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ABSTRACT
Learning from Demonstration (LfD) is a powerful method for non-
roboticists end-users to teach robots new tasks, enabling them to
customize the robot behavior. However, modern LfD techniques do
not explicitly synthesize safe robot behavior, which limits the de-
ployability of these approaches in the real world. To enforce safety
in LfD without relying on experts, we propose a new framework,
ShiElding withControl barrier fUnctions in inverseREinforcement
learning (SECURE), which learns a customized Control Barrier
Function (CBF) from end-users that prevents robots from taking
unsafe actions while imposing little interference with the task com-
pletion. We evaluate SECURE in three sets of experiments. First,
we empirically validate SECURE learns a high-quality CBF from
demonstrations and outperforms conventional LfD methods on sim-
ulated robotic and autonomous driving tasks with improvements
on safety by up to 100%. Second, we demonstrate that roboticists
can leverage SECURE to outperform conventional LfD approaches
on a real-world knife-cutting, meal-preparation task by 12.5% in
task completion while driving the number of safety violations to
zero. Finally, we demonstrate in a user study that non-roboticists
can use SECURE to effectively teach the robot safe policies that
avoid collisions with the person and prevent coffee from spilling.

CCS CONCEPTS
• Computing methodologies→ Learning from demonstra-
tions; • Theory of computation → Inverse reinforcement
learning; • Software and its engineering→ Software safety.
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Figure 1: This figure shows an example of a person providing
safety demonstrations from which the robot learns a cus-
tomized safety function that shields it from unsafe actions.

1 INTRODUCTION
Recent advances in robot learning have offered the potential to aid
people in a range of applications, including driving [47], manufac-
turing [48], and household tasks [10], like tidying up or serving
someone a drink. Reinforcement learning (RL) has become a ubiq-
uitous approach to develop robot controllers; however, defining
the reward function to elicit desired behaviors can be difficult, and
engineered reward functions might overfit to particular RL algo-
rithms [7]. Instead, the field of Learning from Demonstration (LfD)
seeks to empower non-roboticist end-users to teach robots skills
and customized behaviors through demonstrations [13, 14, 23, 39].

Like RL, LfD research has yielded strong results in laboratory
settings [13, 14, 36], but few techniques exist for LfD that enable
robots to learn safe policies, hindering the deployment of LfD with
end-users in the real world. Recently, Brown et al. [8] provided
high-confidence bounds for quality of the inferred human intention
as a proxy of safety. While promising, such approaches do not allow
specifying constraints on the learned policy to explicitly prevent
the robot from taking unsafe actions.

To ensure safety, Control Barrier Functions (CBFs) are a state-of-
the-art method for designing safe robotic controllers that adhere
to explicit safety constraints. CBFs have successfully been applied
in RL and HRI settings [3, 4, 16, 29, 30, 35, 46], and we hypothesize
that CBFs could similarly help learned LfD policies to avoid unsafe
states. However, conventional CBF approaches would still require
experts to formally define and construct such constraints. Instead,
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we aim to enforce safety in LfD settings without relying on experts
by allowing users to define safety via demonstration.

We present SECURE, a novel Safe Learning from Demonstra-
tions (LfD) framework that learns personalized CBFs from end-
user demonstrations. In contrast to approaches solely focusing on
physical safety, SECURE acknowledges the variability in individ-
uals’ safety preferences [24, 38]. This user-centric approach not
only enhances perceived safety but also ensures physical safety, as
demonstrated in a coffee serving task where safety demonstrations
define minimum distance and maximum cup angle to avoid spills
(see Figure 1). Our contributions in this work are four-fold:
(1) We propose a new framework named ShiElding with Control

barrier fUnctions in inverse REinforcement learning (SECURE),
that learns a CBF from human demonstrations. We then develop
two techniques, namely CBF Shield and Adaptive Resampling,
which shield the LfD policy to be safe and enhance the sample
efficiency of SECURE for improved usability in HRI;

(2) We demonstrate SECURE’s ability to learn a high-quality CBF, in
comparison to an expert-designed CBF in 2D Double Integrator
system. Empirical evaluation on simulated robot control tasks
showcases SECURE’s task performance on par or exceeding
Learning from Demonstrations (LfD) baselines, while signifi-
cantly reducing safety constraint violations by up to 100%.

(3) We demonstrate that roboticists can leverage SECURE to syn-
thesize safe policies from demonstrations on a real-world knife-
cutting, meal-preparation task. SECURE outperforms conven-
tional LfD approaches by 12.5% in task completion and elimi-
nates 100% unsafe cases (i.e., “cut” human arms);

(4) We further conduct a user study in which participants first
provide demonstrations in a coffee-cup placing task and then
work on a secondary task in the robot’s proximity. SECURE
can effectively learn user-specific safe policies from provided
demonstrations to enable the robot to complete its task while
being perceived as safe by users operating in its proximity.

2 RELATEDWORK
Ensuring safe and reliable robot operation, particularly in interac-
tions with human users, is of paramount importance [9]. In the RL
realm, safety challenges arise due to the learning process’s explo-
ration in unknown environments, where various safety approaches
tailored to RL have emerged, including constrained policy opti-
mization [1, 17, 32, 40, 43], safe exploration [20, 33, 34], learning a
safety critic [5, 41, 44], risk-averse RL [45, 51], and shielding [2, 11].
Shielding, in particular, is a framework that ensures the safety of a
control policy by verifying that each action applied keeps the sys-
temwithin a predefined safe set of states [6]. CBFs are mathematical
functions utilized in control theory to enforce safety constraints
by defining a safe set of states [3, 4]. CBFs are a popular technique
to shield robots from unsafe actions, as they enforce the system to
always remain within a set of safe states.

