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Summary

As robots and AI systems become more prevalent in every-day life, humans and machines

will have to work closely together. Robotic devices will be used to support human health,

service robots will operate alongside humans in homes, and autonomous vehicles will have to

safely drive end-users to their destination. Yet, humans exhibit a high degree of heterogeneity

which poses a challenge for robotic systems that are tasked with learning from and supporting

humans. For example, in a medical setting, individual patients are likely to have different

needs and varying biology that must be accounted for. Autonomous Vehicles (AVs) will have

to learn about the differing preferences of end-users and adapt accordingly. Because of this

human heterogeneity, one-size-fits-all algorithms will not suffice in many human-machine

interaction scenarios. Instead, to effectively support humans, machines must be capable

of recognizing individual desires, abilities, and characteristics and adapt to account for

differences across individuals. This thesis focuses on the development of personalized

algorithms that enable machines to better support and work with humans. Specifically, I aim

to develop and research novel techniques for safely and efficiently supporting heterogeneous

humans across various robotic domains. In this work, I develop data-driven, personalized

frameworks in healthcare, learning from demonstration, and autonomous driving domains

to account for heterogeneity amongst end-users.

In this thesis, I first investigate the question of how robots can best learn from human

demonstrators who are suboptimal and heterogeneous in their suboptimality. I present my

work on Mutual Information Driven Meta-Learning from Demonstration (MIND MELD), a

framework enabling personalized robotic learning from heterogeneous human demonstrators

via a learned, personalized embedding. I then extend this approach with Reciprocal MIND

MELD and introduce a framework to provide personalized feedback to suboptimal human

demonstrators to improve upon their ability to provide high quality demonstrations. Humans

are not only heterogeneous in terms of their abilities when teaching machines; they also

xxiv



tend to differ in their preferences for various machine behaviors. To account for differing

preferences amongst end-users, I draw upon our Reciprocal MIND MELD work and in-

troduce Manipulating Autonomous Vehicle Embedding Region for Individuals’ Comfort

(MAVERIC), an approach for personalizing driving styles of AVs to fit the preferences of

end-users via personalized embeddings. In my final work, I consider personalization in

safety critical domains such as healthcare. I introduce Safe Meta-Active Learning (Safe

MetAL), an approach for determining the optimal, personalized parameter settings for a

Deep Brain Stimulation (DBS) patient.

The contributions of this thesis are as follows:

• Creation of a novel meta-learning architecture for learning from heterogeneous,

non-expert demonstrators (HRI ’22) [1, 2]: I introduce Mutual Information-driven

Meta-learning from Demonstration (MIND MELD), which meta-learns a person-

specific mapping from human-provided, corrective labels to idealized labels in a

robot-centric learning from demonstration paradigm.

• Development of a framework for teaching heterogeneous humans to be better

demonstrators via personalized feedback (CoRL ’22) [3]: I propose Reciprocal

MIND MELD, which builds upon MIND MELD and provides verbal feedback to

provide personalized corrections for teacher suboptimality based upon the learned

personalized embedding, thereby improving the teacher’s ability to provide high

quality demonstrations.

• Creation of a data-driven framework for personalized autonomous driving [4]:

I develop Manipulating Autonomous Vehicle Embedding Region for Individuals’

Comfort (MAVERIC) in which we learn to mimic an end-user’s driving style via a

learned personalized embedding and investigate the factors impacting the effect of

homophily to optimize autonomous vehicle driving style.

• Development of a meta-active learning framework for efficient and safe person-

xxv



alization in a healthcare setting (IROS ’22) [5]: I introduce Safe MetAL (Safe

Meta-Active Learning), a hybrid meta-learning and mathematical programming ap-

proach that enables efficient, safe, and computationally fast learning of the optimal

parameter settings for a DBS patient’s brain
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CHAPTER 1

INTRODUCTION

1.1 Motivation

A fundamental aspect to the survival of the human species is human diversity [6]. Diversity

is positively correlated with survival due to a number of factors. Greater biodiversity within

a species leads to greater stability due to increased robustness to disease, climate changes,

and other disturbances [7]. Diversity engenders specialization and the division of labor

which improves the population’s resiliency and sustainability. While genetics play a large

role in diversity, plasticity and the ability to change in response to the environment also

fosters heterogeneity within a population [8]. The human brain in particular has a large

plastic potential which is one of the main drivers behind the high degree of heterogeneity

amongst humans beings. Genetics lay the foundation for diversity at birth whereas plasticity

promotes increased diversity during development and throughout the lifespan [9].

This diversity, so crucial to the survival of the human species, poses a unique challenge

to machines that are designed to interact with human end-users. The high degree of

heterogeneity amongst humans means that each end-user is a unique system that the machine

must learn about and adapt to so as to optimize the human-machine relationship. There

are many latent variables that govern human preferences, behavior, and decision making

that machines must take into consideration. For example, an individual’s personality and

prior experiences may impact their level of trust in an autonomous system. Biological

differences stemming from both genetics and environment influence how an AI system can

best respond to and support a patient in a healthcare setting [10]. In a human-machine

team, an individual’s level of skill at accomplishing a task is often an unknown variable.

To optimize the human-machine team, the machine must learn about the skill of its human
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partner so as to adjust its behavior to benefit the team.

Because of the differences amongst individuals, one-size-fits-all approaches are not the

best solution for optimizing human-machine interaction. Instead, personalization is required

to promote engagement, improve the overall perception of the machine, and to optimize the

human-machine relationship [11]. To optimize their behavior for an individual end-user,

human-machine systems must be capable of personalizing and dynamically adapting to the

specific end-user they are working with so as to account for individual differences. There are

two methods by which a machine can adapt to an individual end-user: the machine can either

be adaptable or adaptive [12]. Adaptable systems provide the end-user with the means to

alter the system to meet their needs. Adaptable systems require less a priori knowledge

about the end-user and therefore can be easier to design and implement. However, in such a

paradigm, the burden falls to the end-user to actively change the behavior of the system to

fit their preferences and needs. This additional requirement can pose challenges due to the

increased workload, general inconvenience, and the inorganic nature of the interaction.

