) Action distributions for pistons at t = 10

(c) Action distributions for pistons at t = 25

(d) Action distributions for pistons at t = 32

(e) Action distributions for pistons at t = 37

Figure D.1: Action distributions of piston agents across 37 timesteps for the fraudulent agent
experiment introduced in section 7.1. Note that Piston 2 (not displayed) is the fraudulent
agent with untrainable random policy.
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unimodal and tend towards moving up, which is the desired action for moving the ball to

left.

This coordination demonstrates an interesting strategy; piston 3 and piston 4 have learned

that coordinating actions with the randomly moving piston 2 is not desirable and therefore,

they seek to move the ball as high as possible, and toss it over piston 2. Empirical proof

of this behavior can be seen by the continuation of the spread of distributions at t = 10. At

t = 25 a distinct change occurs; piston 3’s action distribution, after k = 1 rationalization

with piston 4, becomes uniform again, while Piston 4 is still unimodal and tending up. We

believe this behavior shows that piston 3 and 4 have realized the strategy to bypass piston

2 is to "launch" the ball over piston 2, which can be accomplished by piston 4 moving up,

while piston 3 remains stable, effectively creating a leftward force for the ball to move left.

At t = 32 we can see the "launching" is performed, and here the action distributions of both

piston 3 and 4 become relatively uniform again (Note that actions of piston 3 and 4 do not

matter at this point since they are not directly located under the ball and therefore, do not

receive a reward for their actions). From t = 32 to t = 37, the ball traverses over pistons 0

and 1; however, note that piston 0 and 1 will not need to move the ball too much, since the

ball already has leftward momentum. Accordingly, piston 0 and 1 only need to coordinate

to create a leftward ramp to facilitate ball’s movement. As such, both piston 0 and piston 1

follow relatively uniform distributions after k=0 and 1 rationalization. At t = 37, the ball is

over piston 0 and has reached the left wall, which denotes winning and end of the episode.

In summary, we show two key behaviors learnt by agents through our Adv. InfoPG in

the fraudulent agent experiment: 1) Piston 2 is untrustworthy and thus, coordinating with

this agent is not desired, which leads to unchanged action-distributions for Pistons 3 and 1

after iterated k-level reasoning with this fraudulent agent. 2) Pistons 3 and 4 learn to avoid

the fraudulent agent (piston 2) by "launching" the ball over it, giving the ball a leftward

momentum to reach the left wall.
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D.7.2 A Qualitative Analysis for Bounded Rationality

The postulate of k-level reasoning is that higher levels of k should allow for deeper decision

rationalization and therefore better strategies. In this section, we qualitatively investigate

different examples of intelligent behavior induced by varying bounds of rationality. To

address this, we specifically further investigate InfoPG’s results in the MultiWalker and

StarCraft II (SC2) domains due to their complex mechanics and multi-faceted objectives. In

the following, we first present our qualitative analysis for SC2 and Multiwalker, respectively.

SC2 – Our qualitative analysis in SC2 is a demonstration of how bounded rationality

and higher levels of iterated reasoning benefits performance. In SC2, agents are positively

rewarded for shooting and killing enemy agents, and are negatively penalized for getting

shot at. Therefore, a locally optimal strategy is to run away from the enemy team to avoid

any negative penalties, while a globally optimal strategy is to kill and eliminate all the enemy

agents to achieve high positive rewards.

Figure D.2 shows our qualitative results for analyzing the effects of assuming bounded-

rational agents and iterated reasoning in the SC2 domain. We compare the learned policies

by InfoPG at convergence in the SC2 domain with k = 0 and k = 1.

At k = 0 of the rationalization hierarchy, the fully naive and non-strategic level-0 agents

choose actions while completely disregarding other agents actions (i.e., have zero-order

beliefs). As such, for a level-0 policy, we expect to observe that agents simply run away from

the enemy to avoid getting shot at, since a single agent does not believe (zero-order belief) it

can overcome the enemy team. As seen in Fig. 5.1–5.3, the naive agents expectedly only

learn to run away to avoid the negative penalties of getting shot at. This fleeing behavior

allows agents to maintain a reward of zero, as shown in Figure 7.2, indicating successful

escape and convergence to the locally optimum solution.

At level k = 1, each agent is now more sophisticated and believes that the other agents

have a level-0 policy and takes actions according to that. In this case, we observe a vastly

different behavior. As shown in Fig. 5.4–5.6, agents here learn more strategic policies to
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Figure D.2: Comparing the learned policies by InfoPG at convergence in the SC2 domain
with k = 0 and k = 1. With k = 0 (Fig. 5.1–5.3), the naive agents disregard other agents
actions and simply learn to run away to avoid the negative penalties of getting shot at. This is
while the more sophisticated agents with k = 1 (Fig. 5.4–5.6), learn more strategic policies
to work together to eliminate the enemy team and achieve high positive rewards.

work together to eliminate the enemy team and achieve high positive rewards. The agents

begin a triangle-like formation towards the enemy (5.4). Enemy agents then begin to shoot

the closest opposing player at the front of the triangle formation. The other two agents in the

team use this opportunity and start firing at the enemy team while they shoot the front-most

agent. As such, the remaining two agents manage to kill and eliminate the enemy team.