To develop safe controllers, prior work has explored synthesizing
CBFs from data, including expert demonstrations [26, 27, 37, 42].
However, these approaches work with expert demonstrations, lim-
iting their applicability with end-users, which is central in LfD.
Researchers have also explored tuning specific CBF parameters
according to user data [18, 25, 31, 46]. In the context of RL safety,
researchers have investigated the utilization of expert-designed

CBFs to synthesize control policies that confine the system within
safe states [15, 16, 29, 30, 35]. Recent efforts have also focused on
leveraging data-driven methods to learn CBFs within the RL frame-
work for safety assurance [50]. However, these approaches have
been limited to RL and have not been extended to LfD methods
where robots directly learn from and interact with humans.

While a recent method extended CBF to the domain of imitation
learning [19], it requires a manually-designed CBF to supplement
the Behavioral Cloning (BC) policy, which is not practical for real-
world LfD settings. Castañeda et al. [12] proposes to construct a
CBF from data to detect out-of-safe-distribution cases. Still, the
approach risks being overly conservative. To the best of our knowl-
edge, our study is the first to successfully integrate CBFs with
IRL algorithms and effectively increase policy performance while
mitigating potential safety concerns.

3 PRELIMINARIES
In this section, we introduce three building blocks of SECURE:
Markov Decision Process, Inverse Reinforcement Learning, and
Control Barrier Function.
Markov Decision Process: We model the environment as a Markov
Decision Process (MDP) [49], M = ⟨S,A, 𝑅,𝑇 ,𝛾, 𝜌0⟩. S and A
denote the state and action space, respectively. 𝑅 : S → R is the
reward of a given state.𝑇 : S×A → S is a deterministic transition
function that gives the next state, 𝑠′, for applying the action, 𝑎, in
state, 𝑠 . 𝛾 ∈ (0, 1) is the temporal discount factor. 𝜌0 : S → R
denotes the initial state probability distribution. A stochastic policy
𝜋 : S×A → R is amapping from states to probabilities over actions.
A trajectory, 𝜏 = (𝑠0, 𝑎0, · · · , 𝑠𝑡 , 𝑎𝑡 , · · · ), is generated by executing
the policy within the environment: 𝑠0 ∼ 𝜌0, 𝑎𝑡 ∼ 𝜋 (𝑠𝑡 ), 𝑠𝑡+1 =

𝑇 (𝑠𝑡 , 𝑎𝑡 ) ∀𝑡 ≥ 0. The expected discounted return of a policy, 𝜋 , is
calculated by 𝐽 (𝜋) = E𝜏∼𝜋

[∑∞
𝑡=0 𝛾

𝑡𝑅(𝑠𝑡 )
]
. The objective for RL is

to find the optimal policy, 𝜋∗ = argmax𝜋 𝐽 (𝜋).
Inverse Reinforcement Learning (IRL) infers a reward function, 𝑅,
from a set of demonstration trajectories, D = {𝜏𝑖 }𝑁𝑖=1. Our method
is based on adversarial IRL (AIRL) [21], which consists of a gen-
erator (i.e., a policy) to imitate the demonstrator and a discrim-
inator to distinguish the generator’s behaviors from the demon-
strator’s. The discriminator 𝐷 is trained to minimize the cross
entropy loss, LDiscriminator = −E𝜏∼D,(𝑠,𝑎,𝑠′ )∼𝜏 [log𝐷 (𝑠, 𝑎, 𝑠′)] −
E𝜏∼𝜋𝜙 ,(𝑠,𝑎,𝑠′ )∼𝜏 [log(1−𝐷 (𝑠, 𝑎, 𝑠

′))]. The generator policy, 𝜋𝜙 (𝑎 |𝑠),
is trained by optimizing the policy loss, Lpolicy = −𝐽𝜃 (𝜋𝜙 ), to max-
imize the pseudo reward function which is given by 𝑟𝜃 (𝑠, 𝑎, 𝑠′) ≜
log𝐷𝜃 (𝑠, 𝑎, 𝑠′) − log(1 − 𝐷𝜃 (𝑠, 𝑎, 𝑠′)).
Control Barrier Functions (CBFs) define a set of safe states, S𝑠 ,
and a set of unsafe (or dangerous) states, S𝑑 . A CBF, ℎ, needs
to satisfy the following three requirements (R1-R3) [3, 28]: R1:
∀𝑠 ∈ S𝑠 , ℎ(𝑠) ≥ 0; R2: ∀𝑠 ∈ S𝑑 , ℎ(𝑠) < 0; R3: ∀𝑠 ∈ {𝑠 |ℎ(𝑠) ≥ 0},
ℎ (𝑇 (𝑠,𝜋𝜙 (𝑠 ) ) )−ℎ (𝑠 )

𝛥𝑡
+ 𝛼 (ℎ(𝑠)) ≥ 0, where 𝛼 (·) is a class-K function,

i.e., 𝛼 (·) is strictly increasing and 𝛼 (0) = 0. Intuitively, the three
requirements ensure trajectories to stay inside the superset, Cℎ =