Adaptive systems on the other hand actively learn about, create a model of, and au-

tonomously adjust to the end-user’s needs and preferences. Because this dynamic adaptation

results in more organic and less burdensome interactions, prior work has shown that adaptive

systems are viewed as more competent and are more relied on by end-users, [12]. The

downside is that these systems can be more prone to failure due to lack of data, low-quality

data, or ineffective learning algorithms. However, because prior work has shown that end-

users prefer adaptive systems, in my thesis, I propose that we should strive to create robust,

data-driven approaches capable of actively and dynamically personalizing to the needs and

preferences of end-users.

As shown in Figure 1.1 there are many applications in which personalization of human-

machine systems for individuals is necessary and each application requires the machines

to reason about different aspects of the end-user and to optimize for different objectives.

When an individual purchases a new robot and brings it to their home, they will want the
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Figure 1.1: This figure shows several domains (i.e., autonomous driving, learn-
ing from demonstration, and healthcare) in which personalization of the ma-
chine is necessary to optimize the relationship with the human. (Courtesy:
https://www.wired.com/story/news-rules-clear-way-self-driving-cars/, http://www.cairo-
lab.com/papers/hri20m.pdf, https://www.mdpi.com/2079-9292/11/6/939)

robot to accomplish tasks with unique objectives and challenges specific to their needs

and environtments [13]. To learn how to accomplish these novel tasks, robots can utilize

Learning from Demonstration (LfD) techniques. In LfD, the robot learns a policy that

maps the state of the world to how the robot should act to accomplish the human-specified

or demonstrated task [14]. LfD techniques allow a non-expert, non-roboticist to teach a

robot without the need for programming experience or robotics knowledge [14]. Yet, when

teaching a robot, humans often exhibit various demonstrations styles, preferences, and

suboptimalities [15, 16]. Therefore, robots will not only have to be capable of learning

unique tasks to suit the needs of individuals but will also have to take into account differing

demonstration styles and suboptimal tendencies so as to optimally learn from heterogeneous

demonstrators.

Autonomous Vehicles (AVs) are another prominent example of an autonomous system

that must adapt to the end-user. Humans exhibit diverse driving styles and naturally will

want their AV to display a driving style that matches their expectations and preferences.

Alternatively, in healthcare domains, human-machine systems must consider the individual’s

biology and adapt to the various needs of the individual patient while also ensuring patient

safety. In each domain, the machine must consider different characteristics about the

individual and account for various driving styles.

For systems to be capable of autonomously adapting to individual end-users, these
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systems will need to gather data about the end-user to provide insight into the user’s

personality, biology, preferences, and other relevant characteristics. This data can be

gathered either by actively probing the end-user for information or passively observing

the end-user’s behavior and interactions. The downside to personalized approaches is that

gathering enough data to train individual models for each human end-user is costly and often

not practical. Constantly querying an end-user for information is taxing and burdensome to

the end-user and passively observing the end-user may not provide adequate information

[17]. Fortunately, while humans are heterogeneous in many respects, they also tend to

share similarities with other humans in the population. For instance, while personality

differs amongst individuals, personality falls along a spectrum and therefore, an individual’s

proximity to others offers rich information about the individual in question. The way in

which one highly conscientious individual operates in the world will likely share many

similarities with others high in trait conscientiousness.

Human-machine systems that consider the individual end-user as an isolated entity with-

out viewing them within the context of the larger population neglect important information

that may be important for determining the optimal behavior. When determining how best to

interact with an end-user, human-machine systems should instead capitalize on data from

both the individual in question as well as the relevant population. Systems that do so will

have a greater ability to optimize for individual end-users by gathering salient information

from both the individual and the context of the individual within the population.

Based upon insights from prior work, in this thesis, I identify three key challenges that

must be considered when creating personalized, autonomous systems. First, these systems

must be capable of gathering sufficient data so as to effectively learn about an individual and

personalize appropriately. Additionally, they ideally should do so in a minimally invasive

manner. I propose that, to gather a sufficient amount of data, systems should capitalize on

both information derived from the population as well as the individual in question. Instead

of learning from scratch with each new individual, systems should utilize prior information
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derived from previous interactions in a similar scenario and from previous end-users to

inform their personalized model of the target end-user. By doing so, machines will be able

to effectively learn and adapt to an individual while reducing the number of queries that the

system must make of the end-user.

Second, machines must be capable of personalizing to end-user in diverse domains. As

discussed above there are many different scenarios and situations in which personalization

is necessary and each of these domains requires different considerations and optimization

objectives. For example, in a human-machine team, the machine should be personalized to

account for the human’s suboptimality with respect to the task objective. However, in the

case of a fully autonomous vehicle, the way in which the human is suboptimal with respect

to driving is not important; instead the individual’s preferences for different driving styles or

routes should be optimized.

Third, in safety-critical domains, machines must consider the safety of the end-user

when providing personalized support. Healthcare is an example of a domain in which both

safety and personalization are critical considerations. Machines and AI systems designed

to support patients must be equipped with additional information, typically provided by

domain experts, about how the machine’s behavior may affect the safety of the patient.

For example, in the domain of DBS, probing for information about the optimal parameter

settings may cause unwanted side effects for the patient [18]. Therefore, domains such

as healthcare require AI systems to reason about two often conflicting objectives - both

maximizing benefits of treatment while also reducing potential side effects or dangerous

outcomes.