Through reasoning their level-1 actions based on their teammates level-0 action, InfoPG

agents learn a sacrificial technique of exposing one agent as bait, which allows the agents to

converge to the globally optimum solution of killing the entire enemy team. This is also

reflected in Figure Figure 7.2, where the k = 1 InfoPG achieves the highest cumulative

rewards.

Multiwalker – Our qualitative analysis in Multiwalker is another demonstration of

how higher levels of iterated reasoning benefits performance. There are two objectives that

the walkers need to satisfy: (1) stabilization (both the package and the walkers) and (2)
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Figure D.3: Comparing the learned policies by InfoPG in the Multiwalker with k = 1, k = 2,
and k = 3, 5a-5c, respectively. With k = 1, agents only learn to perform a split to balance
the package on top and avoid falling. This is while with k = 3 agents learn to quickly walk
forward. The middle stage of rationalization, k = 2, achieves an in-between policy where
agents split to balance, but also wiggle forward slowly.

moving forward. Stabilization of the package and the walkers are the primary goals, since

dropping the package, or falling, results in failing the game with a penalty. Walking (i.e.,

moving forward to the right) is an additional goal, since every forward step yields a small

proportional reward. Ultimately, the walkers should aim to achieve both stabilization and

walking at the same time, which is the globally optimum solution.

Figure D.3 shows our qualitative results for analyzing the effects of assuming bounded-

rational agents and iterated reasoning in the Multiwalker domain. At level k = 1, each

walker believes that the other walker has only a level-0, non-rational policy. We observe

in Figure D.3-(a) that, with InfoPG and by k = 1, the walkers solve only the stabilization

problem by learning to do the ”splits“, which is a locally optimum solution. The walkers

create a wide base with their legs and simply hold the package statically with no forward

progress (evidenced by the starting red flag). This technique requires some degree of

coordination since the walkers have to do the splits synchronously at the beginning of the

experiment; however, this is not nearly a complex enough strategy to achieve any positive

rewards. Looking at the reward convergence in Figure 7.2, k = 1 achieves converges to

the locally optimum solution and achieves a reward of 0, since the walkers do not get any

positive reward for moving nor do they get any negative reward for dropping the package or

falling.
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At level k = 2, each walker now believes that the other walker has a level-1, bounded-

rational policy. Intuitively, assuming a more sophisticated policy for a teammate should

lead to a better overall strategy, since the best-response solution to such sophisticated policy

needs a certain level of sophistication [326, 269]. We observe in Figure D.3-(b) that, as

expected, the learned policies at level k = 2 of rationalization still includes performing the

”splits“ for balancing while agents also learned to wiggle forward slowly and receive some

positive reward.

As we increase the rationalization depth from k = 3, we see in Figure D.3-(c) that the

walkers not only stabilize the package, but also start moving forward (evidenced by the

starting red flag out of frame) with much more sophisticated strategies. The left-most walker

learns to generate forward momentum and walk more quickly than the front walker, which

learns to walk more slowly and maintain the stability of the package. Note that this illustrates

the idea of role allocation, which is a relatively complex strategy and indicative of higher

levels of intelligence achieved through assuming sophisticated, level-2 teammates. The

walkers learn to coordinate their movements, because if the left-most walker makes too jerky

of a forward movement, the right-most walker adjusts by staying more static to stabilize the

package. In Figure 7.2, the collective strategy at k = 3 can achieve rewards as high as +10,

which is the globally optimum solution.

D.7.3 Scalability Analysis: Pistonball

Here, we investigate InfoPG’s robustness to larger number of interacting agents in the

Pistonball environment. For this experiment, We selected our best-performing model, Adv.

InfoPG, and the best-performing baseline, MOA [99], from our primary results in ??. We

increased the number of agents from five to ten and kept the communication range to be

the same (i.e., one piston on each side). The results are presented in Figure D.4. As shown,

Adv. InfoPG outperforms MOA in both maximizing average individual and team reward

performances during training.
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Figure D.4: Scalability comparison between Adv. InfoPG and the best-performing baseline,
MOA [99], in the Pistonball domain with ten interacting agents. Adv. InfoPG outperforms
MOA in both maximizing average individual and team reward performances.

InfoPG considers two way communication with each of its neighbors (there are |∆|

neighbors which are communicated with k times). If D is the dimension of the communi-

cated k-level action-vector, the bandwidth of input and output communication channels is

Θ(2|∆|kD), where each communication channel is Θ(|∆|kD). We leave the choice of |∆|, k,

and D to be hyper-parameters, all of which can be lessened as the number of agents increase

to inhibit computational complexity issues.
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Figure D.5: Instances of the utilized multi-agent cooperative environments. Do-
mains are parts of the PettingZoo [282] MARL research library and can
be accessed online at https://www.pettingzoo.ml/envs. The Star-
Craft II [284], can be accessed from Deepmind’s repository available online at
https://github.com/deepmind/pysc2.

D.7.4 Agent-wise Performance Comparison

As mentioned, the objective in a fully decentralized domain is to maximize the average return

by each individual agent, such that the obtained cumulative team reward is also maximized.