{𝑠 ∈ S : ℎ(𝑠) ≥ 0}, and never visit unsafe states where ℎ(𝑠) < 0.
In order to obtain a CBF, ℎ(·), and a safe policy, 𝜋𝜙 (·), that meet
the three requirements, we formulate an objective similar to Qin
et al. [35], as shown in Equation 1. R1-R3 are satisfied when we
find ℎ(·) and 𝜋𝜙 (·) such that 𝑦 (ℎ, 𝜋𝜙 ) > 0, i.e., our optimization
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Figure 2: This figure illustrates SECURE’s architecture. End-users contribute demonstrations and near-dangerous states to
train the policy, 𝜋𝜃 (·), and CBF, ℎ𝜔 (·). CBF Shield prevents the IRL policy from entering dangerous states while minimizing
interference with task completion.Adaptive sampling introduced inCBF Shield generates safe and task-aware actions efficiently.

objective is to maximize 𝑦.

𝑦 (ℎ, 𝜋𝜙 ) ≜ min
{
inf
𝑠∈S𝑠

ℎ(𝑠), inf
𝑠∈S𝑑

−ℎ(𝑠),

inf
{𝑠 |ℎ (𝑠 )≥0}

ℎ(𝑇 (𝑠, 𝜋𝜙 (𝑠))) − ℎ(𝑠)
𝛥𝑡

+ 𝛼 (ℎ(𝑠))
} (1)

4 METHOD
We describe SECURE in three steps: In Section 4.1, we first describe
how SECURE learns a CBF, represented by a neural network, from
user-provided safety demonstrations (Figure 2, top). Second, Sec-
tion 4.2 describes how SECURE utilizes a shielding mechanism
with the learned neural CBF to prevent the robot from entering
dangerous states while still allowing for task completion (Figure 2,
middle). Finally, in Section 4.3, we introduce a novel adaptive sam-
pling method for SECURE that improves the efficiency in finding
safe and task-aware actions (Figure 2, bottom).

4.1 Safe LfD with CBF
To enable end-users to define customized safety boundaries, we
seek to learn user-specific safety constraints, represented by a CBF,
from user demonstrations. To learn the CBF, we need access to
the safe states set, S𝑠 , and the unsafe states set, S𝑑 . While we can
construct the safe state set with demonstrations: S𝑠 = {𝑠 |𝑠 ∈ 𝜏 ∈
D}, we should not request demonstrators to take the risk of hurting
themselves to provide unsafe demonstrations. Instead, we define
the near dangerous state set, S𝑛𝑑 , as a set that the robot has to pass
before entering S𝑑 , shown in Equation 2.

∀𝜏 with 𝑠0 ∈ S𝑠 , 𝑡 > 0 �𝑠𝑡 ∈ S𝑑 s.t. ∀0 < 𝑡 ′ < 𝑡, 𝑠𝑡 ′ ∉ S𝑛𝑑 (2)

Intuitively, S𝑛𝑑 would be a set that “wraps” the actual physically
unsafe states, e.g. collisions. For instance, if a robot helps a person
with serving a cup of coffee, the person can demonstrate near-
dangerous states by moving their arms around the static robot arm

holding the cup of coffee at distances that they perceive as near-
dangerous. Note that one user may define a large distance as “near”
dangerous even if the expected harm may be low, and SECURE
respects such user-defined safety concepts.

Having defined S𝑛𝑑 , we amend the CBF’s second requirement
as R2′: For ∀𝑠 ∈ S𝑛𝑑 , ℎ(𝑠) < 0. As a corollary of the CBF property
introduced in Section 3, if R1, R2′, and R3 are satisfied, the policy
cannot enter S𝑛𝑑 , which further means the policy cannot enter the
dangerous state set, S𝑑 , according to the definition of S𝑛𝑑 . While
R2′ is a stricter requirement than R2, it allows people to personally
demonstrate what they deem as unsafe.We replaceS𝑑 in Equation 1
to be S𝑛𝑑 , resulting in Equation 3.

𝑦′ (ℎ, 𝜋𝜙 ) ≜ min
{
inf
𝑠∈S𝑠

ℎ (𝑠 ), inf
𝑠∈S𝑛𝑑

−ℎ (𝑠 ),

inf
{𝑠 |ℎ (𝑠 ) ≥0}

ℎ (𝑇 (𝑠, 𝜋𝜙 (𝑠 ) ) ) − ℎ (𝑠 )
𝛥𝑡

+ 𝛼 (ℎ (𝑠 ) )
} (3)

Finding a solution of ℎ and 𝜋 for 𝑦′ > 0 will satisfy CBF require-
ments and ensure that the agent does not enter dangerous states
or near dangerous states. One observation to maximize 𝑦 is that
the first two terms are only dependent on the CBF, ℎ, while the
third term relies on 𝜋𝜙 . Although one can jointly optimize ℎ and
𝜋𝜙 , such an optimization suffers from empirical difficulty because
𝜋𝜙 is chasing the moving ℎ. To show this, we conduct an empirical
experiment in the demolition derby domain (see Section 6). Joint
optimization of ℎ and 𝜋𝜙 yields a 32.3% ± 11.0% success rate with a
high 77.7% ± 3.4% occurrence of dangerous cases. SECURE instead
takes a two-stage approach: 1) optimize the CBF,ℎ, to satisfyR1 and
R2′; 2) modulate 𝜋𝜙 to satisfy R3 by the CBF shield we introduce
in Section 4.2. As a result, SECURE achieves a high 52.3% ± 2.5%
success rate and a low 3.3% ± 1.2% occurrence of dangerous cases.