In my work, I aim to both provide human-machine systems with the ability to personalize

to fit the needs and preferences of end-users across many domains while simultaneously

rigorously validating these methods in large human subject studies. Much of the prior work in

personalization focuses on only one of these aspects. Prior work has either employed Wizard-

of-Oz studies to determine end-users’ reaction to a certain robotic behavior without actually
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Figure 1.2: This figure shows an overview of my thesis. In my thesis I aim to develop
algorithms to provide autonomous systems with the ability to learn from both the population
and the individual to inform personalized interactions while also ensuring safety of the
end-user.

creating a framework to produce this behavior [19, 20, 21] or has proposed frameworks

to produce specific behaviors without validating the approach in a large human subjects

study [22, 23, 24]. While there are examples of prior work that do both, the field lacks

algorithmic approaches for human-machines interaction which have been validated in large

human-subject studies. In my work, I aim to fill this gap and develop algorithms to produce

personalized behavior while also rigorously validating these approaches with large human

subject experiments.

Figure 1.2 shows an overview of my thesis in which I enable machines to 1) learn from

both the population as well as the individual to effectively personalize their behavior, 2) do

so in a variety of domains with diverse objectives, and 3) consider safety of the end-user. In

my thesis, I additionally aim to rigorously validate the novel approaches I develop in large

human subject studies.
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1.2 Thesis Statement and Contributions

I present my thesis statement: Personalized algorithms that account for heterogeneity

amongst individuals will improve upon the human-machine relationship across many

domains including healthcare, autonomous vehicles, and learning from demonstration

paradigms.

To support this claim, my work makes the following contributions summarized in

Subsection 1.3.1-Subsection 1.3.4.

1.3 Outline of Dissertation Document

This thesis is organized as follows. Chapter 2 provides background on prior work and

relevant approaches in personalization for human-machine system as related to my contribu-

tions discussed in Section 1.2. Chapter 3 and Chapter 4 focus on my frameworks Mutual

Information Driven Meta-Learning from Demonstration (MIND MELD) and Reciprocal

MIND MELD for personalized learning from suboptimal demonstrators. Chapter 5 discusses

an extension of this approach for personalization of AV driving styles called MAVERIC.

In Chapter 6, I seek to impose safety constraints when adapting to end-users in safety

critical domains via our approach called Safe MetAL. I then discuss psychometric-based

recommendation for best practices for human subject studies that have informed my research

in Chapter 7 and provide concluding remarks in Chapter 8. Lastly, I discuss directions for

future research in Chapter 9.

In Subsection 1.3.1-Subsection 1.3.4, I provided an overview of each of the novel

contributions of my thesis.

1.3.1 Mutual Information Driven Meta-Learning from Demonstration

For robots to perform novel tasks in the real-world, they must be capable of learning from

heterogeneous, non-expert human teachers across various domains. This capability enables
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robot to personalize their behavior to fit the needs of users in diverse environments and

learn new skills and tasks on-the-fly. Yet, novice human teachers often provide suboptimal

demonstrations, making it difficult for robots to successfully learn [25]. Furthermore,

humans tend to be heterogenous in the way in which they are suboptimal, making a one-

size-fits-all approach impractical. Therefore, to effectively learn from humans, we must

develop personalized learning methods that can account for teacher suboptimality and can

do so across various robotic platforms.

To successfully learn from heterogeneous and suboptimal demonstrators, I propose to

learn the “suboptimal style” (i.e., suboptimal tendency) by which an individual provides cor-

rective feedback. Using this information, we map suboptimal, human feedback to feedback

closer to optimal, thus improving the ability of the robot to learn from human demonstrators.

I call this approach Mutual Information Driven Meta-Learning from Demonstration (MIND

MELD) [2]. MIND MELD meta-learns a personalized embedding describing an individual’s

feedback style and maps suboptimal feedback to better feedback, conditioned on this learned

style. I demonstrate MIND MELD’s ability to outperform prior work in both human- and

robot-centric LfD in a human subjects study.

Approach: To learn about the way in which an individual demonstrator is suboptimal

in providing demonstrations, I design calibration tasks. These tasks are Wizard-of-Oz [26]

rollouts representative of a policy learned via LfD and are drawn from the distribution

of possible tasks that the demonstrator may encounter [27]. I then calculate the optimal,

corrective feedback (i.e., steering angle of the car) for each point in time along each

calibration trajectory. Participants provide corrective feedback by turning the steering wheel

in the direction they desire the car to go for each of the calibration tasks. My approach

utilizes the data gathered from the calibration tasks to train the MIND MELD architecture.

My MIND MELD network architecture simultaneously learns the personalized em-

bedding, w(p), describing the way in which an individual is suboptimal (e.g., over- or

under-correcting in a driving simulator) and the difference between the optimal corrective
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label and the participant provided label. Via variational inference, I maximize a lower

bound on mutual information between d(p)t and w(p), ensuring that w(p) can represent various

and distinct feedback styles. Thus, I train w(p) to capture salient information about an

individual’s style by utilizing the variational lower bound.

Results and Contributions: I first evaluate MIND MELD’s ability to improve upon

LfD in a synthetic study. In this study, I create artificial calibration tasks, optimal labels,

and demonstrator data. I then train the MIND MELD architecture on this data to learn the

personalized embeddings and network parameters. Our results show that we are able to

improve upon suboptimal labels by 61% on the training tasks and 55% on holdout test tasks.

Additionally, I demonstrate that MIND MELD learns meaningful representations of the

demonstrator’s stylistic tendencies.

I next illustrate MIND MELD’s ability to outperform prior work in both human-centric

and robot-centric LfD in a human-subjects study. I recruit 76 training participants to

complete sixteen calibration tasks which we use to learn the parameters, θ, ϕ, and ϕ′ of the

MIND MELD network. I then recruit 42 testing participants who complete the calibration

tasks and a holdout test task. I demonstrate that MIND MELD is able to achieve a higher

probability of reaching the goal throughout the course of the study compared to baseline

approaches. Additionally, MIND MELD achieves a lower average distance from the goal.