We have show in our primary results in ?? that InfoPG outperforms all baselines across all

three domains in achieving higher cumulative team reward. Here, we present the agent-level

reward performances for InfoPG and compare with the baselines across three domains.

The results are presented in Figure D.6, where sub-Figure D.6a-Figure D.6d represent the

individual agent performances in Co-op Pong, Pistonball, Multiwalker and StarCraft II

(3M), respectively. As shown, our InfoPG and its MI-regularizing variant, Adv. InfoPG,

continually outperform the other baselines in maximizing achieved individual rewards for

agents. Specifically, in all graphs for Adv. InfoPG, all agents maximize individual rewards

over time, and Adv. InfoPG achieves SOTA across all baselines.

D.8 Evaluation Environments: Additional Details and Parameters

Here we provide additional details regarding the employed evaluation environments for

training and testing InfoPG and cover the associated environment parameters related to our

experiments. An instance of the four environments are presented in Figure D.5.

1) Cooperative Pong (Co-op Pong) [282] – The objective in this game is to keep a
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pong ball in play for as long as possible between two co-operating paddles. To fit the

MAF-Dec-POMDP paradigm, agents must receive individualistic rewards. In the Co-

op Pong domain, each paddle receives a reward of +1 if it hits an incoming pong ball

successfully and a penalty of −1 if it misses. The game ends either when a paddle misses

or if max_cycles = 300 cycles have elapsed. Therefore, in order to continue receiving

positive rewards of +1, paddles are implicitly encouraged to cooperate to maximize their

accumulated rewards. For an episode of the game, the pong ball was set to move at a velocity

of 15[ pixels
sec. ] while the paddles move slightly slower at 13[ pixels

sec. ]. Since the ball moves faster

than the paddles, the paddles require "forecasting" their intended position when the pong

ball comes into their field-of-view (FOV), which is a 280×240 RGB image. An important

facet of this environment is the time-delayed nature of the actions. Consider a scenario

when the left-side paddle hits the ball at t1; this means that the right-side paddle will receive

the ball at minimum, at t2 = t1 + 280
15 . This measure is an underestimation, since the pong

ball will not likely move in a straight line drive (i.e. it may hit the sides of the walls) but it

illustrates the point that the action of the left-side paddle at t1 is particularly relevant to the

action of the right-side paddle at t2; however, the action of the left-side paddle at t2 is not

particularly relevant to the right-side.

Therefore, in our experiments, to account for the time-delay in the action information, a

"hub" was designed where the action at the time of the last "hit" is shared to the opposing

paddle, and a zero-vector otherwise. This procedure was applied for both InfoPG and

MOA [99] as to fairly evaluate the communicative algorithms. In the case of MOA, the

time-delayed action was sought to be "predicted" by the opposing paddle’s model of agent.

2) Pistonball [282] - The goal in the this environment is to move a ball from right side

of the screen (e.g., right wall) to the left side of the screen (e.g., left wall) by activating/deac-

tivating a team of five vertically moving piston agents. The ball has momentum in motion

and is elastic. In order to encourage robustness, the ball was randomly placed on the pistons

with a friction factor of 0.3, mass of 0.75, and a relatively high elasticity factor of 1.5. An
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episode of the game ends if agents move the ball to the left wall or after max_cycles = 200

cycles have elapsed. Each agent’s observation is an RGB image of size 457×120 cover-

ing the two pistons (or the wall) around an agent and the space above them. Each piston

receives an individual reward which is a combination of how much the corresponding agent

directly contributed to moving the ball to left (i.e., with a value of X ball
t −X ball

t−1 , where

Xt represents the center position of the ball along the X-axis at time t), and a negative time

penalty of −0.007 per timestep. A piston is considered to be contributing directly to moving

the ball to left, if it is directly below any part of the ball. Given the ball’s radius of 20 pixels,

at each timestep, three pistons can be directly under the ball. Agents win an episode of

the game if they can coordinate efficiently to move the ball to the left wall within allowed

maximum steps.

3) Multiwalker [283, 282] - The objective in this continuous-space environment is for

a team of two bipedal robots to carry a heavy package cooperatively and walk as far right

as possible. The weight of the package depends on its length which is determined by the

number of agents. We note that, the two-agent case is the most challenging scenario in

Multiwalker. Each robot exerts a variable force on two joints in its two legs, and therefore,

the action-space is of dimension four with values in range (−1,1). The bipedal robots

receive local rewards related to individual balance and stability of their hull. The reward

function includes a reward of +1 for a scaled forward displacement of each bipedal robot’s

hull. We set the maximum number of allowed steps to max_cycles = 500 cycles, which

would terminate at any point if a bipedal or the package falls. If a bipedal robot falls, it will

individually receive a penalty of −10, and, if the package falls on the ground, each bipedal

receives a penalty of −100. Each agent receives a 31-dimensional observation vector. The

first 24 elements of the observation vector represent the bipedal robot’s internal kinematics

and the rest (i.e, elements 24-31) relate to LIDAR observations of the package position as

well as the position of the adjacent bipedals.