For Stage 1, we formulate the loss function Lbarrier as shown in
Equation 4, where ℎ𝜔 (·) is a neural network parameterized by 𝜔 .
Intuitively, minimizing Lbarrier provides an ℎ𝜔 (·) that can discrim-
inate safe states which have positive ℎ values and near-dangerous
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Figure 3: This figure shows that CBF Shield identifies an ac-
tion that is safe and does not hinder task completion.

Algorithm 1: CBF shield Action Choice
Input :Learned CBF ℎ𝜔 (·), Policy 𝜋𝜙 (·|𝑠), Current state 𝑠 ,

Sampling batch size𝑀 , Safe action percentage
requirement 𝜌0

1 𝜇, 𝜎 ← 𝜋𝜙 (·|𝑠)
2 {𝑎𝑖 }𝑀𝑖=1 ∼ N(𝜇, 𝜎)

3 while
∑𝑀

𝑖=1 I(𝑔 (𝑎)>0)
𝑀

≤ 𝜌0 do
4 𝜇, 𝜎 ← AdaptiveResampling (𝜇, 𝜎)
5 {𝑎𝑖 }𝑀𝑖=1 ∼ N(𝜇, 𝜎)
6 𝑎 ← 1

𝑀

∑𝑀
𝑖=1 [I(𝑔(𝑎) > 0) · 𝑎𝑖 ]

7 if 𝑔(𝑎) > 0 then
Output :𝑎

8 else
9 𝑎 ← min𝑎∈{𝑎𝑖 |𝑔 (𝑎𝑖 )≥0}𝑀𝑖=1 ∥𝑎 − 𝑎∥

Output :𝑎

states which have negative ℎ values, when trained on the safe and
near-dangerous states specified through demonstrations.

Lbarrier (𝜔) =
∑︁
𝑠∈S𝑠

max(−ℎ𝜔 (𝑠), 0) +
∑︁

𝑠∈S𝑛𝑑
max(ℎ𝜔 (𝑠), 0) (4)

4.2 Shielding Unsafe Actions
After learning the CBF, ℎ𝜔 (·), from human demonstrations for
encoding safe and near-dangerous states, one naïve way to avoid
danger is to choose actions with ℎ𝜔 > 0. However, this approach
is myopic which can lead to danger. Consider a scenario where
a fast-moving vehicle approaches unsafe states: merely choosing
actions with ℎ𝜔 > 0 results in the vehicle approaching the unsafe
boundary and inevitably entering an unsafe state. In contrast, CBF
R3 (Equation 5, where 𝑎 ∼ 𝜋𝜙 (·|𝑠)) enables SECURE to assess the
gradual decline of ℎ𝜔 from safe to unsafe states, ensuring the agent
never enters unrecoverable states. Therefore, SECURE employs the
CBF Shield to find actions aligned with R3.

Lderivative (𝜙 ) = 𝑔 (𝑎) ≜ ℎ𝜔 (𝑇 (𝑠, 𝑎) ) − ℎ𝜔 (𝑠 ) )
𝛥𝑡

+ 𝛼 (ℎ𝜔 (𝑠 ) ) ≥ 0

∀𝑠 𝑠.𝑡 . ℎ𝜔 (𝑠 ) ≥ 0
(5)

CBF shield directly finds safe actions that satisfyR3, i.e.,Lderivative ≥
0. We summarize the CBF shield procedure in Algorithm 1. For each
safe action choice, we begin by sampling a batch of actions {𝑎𝑖 }𝑀𝑖=1
from the AIRL policy (lines 1-2). Specifically, the policy output is

modeled as a Gaussian distribution with 𝜇𝜔 (𝑠) and 𝜎𝜔 (𝑠), and the
action is sampled by 𝑎𝑖 ∼ N(𝜇𝜔 (𝑠), 𝜎𝜔 (𝑠)). Next, a straightforward
approach could be randomly selecting one safe action from the
batch of actions. However, while the selected action is safe, it is
possible that the action interferes with the task completion (yellow
arrows in Figure 3). Instead, CBF Shield aggregates multiple safe
actions (green arrows in Figure 3) to better reflect the policy’s in-
tention of accomplishing the task. As such, we calculate the ratio

of safe actions within a sampled action batch, 𝜌 =

∑𝑀
𝑖=1 I(𝑔 (𝑎)≥0)

𝑀
,

where 𝑀 is the sampled batch size. When the ratio 𝜌 exceeds a
threshold, 𝜌0, we have more confidence that the average of the
safe actions aligns well with the policy mean output (i.e., aims at
accomplishing the task). Thus, we aggregate safe actions within
this batch (Line 6). When 𝜌 ≤ 𝜌0, it suggests that the current batch
does not contain enough safe actions and we resort to the Adaptive
Sampling method (Section 4.3) to explore and find more safe actions
efficiently (Line 4-5).