In this work I demonstrate a personalized framework that enables robots to learn about

the way in which an individual demonstrator is suboptimal when teaching a robot. My

MIND MELD framework is able to effectively map various suboptimal demonstration styles

to better demonstrations. I show that, by adapting to the individual demonstrator, a robot

that learns via my MIND MELD algorithm is able to outperform baseline approaches.
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1.3.2 Personalized Teaching via Reciprocal Mutual Information Driven Meta-Learning

from Demonstration

In my MIND MELD work, I demonstrated that humans provide both suboptimal and

heterogeneous demonstrations and that a personalized, data-driven approach can effectively

improve upon this suboptimality. However, by correcting for suboptimality under-the-hood,

the human demonstrator will never learn how to provide higher-quality demonstrations and

MIND MELD will likely only reinforce suboptimal tendencies. This lack of transparency

may pose problems when the demonstrator provides demonstrations in a different robotic

domain that does not have the ability to correct for suboptimality. Furthermore, as shown

in prior work, humans may generalize better to out-of-distribution tasks than a machine

learning algorithm and, therefore, it is advantageous for novice human to learn how to

become better demonstrators [28].

To solve this problem, I posit that robots should be capable of working with their

human demonstrator and providing personalized feedback to help the demonstrator to better

understand how to provide high-quality demonstrations. By doing so, human demonstrators

will be more likely to succeed in teaching robots in a wide range of tasks across various

domains. This reciprocal teaching paradigm allows human demonstrators to effectively

teach agents while simultaneously learning how to become better demonstrators.

Approach: To teach humans to become better demonstrators, I expand upon our MIND

MELD framework and utilize the personalized embedding learned via MIND MELD as a

proxy for suboptimality which I then translate into meaningful and constructive feedback

for the demonstrator. Our approach to teaching humans how to become better demonstrators

consists of three components: 1) a semantically meaningful personalized embedding space

which describes the way in which the individual is suboptimal, 2) robotic feedback to

communicate to the demonstrator the way in which the demonstrator is suboptimal, and 3)

an ability to update an individual’s personalized embedding after receiving robotic feedback.

Semantically Meaningful Embedding Space: I demonstrated in prior work [1, 2] that our
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MIND MELD architecture can learn personalized embeddings that correlate with suboptimal

stylistic tendencies. In the driving simulator domain, I showed that the embeddings corre-

late with a participant’s tendency to over-/under-correct and provide delayed/anticipatory

feedback. I utilize this knowledge about where the demonstrator falls within the embedding

space to translate a demonstrator’s personalized embedding into robotic feedback.

Robotic Feedback: To determine the feedback that the robot should provide to the

human, I calculate the distance along the semantically meaningful dimension between the

personalized embedding, w(p) and the optimal embedding, w∗. Because the MIND MELD

architecture outputs the difference between the participant’s corrective labels and the ground

truth, the optimal embedding is defined as the embedding which minimizes the output of

the MIND MELD architecture. The robot then provides feedback that is proportional to the

distance from the optimal embedding. The robot continually provides feedback until the

demonstrator’s teaching quality has sufficiently improved.

Updating Embedding: To determine when the demonstrator’s embedding has moved

sufficiently close to the optimal embedding, we must update the personalized embedding

after each iteration of robotic feedback. To do so, we train a Long-Short Term Memory

Network (LSTM) architecture to approximate the new embedding based on the demonstra-

tor’s recent corrective feedback. This method enables us to dynamically update the robot’s

understanding of the teacher’s suboptimality and adapt feedback accordingly.

Results and Contributions: To evaluate the ability of Reciprocal MIND MELD to

improve upon a teacher’s ability to provide demonstrations, I first conduct a human subject

study in which I show that, given robotic feedback, we can shift a participant’s learned

embedding towards the optimal embedding in the over-/under-correcting dimension. I

evaluate how the quality of demonstrations changes after receiving cooperative, adversarial,

and no feedback in a between-subjects study. I find that cooperative feedback shifts a

participant’s embedding significantly closer to that of the perfect demonstrator, adversarial

shifts the embedding significantly farther away and no feedback has little effect on the
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embedding.

Next, I conduct a study to investigate how best to provide feedback to improve upon

suboptimality in multiple dimensions (i.e., over-/under correcting and anticipatory/delayed).

To do so, I conduct a between-subjects study in which participants experience simultaneous

feedback (feedback is presented for both dimensions at the same time), greedy feedback

(feedback is presented for only the worst dimension), and no feedback. After participants

receive multiple rounds of feedback, I find that simultaneous results in significantly greater

improvements in demonstration quality.

After demonstrating that Reciprocal MIND MELD can shift a participant’s personalized

embedding via robotic feedback, I lastly conduct a study showing that we can estimate

the demonstrator’s new personalized embedding after robotic feedback without having

participants redo the calibration tasks. Additionally, I find that providing robotic feedback

results in better learning outcomes for an agent and that providing robotic feedback in

multiple dimensions simultaneously to the human demonstrator results in the agent achieving

a lower average distance from the goal.

In this work, I contribute a personalized teaching framework which learns about the way

in which an individual demonstrator is suboptimal and provides personalized feedback to

the demonstrator. Our framework is capable of estimating a participant’s embedding on the

fly and results in improved demonstrations and learning outcomes for an agent.

1.3.3 Manipulating Autonomous Vehicle Embedding Region for Individuals’ Comfort

In LfD, end-users tend to be heterogeneous in both their preferences and the way in which

they are suboptimal when demonstrating these preferences. In our Reciprocal MIND

MELD work, I introduced an approach for personalized teaching to address the problem

of suboptimality in LfD. In this next work, I investigate how we can learn about an end-

user’s preferences and adapt accordingly. One domain in which user preference is an

important consideration is autonomous vehicles. Prior work has shown that personalization
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of autonomous vehicles (AV) may significantly increase trust, use, and acceptance [29, 30].

In particular, I hypothesize that the similarity of an AV’s driving style compared to the

end-user’s driving style will have a major impact on end-user’s willingness to use the AV.