4) StarCraft II [284] (The 3M (three marines vs. three marines) challenge) - The goal
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in this domain is for a team of three friendly marines to find, shoot, and kill three enemy

marines as soon as possible, without dying or getting hit [54, 8]. This domains is more

challenging than the previous ones since the state-space is larger and the communication

graph is time-varying. In this challenge, marines can move in four primitive directions and

shoot an enemy marine within distance (i.e., multiple enemy marines can be in vision at

once), and therefore, the action-space dimension is also larger than the previous domains.

Agents get negatively rewarded when they are shot by enemy marines and are positively

rewarded when shooting enemy marines. 3M presents a fundamentally more challenging

environment than Pistonball, Multiwalker, and Pong, as the state space is much larger, and

agents are allowed to move in 2D over a large gameplay arena. The action space is also

larger (size 8) as agents can choose between: no action, moving in 4 directions, and shooting

any one out of 3 enemy marines. Additionally, agents have a time-varying communication

graph (different from the other domains), because friendly marines move in and out of the

line of sight.

D.9 Training and Execution Details

Under the MAF-Dec-POMDP paradigm, each agent i ∈ N is equipped with its own

optimizer and policy π i
tot which consists of an encoding policy π i

enc and a communicative

policy π i
com (each parameterized by θ i). The encoding policy can be represented using a

feed-forward neural network, and the communicative policy can be represented by any class

of Recurrent Neural Networks (RNNs), such as the Gated Recurrent Unit (GRU) or Long

Short-Term Memory (LSTM). For computational efficiency, we chose to use a GRU or

simplistic RNN architecture.

Additionally, while we formulaically denote actions for level k as ai,(k−1)
t , in execution

we represent these actions as finite-dimensional vectors to maximize information during

inference. The size of these vectors are known as policy latent size in the provided hyper-

parameter tables. This parameter (also shared by other baselines) refers to the size of the
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latent vector prior to the final Softmax output layer. During the encoding stage of InfoPG,

each agent, i, receives an observed state vector, ot
i , and encodes an action vector ai,(0)

t , using

π i
enc. During k-level communication, each agent receives the action vectors of neighboring

agent j ∈ ∆i
t from level k−1 and performs a forward-pass on the RNN, where the initial

cell state is ai,(k−1)
t . The action probabilities for the discrete domains (i.e., Co-op Pong and

Pistonball) are outputted by the feed-forward network where the last layer size is equal to

the size of the action space and a Softmax activation. Note that for our continuous action-

space domain, Multiwalker, the final Softmax activation function is replaced with the Tanh

activation. Neighboring agents are determined using the adjacency graph Gt , and a distance

hyper-parameter specifying how “far” agent i can communicate (i.e., communication range).

Gt is an undirected time-varying graph, and as agents perform actions and change their

relative position (depending on the domain), the edges Et ⊆ {(i, j) : i, j ∈N , i ̸= j} are

updated for the next timestep. This process is carried out until convergence of the cumulative

rewards of all N agents.

Specifics for Co-op Pong – The input observation in this domain, a 280×240 RGB

image, contains information about where the pong ball exists in the FOV of each paddle.

Since the ball is in motion, we found higher performance could be achieved by setting the

observation at time, t, to be the difference between the observation at t and t−1. As such,

we encoded the input observation to represent information about not just the position, but

also the velocity of the ball. This procedure was maintained for all baselines.

Another property we found critical to the performance of InfoPG agents in Co-op Pong

was the type of RNN for π i
com. In Pong, rewards are rather sparse, since paddles only receive

feedback when they hit or miss a ball, while in other times and when ball is traversing

the screen (which is the majority of the time spent in the game) no feedback is received

from the environment. Accordingly, we leveraged curriculum learning [327] such that we

let agents first learn the mechanics of hitting the pong ball and then, learn the benefit of

communication. We achieved this behavior by using a simple RNN (we distinguish this
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with VRNN for Vanilla RNN) cell for π i
com, where the initial weight matrix Wih was set

to the identity matrix and all other parameters were set to a small constant. This way, we

effectively make the output of the π i
com = π i

enc at the beginning episodes of training, while

as time elapses, the weight matrix is optimized to incorporate actions from the neighboring

paddle.

Specifics for Pistonball – The agents each receive a 457× 120 RGB image as their

observation input. In order to minimize feature size, each observation was first cropped to a

size of 224×224, normalized and inputted into a pre-trained AlexNet model. AlexNet [328]

is a CNN that takes in images and outputs probability scores of classes. In our experiments,

we utilized the first four intermediate layers of AlexNet to produce rich feature observations

to the input of the encoding policy. This procedure was applied to all baselines.

Hardware Specifics – All experiments were conducted on an NVIDIA Quadro RTX

8000 with approximately 50 GB of Video Memory Capacity.

Training Hyperparameters – We present the training hyperparameters in our imple-

mentations and experiments across methods and all three environments in Tables Table D.1-

Table D.5.

Table D.1: Co-op Pong Training Hyperparameters.