To ensure the safety of the executed action, we aggregate the
safe actions by averaging first, 𝑎 = 1

𝑀

∑𝑀
𝑖=1 [I(𝑔(𝑎) ≥ 0) · 𝑎𝑖 ]

(Line 6). If the averaged action (brighter green arrow in Figure 3)
is deemed safe, 𝑔(𝑎) ≥ 0 (Line 7), 𝑎 is returned for execution.
Otherwise, we select the closest action from the safe action set,
𝑎 = min𝑎∈{𝑎𝑖 |𝑔 (𝑎𝑖 )≥0}𝑀𝑖=1 ∥𝑎 − 𝑎∥ (Line 9). In summary, the proce-
dure of CBF shield ensures the satisfaction of R3 (i.e., policy safety)
by always returning an action 𝑎 such that 𝑔(𝑎) ≥ 0while also being
task-aware, which helps the agent to accomplish the task while
respecting personalized safety definitions.

4.3 Adaptive Resampling
The CBF Shield introduced in the Section 4.2 assumes a minimum
percentage of safe actions to be in the sampled action batch in order
to obtain an action that is both safe and task-aware. However, the
AIRL policy may be overly confident in a task-oriented but unsafe
action, and thus it might not sample an action batch containing even
a single safe action, let alone enough for safe action aggregation.
Therefore, there is a need to devise a strategy for greater exploration
within the action space. To address this, SECURE modifies the
policy action distribution, N(𝜇𝜔 , 𝜎𝜔 ), and conducts resampling
from themodified distribution. To preserve the task completion goal
represented by the action mean, 𝜇𝜔 , we refrain from modifying it to
avoid disrupting the task. Instead, we amplify the standard deviation
in certain directions. To reduce the probability of generating safe
but undesired actions, we selectively increase the standard deviation
specifically along the directions identified as unsafe.

Algorithm 2 and Figure 4 show how our approach finds unsafe
directions and adjusts the standard deviation. First, we sample 𝑁
probing actions (the blue and green arrows in Figure 4) uniformly
from action space (Line 1). To determine the unsafe action direction,
we compute a weighted average of unsafe probing actions (i.e.,
green arrows in Figure 4, identified byℎ𝜔 (·) < 0) where the weights
are given by the negative ℎ values (Line 2). We can then adjust the
standard deviation (i.e., the purple lines) by taking a small step with
size 𝛼 , in the normalized direction of the unsafe actions (Line 3-4).
A new batch of actions is sampled for a subsequent verification
loop conducted by CBF shield. Our Adaptive Sampling approach
provides an efficient way to find safe and effective actions.
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Figure 4: For Adaptive Resampling, we amplify the standard
deviation, 𝜎 , by Δ𝜎 while keeping the action mean, 𝜇. The
amplification is greater in the direction of suspected near-
dangerous regions.

Algorithm 2: Adaptive Resampling
Input :Learned CBF ℎ𝜔 , Current state 𝑠 , Policy output

distribution mean 𝜇 and standard deviation 𝜎 ,
Probing extent 𝑅, Probing batch size 𝑁 , Action
dimention 𝑛, Standard deviation update step size 𝛼

1 {𝑎 𝑗 }𝑁𝑗=1 ∼ U𝑛 ( [−𝑅, 𝑅]𝑛)
2 𝑎unsafe ←

∑𝑁
𝑗=1 [𝑎 𝑗 ·max(0,−ℎ𝜔 (𝑇 (𝑠, 𝑎 𝑗 )))]

3 Δ𝜎 ← |𝑎unsafe |
∥𝑎unsafe ∥ , where | · | denotes element-wise absolute

value and | | · | | denotes the two-norm
4 𝜎′ ← 𝜎 + 𝛼Δ𝜎
Output : 𝜇, 𝜎′

Figure 5: This figure illustrates the 2-D double integrator do-
main. The robot needs to go to the goal avoiding the obstacle.
The blue curve is a feasible path for the robot.

5 VALIDATION OF SECURE’S LEARNED CBF
Notably, a known ground-truth CBF, defined by ℎ = 𝛾 [(𝑥−𝑥obst)2+
(𝑦 −𝑦obst)2 − 𝑟2obst] + 2[(𝑥 − 𝑥obst) · ¤𝑥 + (𝑦 −𝑦obst) · ¤𝑦], serves as a
reference to evaluate the performance of learned CBF, where (𝑥,𝑦)
is the current coordinate, ( ¤𝑥, ¤𝑦) is the current velocity vector, and
(𝑥obst, 𝑦obst, 𝑟obst) represents the obstacle’s position and radius.

We collect a dataset comprising of 800 safe states and 800 unsafe
states by sampling from the state space and labeling each state
with the ground-truth CBF to separate the impact of data quality
and the CBF learning process itself. To test the learned CBF, we
discretize the state space with a grid size of 0.1 within the ranges
[0, 10], [0, 10], [−1.5, 1.5], [−1.5, 1.5], for 𝑥 , 𝑦, ¤𝑥 , ¤𝑦, respectively. As
such, we obtain 100 × 100 × 30 × 30 = 9, 000, 000 test states. We
summarize the evaluation results in Table 1, which shows a low

Table 1: The table shows the means and standard deviations
of the learned CBF’s performance with five different random
seeds for training on the 2D double integrator domain.

Predicted
Ground-truth

Safe States Unsafe States

Safe States 98.1% (1.0%) 4.1% (2.2%)
Unsafe States 1.9% (1.0%) 95.9% (2.2%)

overly-conservative rate (1.9%) and a low under-conservative rate
(4.1%). We observe that SECURE is effective in learning a high-
quality approximation of the ground-truth CBF with limited data.
Additionally, SECURE strikes a good balance between being over-
conservative and under-conservative.