To investigate the impact of driving style on user acceptance, I 1) develop a data-driven

approach to personalize driving style and 2) demonstrate that personalization significantly

impacts attitudes towards AVs. My approach learns a high-level model that tunes low-level

controllers to ensure safe and personalized control of the AV. The key to our approach is

learning an informative, personalized embedding that represents a user’s driving style. My

framework is capable of calibrating the level of aggression so as to optimize driving style

based upon driver preference. Across two human subject studies (n = 54), I first demonstrate

that our approach mimics the driving styles of end-users and can tune attributes of style

(e.g., aggressiveness). Second, I investigate the factors (e.g., trust, personality etc.) that

impact homophily, i.e. an individual’s preference for a driving style similar to their own.

Approach: To personalize the driving style of an AV, I create a deep learning architecture

which simultaneously learns the personalized high-level controller parameters for low level

controllers while also learning a personalized embedding describing the driving style of

the end-user. I train this network by collecting data from the end-user driving a vehicle.

The high-level control parameters predicted by the neural network are fed into low-level

controllers which execute lane changes, and maintain velocity and following distance.

I utilize the Toyota Research Institute (TRI) driving simulator which is a high-fidelity

simulator with a 6-DOF platform.

Prior work has shown that the level of aggression that an AV exhibits has a large effect

on preference for the driving style. To test this hypothesis, in this work, I additionally

investigate the impact on end-user preference of altering the AV’s level of aggression. Do

accomplish this objective, I add an additional network head to our personalized network to

predict the subjective aggressive style of an end-user. This allows us to shift an end-user’s

personalized embedding within embedding space to increase or decrease aggressiveness
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while holding other factors constant.

Results and Contributions: I conduct a human subjects study in which we observe

a participant’s driving style and learn a personalized embedding from data collected of

their driving. The participant then experiences a Mimic condition in which the AV utilizes

their embedding to mimic their own driving style, an Aggressive condition in which the AV

exhibits a more aggressive driving style, and lastly a Cautious condition in which the AV

exhibits a more cautious driving style.

We find that the Mimic condition generates driving styles consistent with end-user styles

(p < .001) and participants rate our approach as more similar to their driving style (p = .002).

Interestingly, we find that a large number of participants preferred a driving style different

from their own. We find that personality (p < .001), perceived similarity (p < .001), and

high-velocity driving style (p = .0031) significantly modulate an individual’s preference for

a driving style different from their own.

In this work, I contribute a data-driven approach for personalizing the driving style of an

AV. I demonstrate that we are able to successfully mimic the driving style of an end-user

as well as produce more aggressive and more cautious behavior. Lastly, I investigate the

factors that impact the effect of homophily and find personality, high-velocity driving style,

and perceived similarity to be important factors.

1.3.4 Safe Meta Active Learning for Deep Brain Stimulation

In my work on MIND MELD, Reciprocal MIND MELD, and MAVERIC, I introduced

approaches to personalize robot behavior and account for both heterogenous suboptimality

and preferences of end-users. However, there are many domains which require machines

to adapt to end-users while also considering the safety of the end-user. For example, in

an AV domain, we must ensure safety of the passenger. I accomplish this goal in our

MAVERIC framework by setting safe bounds on the outputs of our neural network (e.g.,

following distance must be greater than a safe threshold). However, in some domains such
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as healthcare, a one-size-fits-all definition of safety may not be the best solution. Instead,

machines must be capable of reasoning about the safety of individual patients and adapting

safety constraints accordingly.

To address this problem, I introduce a personalized algorithm which explicitly reasons

about safety of an individual end-user in a healthcare setting. In this work, I am motivated

by the problem of DBS. The domain of DBS exemplifies many of the challenges faced in

human-machine interaction; the machine must be capable of understanding and dynamically

adapting to the patient to ensure patient health and safety. DBS is a cutting-edge approach

to treating otherwise intractable epilepsy that cannot be controlled via pharmacological

methods. Surgeons currently employ a manual trial-and-error process to find control settings

to reduce seizure frequency. However, there is no standard mapping from parameter values to

reduction in seizures that applies to all patients. The optimal stimulation parameter settings

can depend on the placement of the device in the brain, the anatomy of an individual’s brain,

and other confounding factors. Further, a latent subset of parameters can cause negative

side-effects. Therefore, there is a need for an approach to efficiently learn the optimal DBS

parameter setting for individual patients while also ensuring patient safety.

Approach: I describe our problem set-up in the context of efficiently selecting the

optimal parameter setting for DBS in rat models. Rat models are commonly used to gain a

better understanding of disease mechanisms and treatments that are unsafe to test in humans

[31]. In keeping with [18], I create simulation environments for six rats where, at each

DBS parameter setting, the cognitive function of a rat, as described by a “memory score”

was measured and dissimulated into a digital twin of the rat. The task is to determine the

DBS parameters (e.g., signal amplitude) in the simulation environments that maximize each

rat’s memory scores (i.e., ability to recall the location of different objects) without causing

unwanted side effects (e.g., memory deficits or seizures). Memory deficits and seizures are

indicated when the memory score drops below zero.

Safe Meta-Learning Architecture - Our architecture achieves three key objectives: (1)

15



efficiently learning the optimal parameter setting via active learning, (2) incorporating

knowledge from the patient population via meta-learning, and (3) ensuring patient safety

through safety constraints imposed via a mixed integer linear program (MILP) that are based

on the machine’s understanding of the patient model.

Active Learning - To efficiently learn the optimal parameter setting for an individual rat,

we need to select the set of DBS parameters that will provide maximal information when

learning the model of a rat brain. Our active learning acquisition function describes the

amount of information gained when applying a DBS parameter given the parameter-brain

state history of the rat. Intuitively, we want to choose the set of DBS parameters that inform

us most about the mapping from parameters to memory score, conditioned on the set of

parameters and resultant memory scores that the rat has already experienced.

Meta-Learning - Prior approaches [32, 33] have utilized heuristics to quantify informa-

tion gain. However, these heuristics are only proxies for true information gain and may not

accurately quantify the actual information gain of the model when updating the model with

new information. Additionally, such heuristics may not be the best metric in a DBS domain.