Experiments Pong
InfoPG Adv InfoPG NC-A2C CU MOA PR2-AC

Learning Rate 4e-4 4e-4 4e-4 4e-4 4e-4 4e-4
Size of Latent Vector 30 30 30 30 30 30

Type of Com. Network VRNN VRNN - - GRU -
Epochs 4000 4000 4000 4000 4000 4000

MOA Loss Weight - - - - 0.1 -
Discount Factor 0.95 0.95 0.95 0.95 0.95 0.99

Batch Size 16 16 16 16 16 16
Max Gradient Norm 10 10 10 10 10 10
Replay Buffer Size - - - - - 1e5
Number of Particles - - - - - 16
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Table D.2: Pistonball Training Hyperparameters.

Experiments Pistonball
InfoPG Adv. InfoPG NC-A2C CU MOA PR2-AC

Learning Rate 1e-3 1e-3 1e-3 1e-3 1e-3 1e-3
Size of Latent Vector 20 20 20 20 20 20

Type of Com. Network GRU GRU - - GRU -
Epochs 1000 1000 1000 1000 1000 1000

MOA Loss Weight - - - - 1.0 -
Discount Factor 0.99 0.99 0.99 0.99 0.99 0.99

Batch Size 4 4 4 4 4 4
Max Gradient Norm 0.75 0.75 0.75 0.75 0.75 4.0
Replay Buffer Size - - - - - 1e5
Number of Particles - - - - - 16

Table D.3: Multiwalker Training Hyperparameters.

Experiments Multiwalker
InfoPG Adv. InfoPG NC-A2C CU MOA PR2-AC

Learning Rate 4e-4 4e-4 4e-4 4e-4 4e-4 4e-4
Size of Latent Vector 30 30 30 30 30 30

Type of Com. Network GRU GRU - - GRU -
Epochs 1000 1000 1000 1000 1000 1000

MOA Loss Weight - - - - 0.1 -
Discount Factor 0.95 0.95 0.95 0.95 0.95 0.95

Batch Size 16 16 16 16 16 16
Max Gradient Norm 5 5 5 5 5 5
Replay Buffer Size - - - - - 1e5
Number of Particles - - - - - 16

Table D.4: StarCraft II Mini-game (The 3M Challenge) Training Hyperparameters.

Experiments StarCraft II (3M Challenge)
InfoPG Adv. InfoPG NC-A2C CU MOA PR2-AC

Learning Rate 1e-4 1e-4 1e-4 1e-4 1e-4 1e-4
Size of Latent Vector 50 50 50 50 50 50

Type of Com. Network GRU GRU - - GRU -
Epochs 1000 1000 1000 1000 1000 1000

MOA Loss Weight - - - - 0.1 -
Discount Factor 0.99 0.99 0.99 0.99 0.99 0.99

Batch Size 64 64 64 64 64 64
Max Gradient Norm 6 6 6 6 6 6
Replay Buffer Size - - - - - 1e5
Number of Particles - - - - - 16

269



(a) Individual agent performances in Co-op Pong.

(b) Individual agent performances in Pistonball.

(c) Individual agent performances in Multiwalker.

(d) Individual agent performances in StarCraft II (3M).

Figure D.6: Individual rewards obtained by each individual agents across episodes as training
proceeds in the three evaluation environments. Our Adv. InfoPG continually outperforms
all baselines [100, 99, 63, 126] across all domains.
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Table D.5: Pistonball Training Hyperparameters for the fraudulent agent experiment.

Experiments Fraud Pistonball
InfoPG Adv InfoPG MOA

Learning Rate 1e-3 1e-3 1e-3
Size of Latent Vector 20 20 20

Type of Com. Network GRU GRU GRU
Epochs 1000 1000 1000

MOA Loss Weight - - 1.0
Discount Factor 0.99 0.99 0.99

Batch Size 2 2 2
Max Gradient Norm 0.5 0.5 0.5
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APPENDIX E

SUPPLEMENTARY INFORMATION (chapter 8)

E.1 Algorithm Details and Pseudocode

In Algorithm algorithm 7, we define MixTURE’s training process.

Algorithm 7: MixTURE Training
1: For each agent j for each class c

▷ obtain expert trajectories τ
(c j)
E

▷ initialize policies π
(c j)
φ

and discriminators D(c j)
θ

.
2: while not converged do
3: Collect trajectories τ = {(ōt , āt)}T

t=1 by executing policies π
(c j)
φ

for each agent j,
class c,

4: storing communications zi j between each pair of agents i, j
5: Predict rewards r(c j)(ōt , āt)← log(D)(c j)(ōt , āt)

6: Update π
(c j)
φ

using objective (4)

7: Train D
(c j)
θ

to classify expert trajectories τE from collected trajectores τ using loss
(1)

8: end while=0

We note that we publicly provide our codebase (including MixTURE implementation, the

environment implementations, the expert heuristics, and the baselines) at:

https://github.com/CORE-Robotics-Lab/MixTURE.
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E.2 Proof of Evidence Lower-Bound (ELBO) in Eq. 3

To arrive at the ELBO in Eq. 3, we begin from the MI definition (sketch; to be fixed.):