6 SIMULATION EXPERIMENTS
We evaluate SECURE in the following simulated domains:

Demolition Derby Domain: a car is tasked to reach a target
location while avoiding 16 other randomly moving cars (Figure 6).
We utilize the approach from Qin et al. [35] to collect safe demon-
strations by filtering out trajectories with collisions. We generate
near-dangerous states by collecting states where the distance be-
tween the car and an obstacle is below a predefined threshold.

Panda Arm Push Domain: the objective is to push a block
with a high center of gravity to a target location without toppling
it [22] (Figure 7). We collect demonstrations by teleoperation via a
keyboard. We collect three near-dangerous scenarios that knock
down the block: a) pushing the upper part of the block (count: 442),
b) pushing with high velocity (count: 590), and c) pushing the upper
part of the block with high velocity (count: 444).

The number of safe and near-dangerous states for training the
CBF, the number of demonstrations to train the policy, and the ar-
chitecture of the neural network CBFs is tabulated in Table 2. Please
refer to the supplementary for auxiliary details for the experiments.

6.1 Results
We develop two metrics to evaluate task completion and safety:
“Success Rate," which quantifies the rate of successful task comple-
tion, and “Dangerous Rate," which is the rate of hazardous scenarios
encountered. We evaluate both metrics across 100 trajectories with
ten random seeds for both domains. Since SECURE is the first
method to address safety issues for IRL, there is no existing bench-
mark tailored for the same task. Therefore, we select two baselines:
1) behavior cloning (BC), as BC remains a prevalent approach; 2)
the state-of-the-art IRL approach, AIRL, as it has strong capability
to imitate demonstrated behaviors.

The results are summarized in Table 3, showcasing the excep-
tional performance of SECURE. With BC displaying the lowest
performance, our results analysis focuses on comparing SECURE
and AIRL. In the demolition derby domain, AIRL and SECURE have
similar success rates (two one-sided t-test with bound=10, 𝑝 < .01)
but SECURE achieves significantly less dangerous cases (71.2% less,
Mann-Whitney 𝑈 = 0, 𝑝 < .001). In the Panda Arm Push domain,
SECURE not only eliminates all instances of the block toppling over
(comparing with AIRL, Mann-Whitney 𝑈 = 0, 𝑝 < .001) but also
achieves a 43.7% improvement in the successful rate, significantly
outperforming AIRL (Mann-Whitney𝑈 = 99.5, 𝑝 < .001).
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Table 2: Number of safe and near-dangerous states for CBF training, number of task demonstration states for policy learning,
and neural network CBF’s architecture in simulated and real-robot domains. CNN refers to Convolutional Neural Networks
and FC refers to Fully-Connected networks with hidden layer node numbers specified in the parentheses.

Demolition Derby Panda Arm Push Coffee Placing Knife-cutting
Safe states 1024 1476 2500 (per participant) 450

Near-dangerous states 1024 1476 2500 (per participant) 450
Task demo states 52612 246 ≈2000 (per participant) 2000

(user demonstration lengths vary)
CBF NN CNN akin to [35] FC (32, 128, 128, 256, 256, FC (64, 64) FC (32, 128, 128, 256, 256

256, 256, 128, 128, 32) 256, 256, 128, 128, 32)

Figure 6: This figure shows the Demo-
lition Derby domain.

Figure 7: This figure illustrates the
Panda Arm Push domain.

Figure 8: This figure shows the setup
for the real-robot banana-cutting task.

Table 3: This table shows the comparison of SECURE (ours) with BC and AIRL in three domains. The standard deviation is
calculated with ten runs of different random seeds for each algorithm. Bold denotes best performing algorithm.

BC AIRL SECURE (ours) SECURE Comparison with AIRL

Demolition Derby Domain
(Evaluated on 100 Episodes)

Success Rate
(Stdev)

17.9%
(3.6%)

46.8%
(4.7%)

49.2%
(5.6%)

+2.4%
(TOST 𝑝 < .01 with bound=10)

Dangerous Rate
(Stdev)

65.7%
(4.1%)

75.4%
(4.9%)

4.2%
(1.2%)

-71.2%
(Mann-Whiteney𝑈 = 0, 𝑝 < .001)

Panda Arm Push Domain
(Evaluated on 100 Episodes)

Success Rate
(Stdev)

22.7%
(3.2%)

52.9%
(22.6%)

96.6%
(5.3%)

+43.7%
(Mann-Whiteney𝑈 = 99.5, 𝑝 < .001)

Dangerous Rate
(Stdev)

72.3%
(3.5%)

31.3%
(17.9%)

0.0%
(0.0%)

-31.3%
(Mann-Whitney𝑈 = 0, 𝑝 < .001)

Kitchen Cutting Domain
(Evaluated on 10 Episodes)

Success Rate 70% 80% 90% +10%
Dangerous Rate 100% 100% 0% -100%

6.2 Ablation Study of Resampling Method
To evaluate each component’s contribution in SECURE, we conduct
ablation studies in simulated domains. In the first ablation study,
to examine the importance of averaging the safe actions within
the shield, we randomly select a safe action from the batch instead
of averaging all safe actions. For the second ablation study, we
removed the adaptive resampling approach. Instead, we keep re-
sampling with the policy output until a predetermined resampling
limit is reached, uponwhich a random action is selected. The second
ablation allows us to assess the effect of not adapting for resampling.