Instead, I utilize meta-learning to learn the acquisition function which describes the expected

information gain when selecting a candidate parameter. To learn the acquisition function

and encoding of patient history, I meta-learn over a population of rats. Our acquisition

function, learns to map a candidate DBS parameter to a measure of information gain (i.e.,

future expected discounted reward) conditioned on an embedding of sample history. To

learn the representation of patient history, I utilize an LSTM neural network, which maps

the history to an embedding.

Safety Framework- To ensure safety of the rat, I embed our acquisition function in

a chance-constrained linear program. By doing so, I ensure with probability 1 − ϵ that

the rat remains within a volume of safety, This volume is parameterized by a safe state

(i.e., no seizures) and radius that encompasses all known safe states. This volume can be

conservatively converted into linear constraints as an inscribed d-orthotype, thus creating
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a convex optimization problem. Our safety objective is to ensure that the probability of

remaining in a safe configuration remains higher than 1− ϵ.

Results: I empirically validate that Safe MetAL outperforms baselines in terms of its

ability to safely and actively learn the latent parameters of a rat brain model.

Active Learning – Results in our DBS domain empirically validate that our algorithm

more efficiently learns the optimal parameters compared to baseline approaches. Figure 6.3

shows the accuracy with which each of the algorithms selects the optimal parameters at

each time step, t. Safe MetAL selects a set of parameters that results in >58% higher

information gain compared to our two Bayesian baselines and >41% higher information

gain compared to our active learning baselines. This large increase in information gain

that Safe MetAL is able to achieve compared to hand-engineered heuristics, suggests that

the meta-learning aspect of Safe MetAL is vital for synthesizing a precise, task-specific

acquisition function. Lastly, I show that Safe MetAL outperforms by 47% our meta-learning

baseline, LAL, which meta-learns over hand-engineered features. These results demonstrate

that our meta-learned embedding is more capable of extracting salient information than the

hand-engineered features in LAL.

Safety - Because Safe MetAL is able to more quickly learn the optimal parameter

settings, it is also able to ensure safe operation to a greater degree than the baselines. Safe

MetAL achieves a 6.3% higher guarantee of safety compared to Maximizing Diversity

Schrum2020 for the information gain achieved in Figure 6.3. Safe MetAL achieves 98%

greater information gain compared to Epistemic Uncertainty Hastie2017 while achieving an

equivalent safety guarantee.

Computation Time - The computation time of active learning algorithms can be of critical

importance especially in a healthcare setting in which efficient computation can reduce

patient suffering. In the DBS environment, BaO has a slight advantage in computation time,

but Safe MetAL trades the time for 58% greater information gain while finding solutions

in 1
10

th of a second. Additionally, Safe MetAL is 68x faster than LAL and 61x faster than
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Meta BO, our two meta-learning benchmarks and more than 97% faster than our Bayesian

baselines.

In this work, I contributed Safe MetAL, a personalized approach for meta-learning an

acquisition function. I proposed a method for embedding this acquisition function in a

chance-constrained linear program to impose probabilistic safety guarantees that are based

on the learned model of the patient. In a novel DBS domain, I demonstrated the ability of

Safe MetAL to safely and efficiently learn the optimal parameter settings for a DBS patient.
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CHAPTER 2

BACKGROUND AND RELATED WORK

Personalization of machines to meet the needs of human end-users is necessary in many

domains in which humans and machines must interact. Each domain presents unique

challenges that the machine must overcome and each domain requires the machine to reason

about specific aspects of the end-user so as to optimize the human-machine relationship. For

example, in an AV domain, the AV may need to learn about the end-user’s driving style and

understand the end-user’s attitude towards AVs so as to optimize interaction whereas in a

healthcare domain, the machine must consider the patient’s biology, medical history, and

safety.

In this chapter, I focus on prior work in personalization in the technical domains and

applications relevant to my thesis work. I first begin with a discussion of previous work

in learning from heterogeneous and suboptimal demonstrators and illustrate the need for

a personalized framework to fill the gap in prior literature. I then continue by reviewing

how prior approaches have attempted to correct for end-user suboptimality via personalized

teaching frameworks and demonstrate the need for a personalized framework for providing

feedback to human demonstrators in LfD. Next, I investigate the importance of personaliza-

tion of driving styles of AVs as illustrated in prior work and discuss the lack of prior work

on the effect of homophily with regards to personalized driving styles. Lastly, I present prior

work in the domain of healthcare in which human-machine systems must also reason about

safety in addition to personalization. In this review, I illustrate how my insight of learning

from both the individual as well as the population can improve upon the ability of machines

to personalize their behavior for specific end-users and thereby improve the human-machine

relationship.
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2.1 Learning from Demonstration

The objective of LfD is to learn a policy from a set of demonstrations provided by a human

teacher [14]. LfD allows non-expert, non-roboticists to teach robots novel tasks without the

need for robotic expertise or programming experience [34]. One of the many challenges

of creating successful LfD frameworks that can operate in the home and learn from novice

users is the heterogeneity of end-users [35]. Differing skills, preferences, and experience

with the robot can produce heterogeneity amongst the population of demonstrators. End-

users tend to be heterogeneous in an LfD paradigm in two key aspects. Demonstrators tend

to be heterogeneous in 1) their preference for how a task should be accomplished and 2)

their ability to provide high-quality demonstrations [25]. This heterogeneity violates many

assumptions that are held in prior work on LfD. To rectify this problem, prior work has

introduced approaches for learning from heterogeneous and suboptimal demonstrators [36,

37, 16].

For robots to successfully learn from humans, they must be capable of taking into

account various demonstrator strategies and preferences for how to accomplish a task. For

example, when demonstrating how to play table tennis to a robot, one end-user may prefer

to demonstrate a top-spin stroke whereas another end-user may demonstrate a side-spin.

Because of these differing styles of play, the demonstrations provided to the robot by

each end-user will differ and the robot must be capable of reasoning about these differing

styles and preferences when learning from diverse users. Prior work has investigated how

to account for individual differences in preferences and styles. For example, Chen et al.

propose an approach to simultaneously learn the task goal and the human’s preferred strategy

via network distillation [36]. This approach allows robots to learn from diverse strategies.