I(ẑi; ō) = H(ẑi)−H(ẑi|ō) = Eẑi∼ρ(z),ai∼πφ

[
log
(
ρ(ẑi|ō,ai)

)]
+H(ẑi) (E.1)

= Eai∼πφ

[
DKL

(
log
(
ρ(ẑi|ō)

)
∥ log

(
Θi(ẑi|ō)

))
+Eẑi∼ρ(z)

[
Θi(ẑi|ō)

]]
+H(ẑi)

(E.2)

≥ Eẑi∼N (⃗µ ,⃗σ2),ai∼πφ

[
log
(
Θi(ẑi|ō,ai)

)]
+H(ẑi) = LMIM(π i

φ ∥Θi) (E.3)

E.3 Environment Details

E.3.1 Predator-Prey (PP)

The objective within this homogeneous environment is for N predator agents with limited

vision to find a stationary prey and move to its location. The agents in this domain are

homogeneous in their state, observation, and action spaces and thus, all agents are of

the same class. All agents are able to sense/observe the environment and each agent’s

observation is a concatenated array of the state vectors of all grids within the agent’s Field

of View (FOV). The predator agents’ action-space is of dimension five, including cardinal

movements and a null action, and is the same for all agents. A higher-performing algorithm

in this domain is defined as one that minimizes the average number of steps taken by agents

to complete an episode. Details of the environment setup and problem dimensions are

defined in Table Table E.1.

E.3.2 Predator-Capture-Prey (PCP)

In our second domain, we have two classes of agents: predator agents and capture agents.

The first class of agent, called the predator agents, have the goal of discovering the prey

and have an action-space of dimension five, including cardinal movements and a null (stay)
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Figure E.1: The PP, PCP, and FC domains utilized for evaluating MixTURE and the
baselines.

action. Predator agents have an observation space similar to the agents in PP domain. The

second class of agents, called the capture agents, have the objective of locating the prey

and capturing it. Capture agents differ from the predator agents in both their observation

and their action spaces. Capture agents do not receive any observation inputs from the

environment (i.e., no scanning sensors) and have an additional action of capture-prey in their

action-space. This additional action must be used at a prey’s location to capture the prey.

Note that this domain is an explicit example of the perception-action composite teams. An

episode is deemed successful once all agents have completed their class-specific objectives.

Again, a better-performing algorithm in this domain is defined as one that minimizes the

average number of steps taken by agents to complete an episode. Details of the environment

setup and problem dimensions are defined in Table Table E.1.

Table E.1: Environment Configuration Details

Environment # predator/perception # capture/action vision max steps

Predator-Prey 5x5 3 - 1x1 20
Predator-Prey 10x10 6 - 3x3 80
Predator-Prey 20x20 10 - 5x5 80
Predator-Capture-Prey 5x5 2 1 1x1 40
Predator-Capture-Prey 10x10 3 3 3x3 80
Predator-Capture-Prey 20 x 20 6 4 5x5 80
FireCommander 5x5 2 1 3x3 80
FireCommander 10x10 3 3 3x3 80
FireCommander 20x20 6 4 5x5 80
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E.3.3 FireCommander (FC)

We also evaluate the performance of MixTURE and the baselines in a heterogeneous

cooperative multi-agent environment, called FireCommander (FC), recently introduced

by [54, 13]. FireCommander can be categorized as a strategic game, in which a composite

team of robots (i.e., UAVs) must collaboratively find hidden areas of propagating wildfire

and extinguish the fire in such areas as fast as possible. The robot team in FC is composed of

two classes of agents: (1) perception agents (class P), which can only sense the environment

and detect areas of fire and, (2) action agents (class A), which can only manipulate the

environment by extinguishing a firespot which has already been detected by class P agents.

Neither class P, nor class A agents are capable of accomplishing the task on their own, and

therefore must communicate and collaborate.

Under the notations in our problem formulation in Section 3, we have C = {P,A} where,

A (P) = {1,2, · · · ,5} representing the four primitive motions and stay (no-op action), and

A (A) = {1, · · · ,6}, representing the four primitive motions, stay no-op action, and an extra

action which corresponds to extinguishing fire by dousing water. Note that the dimensions

of the action space here are similar to the PCP. Agents of class P are equipped with fire

detection sensors and can observe the environment, receiving an input vector of length 29

for each grid within their FOV. Agents of class A, do not receive any observation from

the environment. An episode of the game is marked as successful only if all the active

firespots within the map are discovered and extinguished. Once again, a better-performing

algorithm in this domain is defined as one that minimizes the average number of steps taken

by agents to complete an episode. Details of the environment setup and problem dimensions

are defined in Table Table E.1.
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Figure E.2: Designed FireCommander interface for the human-subject user experiment.

E.4 Human-Subject User Study Details: Environment and Procedures

Here we present further details regarding our experiment setup and environment design

for collecting human demonstrations for teaching collaborative policies to multi-robot

teams as well as evaluating the effects of demonstrating both environment-action and

communication-action strategies on the human expert’s performance and system usabil-

ity. We designed a version of the FireCommander [54, 13] suitable for our experiments.

The following are the detailed instructions and information provided to the human

subjects during the experiments1.