The results of the ablation study are presented in Figure 9, show-
ing the significant impact of CBF Shield and the adaptive resampling.
In the demolition derby domain, SECURE achieves a significant
improvement (18.0% and 68.2%) in safety with respect to the two
ablations (Kruskal-Wallis 𝐻 (2) = 16.25, 𝑝 < .001; pairwise posthoc

comparisons using Dunn’s test indicates SECURE significantly
outperforms both ablations with 𝑝 < .01 and 𝑝 < .001, respec-
tively), while maintaining similar or higher task performance. In
the Panda Arm Push domain, SECURE eliminates all unsafe execu-
tions (Kruskal-Wallis𝐻 (2) = 17.33, 𝑝 < .001, DUNN posthoc shows
SECURE significantly outperforms both ablations with 𝑝 < .01
and 𝑝 < .001, respectively) as well as achieves a significant task
performance gain of 28.2% and 43.8% with respect to the two abla-
tions (Kruskal-Wallis 𝐻 (2) = 14.56, 𝑝 < .001, Dunn posthoc shows
SECURE significantly outperforms both ablations with 𝑝 < .01 and
𝑝 < .001, respectively). These findings validate our design.

6.3 Sensitivity Analysis
Due to the data-driven nature of SECURE, performance can be im-
pacted by the data size and quality. As such, we conduct sensitivity
analysis for SECURE from three perspectives: 1) dataset size; 2)
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Figure 9: This figure shows the result for the ablation study.
The error bars represent standard deviation. ** denotes 𝑝 <

.01. *** denotes 𝑝 < .001.

label imbalance; and 3) noisy labels, and show SECURE is robust to
non-ideal data.
Dataset Size: In the dataset size sensitivity test, we reduce the
overall dataset size for CBF learning while preserving the ratio of
safe and unsafe states. We observe SECURE is robust to dataset size
in easier tasks, such as Demolition Derby, even with only 1% of
the original dataset. The performance drops for harder tasks (e.g.,
Panda Arm Push) when the dataset size is reduced to 10%.
Label Imbalance: In the label imbalance test, we reduce the num-
ber of unsafe states in observance of the relative difficulty in col-
lecting near-dangerous demonstrations. The results demonstrate
that SECURE is empirically robust to a data imbalance ratio of 1:2
in Demolition Derby and a ratio of 1:4 in Panda Arm Push. Beyond
these ratios, the learned CBF becomes under-conservative due to
the overwhelming number of safe states within the dataset.
Noisy Data: In the noisy data test, we consider the possible noisy
data collection process with naïve user by flipping safe/unsafe labels
within the dataset to examine SECURE’s robustness. The results
show SECURE is robust to noisy data in both domains, exhibiting
strong performance even when up to 50% of the labels are wrong.

7 REAL-ROBOT EXPERIMENTS
We conduct two real-robot experiments to demonstrate SECURE’s
applicability to roboticists and users, respectively. In the first case
study, we (roboticists) provide demonstrations for a knife-cutting
task and evaluate the success of SECURE in avoiding cutting our
arms. In the second user study, we ask users to demonstrate in a
coffee placing task and show SECURE’s success on users’ ratings on
task completion, safety, and perceived safety. The number of safe
and near-dangerous states for training the CBF for each domain,
along with the number of demonstrations used to train the policy,
and the size of the neural network CBF are tabulated in Table 2.

7.1 Demonstration with Roboticists
In this demonstration, we compare SECURE with benchmarks in a
tofu-cutting task in close proximity to a human. We (roboticists)
provide a set of safe demonstrations via kinesthetic teaching. Be-
cause of the possible danger the knife may pose, we collect 450 near
dangerous states of close proximity of the robot and human arms
from experimenters, ensuring they adhere to all necessary safety

(a) Behavior Cloning: Robot ignores human arm, leading to arm-knife contact.

(b) AIRL: Robot ignores human arm, leading to arm-knife contact.

(c) SECURE (ours): Robot yields for human arm, then safely continues.

Figure 10: Timelapse of execution of SECURE and baselines
on kitchen cutting task. Unlike baselines, SECURE is able to
succesfully finish the taskwithout cutting the nearby human.

Figure 11: Setup for user study. Robot is tasked to place coffee
to pink square, and human is tasked to get a book and turn
to certain chapters.

precautions. Following previous CBF literature [35], we assume the
robot’s forward kinematics model is available.

Similar to the simulated domain experiments, we evaluate SE-
CURE against BC and AIRL with ten episodes and calculate the
success rate and dangerous rate metrics. In this cutting task where
avoiding collision is of utmost importance, SECURE achieves zero
collision cases and 9 successful episodes, surpassing the baseline
methods, BC and AIRL (Table 3 and Figure 10). The results demon-
strate the safer execution of SECURE, effectively eliminating col-
lisions without compromising task completion. Recordings of SE-
CURE’s execution can be found in the supplementary video.

7.2 User Study
We conducted a user study to understand non-roboticist users’ abil-
ities to provide helpful demonstrations for SECURE. In this study,
we create a context where the user needs to prepare for a lecture
by reaching for one out of four books and turning to certain pages,
while the robot serves coffee for the user (Figure 11). In the first ses-
sion of the experiment, human participants first demonstrate how
to serve the coffee (i.e., the task) via kinesthetic teaching. The user
then provides demonstrations for safe/unsafe human arm positions
with respect to the robot and safe/unsafe cup tilt angles. Specifi-
cally, to collect safe and unsafe demonstrations, we replay the user’s
kinesthetic teaching trajectory on the robot, pause at four states,
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Table 4: This table shows the task (out of 105), safety (out
of 42), and perceived safety (out of 42) ratings in the user
study for four conditions. The ratings are reported as mean
(standard error). Bold denotes the highest score condition.