While accounting for heterogeneous preferences is an important problem in LfD, in

my work, I focus on the problem of heterogeneity with regards to teacher performance.

Improving upon an agent’s ability to learn from poor quality demonstrations is an important
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problem that must be addressed for LfD to be deployed in the real world. In this section I

discuss prior work in LfD and specifically focus on prior work in learning from suboptimal

demonstrators. I discuss prior work in both inverse reinforcement learning and imitation

learning and illustrate why robot-centric LfD demonstrates potential for improving upon

a robot’s ability to learn from novice human demonstrators. My key insight is that prior

work fails to effectively model human heterogeneity in robot-centric LfD which reduces the

potential efficacy of robot-centric approaches [38]. In this thesis, I propose a framework to

overcome this limitation and demonstrate that a robot-centric LfD approach which accounts

for both demonstrator suboptimality as well as heterogeneity is able to outperform prior

work in both human-centric and robot-centric LfD.

2.1.1 Inverse Reinforcement Learning for Suboptimal Demonstrators

The goal of Inverse Reinforcement Learning (IRL) is to learn a reward function that best

explains the set of human demonstrations and then determine the optimal policy that maxi-

mizes the future expected reward [39]. A limitation of many IRL approaches is that they

assume perfect demonstrations are provided by an expert demonstrator [40, 39]. Noisy

and suboptimal demonstrations can make it difficult to recover the true reward function

especially when this suboptimality is not explicitly accounted for. This assumption of

optimal demonstrations has been relaxed in more recent approaches [39]. For example,

approaches such as T-Rex and D-Rex attempt to improve upon the ability of agents to learn

from poor human demonstrations by learning a reward function from a set of ranked demon-

strations [37, 16]. Chen et al. introduced SSRR to learn from suboptimal demonstrations by

characterizing the relationship between noise and performance [41].

While accounting for suboptimality has improved the ability of IRL approaches to learn

from novice and suboptimal demonstrators, IRL approaches still have limited real world

applicability. IRL requires that a Markov Decision Process (MDP) be solved which can be

computationally costly. Additionally, most approaches require access to the dynamics model.
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These requirements can make the deployment of IRL frameworks practically difficult [39].

2.1.2 Imitation Learning

As an alternative to IRL, imitation learning directly learns the mapping from states to actions

from human demonstrations via supervised learning. Imitation learning can be framed as a

MDP sans reward function (MDP\R). The MDP\R is defined by the 4-tuple ⟨S,A, T , γ⟩. S

represents the set of states andA the set of actions. T : S ×A×S ′ → [0, 1] is the transition

function that returns the probability of transitioning to state, s′, from state, s, when applying

action, a. γ weights the discounting of future rewards. LfD seeks to synthesize a policy,

π : S → A, mapping states to actions to maximize the future expected reward. In an LfD

paradigm, a demonstrator provides a set of trajectories, {(st, at), ∀t ∈ {1, 2, ...T}}, from

which the agent learns a policy.

Imitation learning can be more feasible to implement in the real-world and does not

require access to a transition function to solve an MDP [42]. However, imitation learning

approaches make the assumption that the training set and testing set are independent and

identically distributed [14]. Two types of imitation learning are human-centric LfD and

robot-centric LfD [38]. In human-centric LfD, the human drives the interaction and directly

demonstrates the task to the robot. Alternatively, in robot-centric LfD, the agent rolls out its

learned policy and the human demonstrator provides corrective feedback [38].

Prior work has explored human-centric LfD for learning a robot policy for task exe-

cution from an expert human demonstrator [43, 44, 45, 14, 46]. The simplest and most

ubiquitous form of human-centric LfD is Behavioral Cloning (BC), in which a robot infers

the mapping from states to actions via supervised learning from human demonstrations. [47,

48]. However, if the learner deviates from the demonstrated path, covariate shift occurs due

to a mismatch between the states induced by the demonstrations and those experienced by

the robot when rolling out a policy. The mismatch between state distributions violates the

i.i.d assumption. Due to this covariate shift, the number of mistakes a learner makes can
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compound quadratically in the time horizon [45].

In response to this problem, Ross et al. introduced Dataset Aggregation (DAgger), a

robot-centric LfD approach that aggregates a training dataset of expert labels queried during

policy rollout [45]. DAgger utilizes the state distribution induced by the current policy to

solicit labels from the expert and employs a gating function to determine the mixture of

expert and learner during each rollout. Ross et al. proved linear-loss, no-regret guarantees

and showed that with high-quality, expert demonstrations, DAgger outperforms prior work

[45].

One of the drawbacks to robot-centric LfD is that these approaches require a heavy

workload from the demonstrator, which can result in demonstrator fatigue and poor training

results [49, 50, 51]. To improve teacher-learner interactions, prior work has attempted to

reduce the amount of corrective feedback required of the demonstrator by DAgger [52,

49, 53, 54]. He et al. proposed an imitation-learning-by-coaching algorithm in which the

learner must imitate actions of progressively increasing difficulty [52]. In this approach,

task loss is reduced by demonstrating to the learner preferable actions. Results have shown

that this coaching scheme can outperform DAgger and achieve a lower regret bound when

the demonstrator is an oracle, but no study has been conducted demonstrating this method’s

advantage with human teachers. Rather than requiring demonstrators to provide corrective

labels or direct demonstrations, Knox and Stone developed TAMER, which allows humans

to provide feedback in the form of a scalar reward [55]. TAMER accounts for delayed

feedback, but does not account for heterogeneous demonstrators.

In related work, Kelly et al. proposed to reduce expert workload while improving upon

expert-provided demonstrations through Human-Gated Dataset Aggregation (HG-DAgger),

allowing the expert to decide when to provide feedback via a gating function [49]. HG-

DAgger learns a stationary policy such that labels are obtained via a policy that stabilizes

around expert trajectories. Spencer et al. expanded on this idea, utilizing both information

about when the expert does and does not intervene, in the Expert Intervention Learning (EIL)
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algorithm [53]. HG-DAgger and EIL both focus on augmenting when the human should

provide feedback during a trajectory, whereas in my work, I focus on how, by improving the

feedback itself.