E.4.1 General Game Objectives and Logistics

In this game, you will have to use a group of Quadcopter robots (a.k.a the Perception agents)

and a group of Ground robots (a.k.a the Action agents) to put out a propagating wildfire as

fast and efficient as possible. But here are the game logistics:

• Fire is initially hidden from you. You need to search around to find the firespots.

1Instructions presented as they were given to the human subjects. ‘You’ refers to the subject.
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• Only Perception agents can see the fire; but they have limited field of view (FOV),

only within the blue shaded area around them.

• Only Action agents can put out a firespot; but they do not receive any environment

observations (lack of sensory information).

• A firespot keeps propagating and growing in the background on wall-clock time,

regardless of what you do, unless you put it out.

• Once all active firespots are put out the game ends and you’ll receive a score.

• The faster you put out the fire, the higher you will score.

• Overall, use the quadcopters to find fires, then use ground robots to put out the found

fires, and do this as fast and as efficient (fewest # steps taken to finish the game) as

possible.

• Note that, to put out a firespot, you must first find it. You cannot put a firespot out

before finding it.

• Note that, when you find a fire, its location will be known even if you move away the

Perception agent. However, if that fire propagates, you will not see the new grid on

fire, unless you have a Perception agent monitoring that area.

• Note that, to put out a firespot, the Action agent must be on top of it (i.e., agents will

not be damaged by the fire)

• Note that, the game has an enforced cut off threshold on the score. When your score

drops below 50, the game will end automatically.

• Note that, your score is initialized to a 100 and will change based on your strategy

and wall-clock time. The score function details are described below.
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• Note that, there are three levels to this game: Easy, Moderate, and Hard (see Fig. Fig-

ure E.3). You will be practicing on the easy mode for at least one round first, then

starting the actual rounds from easy to harder levels.

E.4.2 Understanding the Game Score Function

Your score is initialized to 100 at the start of each round and then:

• score − = f s
p×(fixed wall-clock time), where f s

p is the fire propagation rate for

scenario, s, (i.e., easy, moderate, or hard)

• score −= 0.2×(per existing firespot)

• score += 0.2×(per found firespot)

• score += 0.5×(per killed firespot)

• score −= 0.1×(per usage of fire extinguisher)

E.4.3 Task Description for Each Condition

We utilize a 1×2 within-subjects design varying across two abstractions:

1. noComm condition: Only demonstrating environment actions for each robot at each

time step.

2. withComm condition: Demonstrating both environment actions and communication

actions for each agent at each time step.

We implemented both conditions in the FC interface introduced above. The details of

each mode along with user instructions (as were presented to the human subjects during the

experiment) for each condition are presented below.
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Figure E.3: Instances of the designed FireCommander game environment at different levels
for the human-subject user experiment.

Maneuvering the Game in noComm Condition

In this mode, the human subject will be only demonstrating the environment actions for each

robot at each time step. The data collected in this condition are used to train our MixTURE

architecture. Here are the details:

• At each step of the game, the current agent (i.e., agent that you will be handling) is

shown with a downward arrow on top.

• After performing a task, the arrow indicator will move on top of the next agent (turn

rotates).

• You will move/handle robots in this way, one-by-one, until the game ends.

• To move the robots around us the arrow keys: Up (↑), Down (↓), Right (→), Left

(←)

• To remain still (move to next agent w/o doing anything), press the Enter

• To put out a fire, use the right or left Ctrl key
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Maneuvering the Game in withComm Condition)

In this mode, the human subject will be demonstrating both an environment-actions and a

communication-action for each robot at each time step. The data collected in this condition

are used to train the MA-GAIL baseline [110]. We note that, the messages in the communica-

tion menu designed for this condition include a wide range of options from anticipatory (i.e.,

sharing information by anticipating one another’s needs rather than answering to requests

or prompts) and deliberative information sharing (i.e., prioritizes information about the

next goal to be accomplished during a task), the design of which was inspired by prior

work [309, 310]. The dimensionality of this message-space is 26, which is also similar to

the dimensions of the message space in our expert heuristic design, as well as the RL-only

baseline with learned communication action.

Everything in this mode is just the same as described in noComm mode, except that for

each robot there is one extra step where you need to select a message from a predefined list

to be broadcasted by the current robot to other teammates. Here are the details:

• In this mode, for each agent, first a communication menu will pop up. After message

selection is done, the communication menu will be gone and you can move the robot.

• For each agent, you can choose a message from the menu shown below in Fig. Fig-

ure E.4 using keyboard numbers.

• Choosing options 1 – 6 would need you to specify your intended area (i.e., domain

quadrants by choosing a number 1 – 4).

• Message option 7 indicates a previously incorrect statement by an agent, and message

option 8 is a Null message (i.e., no communication).

• Note that, for reference, you can see your game screen (i.e., location of your robots

and the fire (if any found)) on the bottom of the communication menu, at all times,
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alongside with robot’s current partial observation (i.e., what you see v.s. what the

robot sees). You should select the communication message based on what robot sees.

• Note that, if you press a wrong key (like the arrow keys), by default, message option

8 (i.e., "Null; nothing important") will be selected.