Data Policy Individual Grouped
For CBF Individual Grouped Individual Grouped

Task 73.3 (5.35) 77.1 (4.61) 81.6 (5.68) 73.6 (5.72)
Metric Safety 31.3 (3.31) 33.3 (2.74) 35.4 (2.20) 35.3 (2.48)

Perceived
Safety 33.2 (2.92) 35.4 (2.14) 36.4 (1.83) 35.8 (2.04)

and invite the participant to provide safe/unsafe demonstrations
for arm positions by moving their arm around the robot and for cup
tilts by changing the robot end effector tilt angles which is holding
the cup. We collect five kinesthetic teaching trajectories and the
entire session lasts less than one hour for each participant. As such,
we obtain task demonstrations and the user’s defined safe/unsafe
demonstrations in the first session of the experiment.

Once we finish the demonstration collection in the first session
with all participants, we prepare four different setups of data to
train SECURE’s policy and CBF. In order to see how different com-
ponents within SECURE respond to amount of data available and
whether data is personalized for each user, we consider a 2 by 2
within-subject design with the two factors being policy training
data (grouped vs. individual) and CBF training data (grouped vs.
individual). The grouped condition represents pooling all partici-
pants’ data for training, while the individual condition means only
using one participant’s own data for training. As such, we obtain
two behavior-cloning trained policies and two CBFs.

In the second session of the experiment, the participant is tasked
to accomplish the task to reach for a book while the robot places
the coffee. We test twelve episodes with each participant, with
three episodes corresponding to each of the four conditions. After
each episode, the participant evaluates the robot’s task completion,
safety, and perceived safety via a 10-item Likert Scale. We depict
the experiment procedure in the supplementary video for a better
visual understanding of the setup.

The user study was approved by the Institutional Review Board
and we recruited twelve participants (ten male, two female, three
within age range 18-25 and seven within age range 26-35). We sum-
marize the results in Table 4. In all four conditions, we demonstrate
SECURE successfully accomplishes the task (i.e., coffee placing)
while being safe with the human subjects who reach for books and
have close interaction with the robot, evidenced by the high ratings
in task, safety, and perceived safety. Comparing the four conditions,
the grouped policy and individual CBF yields the highest ratings on
all three metrics. We hypothesize the result may suggest the utility
to learn policy from larger number of task demonstrations as well
as the value of personalized training for CBF. Users commented on
executions with individual CBF as “P10: exactly how I defined my
comfort zone” and “P12: it is not unsafe nor overly safe” compared
with their comments regarding grouped CBF as “P7: it felt like the
robot was aiming the coffee cup to my face” and “P2: the robot is
overly safe - as long as my arm is visible, it tries to avoid me even
if there is large distance”. However, due to the limited number of
subjects in our study, we could not reach a conclusion regarding the

performance of grouped vs. individual SECURE without obtaining
statistical significance, but we believe our study still demonstrates
that that SECURE is successful in the hands of users.

8 DISCUSSION AND LIMITATIONS
The success of SECURE shown in previous sections is grounded in
the novel integration of neural CBFs, IRL, and adaptive sampling.
SECURE enables the robot to acquire an effective barrier function,
which plays a crucial role in shielding the system from dangerous
states. By incorporating CBF Shield, SECURE ensures that the sys-
tem remains within a safe state and avoids potential hazards, and
that the action executed is in line with the task objective. Further-
more, our adaptive sampling increases the efficiency in finding safe
actions. Overall, the proposed SECURE method stands out among
all the ablations and design choices and presents a promising par-
adigm for empowering end-users to teach robots new behaviors
while maintaining their definition of safety.

SECURE operates under a foundational set of assumptions. SE-
CURE assumes all states within the task demonstrations are safe,
which could be invalid if the user provides demonstrations con-
taining undesirable behaviors. Additionally, SECURE assumes that
users can provide a collection of undesired states. Nonetheless, we
acknowledge that this presumption might not be feasible in certain
domains (e.g., autonomous driving, where demonstrating undesir-
able states could jeopardize human safety). Therefore, the proposed
algorithm, SECURE, offers empirical safety assurances rather than
absolute safety guarantees. Additionally, SECURE relies on access
to the transition dynamics of the domain to assess the safety of
proposed actions. We recognize that establishing these transition
dynamics in complex domains can present considerable challenges.

In future work, we aim to explore methods to enable active in-
quiries about uncertain regions, opening up possibilities for proac-
tive learning and further enhancing safety. Another future direction
is to investigate user’s perception towards grouped vs. individual-
ized policies and safety modules in a larger-scale user study.

9 CONCLUSION
We introduce a novel Safe LfD framework, SECURE, which com-
bines Control Barrier Functions (CBF) with Inverse Reinforcement
Learning (IRL) methods to learn a safe policy from demonstrations.
By integrating a learned CBF function from human demonstrations,
SECURE establishes a CBF Shield that ensures the IRL policy avoids
unsafe regions. Through empirical evaluations in two simulated
domains and two real robot tasks, we demonstrate the effectiveness
of SECURE. SECURE achieves comparable or superior task per-
formance compared to traditional IRL methods while significantly
reducing the number of unsafe cases.
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