• Note that, in this case the fire is still propagating on wall-clock time in the background.

Try to become familiar with the message options early on and come up with a

communication strategy during practice so you won’t have to read all the options

every time. The communication menu is fixed.

• Important: as stated before, we will use LfD to teach robots how to communicate

from your data. Therefore, it is highly important that you accurately select a message

that reflects your strategy. Without messages being accurately selected, the robots that

will be trained on your data will be inefficient and unsuccessful. Note that consistency

is key.

E.5 Expert Heuristic Design Details

E.5.1 Predator-Prey (PP) Expert Heuristic

The heuristic expert behavior for Predator-Prey involves each agent simply moving towards

the nearest known prey location. If no prey locations are known, we use a greedy exploration

behavior in which each agent attempts to reveal as many unexplored tiles as possible in

the next turn. However, to reduce backtracking, we penalize exploring tiles which have

unexplored neighbors. Thus, the expert behavior prioritizes exploring corner and edge tiles,

and tiles on the boundary of the revealed areas. Table Table E.2 shows the performances

achieved by our heuristics in PP, PCP, and FC.
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Figure E.4: The communication menu designed for expert demonstration in the second
condition (i.e., withComm mode). The messages in the communication menu designed for
this condition include a wide range of options from anticipatory (i.e., sharing information
by anticipating one another’s needs rather than answering to requests or prompts) and
deliberative information sharing (i.e., prioritizes information about the next goal to be
accomplished during a task), the design of which was inspired by prior work [309, 310].
The dimensionality of this message-space is 26.

E.5.2 Predator-Capture-Prey (PCP) Expert Heuristic

Since capture agents find themselves unable to move off of prey, they can effectively see

within a (1×1) vision radius by simply checking whether their last attempted move was

successful. Thus, we utilize the same logic as the Predator-Prey heuristic, but treat capture

agents as predators with a single-cell vision radius. See Table Table E.2 for our heuristics’

performance in PP, PCP, and FC.

E.5.3 FireCommander (FC) Expert Heuristic

Instead of tracking revealed and unrevealed tiles, we maintain a probabilistic belief over

each grid cell estimating the likelihood that a particular cell contains a fire. These beliefs are
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Table E.2: Expert Heuristic Performance (# steps)

Difficulty Predator-Prey Predator-Capture-Prey FireCommander

5×5 8.573±2.175 9.677±2.628 14.439±8.712
10×10 12.221±3.017 14.763±3.858 16.160±8.247
20×20 24.915±5.512 27.701±6.617 24.213±13.721

Figure E.5: Full evaluation results for MixTURE and the baselines in the all difficult levels
(i.e., easy, moderate, and hard) of the three environments (i.e., PP, PCP, and FC).

updated based on observations from perception agents. To take into account fire spreading

dynamics, at each timestep, we increase the estimated fire probabilities according to a

Gaussian filter applied to the current belief. The perception agent behavior is similar to that

of the Predator-Prey heuristic, but the score of each cell vxy is instead equal to the current

entropy of the corresponding belief. Action agents simply attempt to extinguish the closest
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known fire. If no fires are visible, they instead follow the nearest perception agent.

E.5.4 Communication Heuristic

For the communication heuristic, we used a baseline approach in which each agent generates

a one-hot encoded representation (with the same size and dimensionality as the message

space available to the human participants) as a function of their last k observations. To embed

the observations into a one-hot vector, we simply perform K-means clustering over the

observations in the demonstration dataset for each environment, and map each observation

to the index of the nearest cluster center. For k > 1, we instead perform this procedure over

the last k observation vectors, concatenated. We find k = 2 to have the best performance,

which is in accordance wityh prior work [310].

E.6 Ablation Studies and Supplementary Results

E.6.1 Scalability

We evaluated the MixTURE against all baselines in all three domains introduced in Sec-

tion section E.5 and under three different difficulty levels: (1) easy (5×5 domain, 3 robots),

(2) medium (10×10 domain, 6 robots), and (3) hard (20×20 domain, 10 robots). More

environment details are provided in the supplementary material. Fig. Figure E.5 shows the

training and evaluation results for MixTURE and the baselines in the medium case, for PP,

PCP, and FC domains. Each epoch on the x-axis represents 40K data samples. As shown,

MixTURE outperforms all non-communicative, communicative with expert heuristic, and

communicative with differentiable communication channels including the SOTA MARL

framework for learning heterogeneous teaming policies for composite robot teams [13].

E.7 Hyperparameters
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Table E.3: Hyperparameters

Name Value

hidden layer dimensionality 64 (easy), 256 (moderate/hard)
rollout steps 4096
T-BPTT segment length 8
segments per minibatch 8 (easy), 32 (moderate/hard)
total minibatch size 64 (easy), 256 (moderate/hard)
PPO clipping ε 0.2
PPO epochs 3
learning rate [10−4,10−3]
discount factor 0.99
GAE lambda 0.5
MIM coefficient (λMIM) 0.1 (easy), 0.01 (moderate/hard)
BC coefficient (λBC) [10−1.5,100]
discriminator learning rate 10−5

max gradient norm 5.0
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