While robot-centric LfD approaches such as DAgger and its variants perform well when

demonstrations are high-quality, Laskey et al. [38] illustrated that robot-centric learning

approaches can lead to human mislabelling, resulting in poor learner performance. Laskey et

al demonstrated this short-coming in a human-subjects study in which the authors compared

robot-centric and human-centric LfD approaches. In their work, the authors found that, due

to the suboptimality of human demonstrators, human-centric and robot-centric LfD perform

at parity despite robot-centric LfD’s stronger theoretical guarantees. The work by Laskey et

al. suggests that one of the main hurdles preventing robot-centric LfD from reaching its full

potential is the inability of current approaches to account for suboptimal demonstrations.

2.1.3 Conclusion

Prior work has demonstrated that robot-centric LfD can effectively learn a policy when

demonstrations are high-quality, yet humans often struggle to provide good demonstrations

[50, 37]. As discussed above, prior work has attempted to account for human suboptimality

in LfD [37, 56, 57, 58]. However, there is a lack of prior work that accounts for heterogeneity

and suboptimality of novice human demonstrators in robot-centric LfD. Reasoning about

heterogeneity and suboptimality with regards to demonstrator performance in robot-centric

LfD is crucial for the robot to be able to effectively learn from novice demonstrators.

Therefore, there is a need for LfD algorithms that can effectively learn from the typical,

non-expert human demonstrator in a robot-centric paradigm while taking into account

demonstrator heterogeneity [14].

In this thesis, I improve upon a robot’s ability to learn from heterogeneous demonstrators

in robot-centric LfD. I introduce an approach which captures information about demonstrator

heterogeneity and suboptimality via a personalized embedding and utilizes this informa-
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tion to improve upon the quality of demonstrations. My approach is the first to improve

upon robot-centric learning by inferring demonstrator suboptimal style via personalized

embeddings to correct for suboptimal demonstrations. My aim is to maintain the advan-

tages of robot-centric learning (i.e., reducing covariate shift) while making robot-centric

LfD more human-aware by accounting for the suboptimality and heterogeneity of human

demonstrators. I show that by doing so, we are able to outperform both human-centric and

prior robot-centric LfD approaches.

2.2 Personalized Teaching

In the previous section, I surveyed approaches which account for human suboptimality in

LfD and discussed why robot-centric LfD approaches need to reason about human hetero-

geneity and suboptimality to effectively learn from novice end-users. By accounting for

heterogeneity, robot-centric LfD will be able to maintain performance guarantees and better

learn from suboptimal demonstrators. However, correcting for suoptimality under-the-hood

via a machine learning algorithm may not always be the best strategy. In some circumstances

it may be beneficial for the machine to provide explicit, personalized instructions to the

end-user about how they can improve their performance [59]. Robotic instructions can

increase transparency as well as improve the overall perception of the system [59].

Below, I provide evidence from prior work for why instructional feedback may be

advantageous in certain circumstances. Additionally, I discuss several studies that have

investigated how best to provide feedback to suboptimal demonstrators in an LfD paradigm.

This prior work illustrates that providing feedback to suboptimal demonstrators can improve

upon their teaching ability. I then survey prior work in developing algorithms for personal-

ized robotic teaching. I show that, despite evidence supporting the need for personalized

teaching, there is a lack of prior work in developing personalized robot teaching approaches

for suboptimal demonstrators in LfD.
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2.2.1 Teaching the Teacher in LfD

LfD enables novice end-users to teach robots novel tasks without the need for program-

ming skills or a robotics backgrounds. However, because of the novice end-user’s lack of

experience with robots, the end-user may have difficulty understanding how best to provide

demonstrations to the robot [60, 59]. The quality of the policy learned by the robot strongly

depends on the quality of the demonstrations provided and therefore, robots that receive

low-quality demonstrations may struggle to learn. Prior work has assumed that humans may

be able to improve their own teaching ability by observing the learned policy of the robot

and adjusting their teaching accordingly [34, 61]. Yet, prior work has shown that this may

not be effective if the end-user is not able to understand how the performance of the robot’s

learned policy relates to their teaching. Instead, in many situations, end-users will require

additional insight about how to improve upon their demonstrations [59].

Toris et al. conducted a study comparing various LfD methods with novice demonstrators

and identified difficulties that arise when non-experts are asked to teach a robot. The authors

found that end-users wanted additional insight into what the robot is thinking so as to

understand how to provide better demonstrations. The participants specifically stated that

they would like the robot to communicate with the them via speech. These findings suggest

that simply observing a failed policy may not be enough information for some users to

understand how to provide better demonstrations and that communicating informative

feedback to the end-user may be beneficial [62].

One option for overcoming the problem of suboptimal demonstrators is to bypass the

need for the teacher to improve their suboptimal demonstrations altogether and instead lay

the burden on the robot. In such an approach, the robot would be tasked with learning

about the way in which the demonstrator is suboptimal and then using this information to

learn a better policy. Prior work has investigated a variety of approaches for learning from

suboptimal demonstrations [37, 56, 57, 58]. However, in some situations, correcting for

suboptimality under-the-hood may not be the best approach. Evidence from the psychology
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literature on positive reinforcement suggests that producing a high-quality policy from sub-

optimal demonstrations will likely only reinforce the demonstrator’s suboptimal tendencies

[63]. Furthermore, if the demonstrator is tasked with teaching several robots, not all of

which may be capable of correcting for suboptimality, the demonstrator will likely maintain

their suboptimal tendencies in each of the robotic domains. Humans also tend to be better at

generalizing and extrapolating information to novel tasks than a machine learning algorithm

[28].

Thus, I hypothesize that if a human demonstrator is equipped with the skills and knowl-

edge about how to provide high-quality demonstrations then they may be able to produce

better results across a variety of tasks and domains than a machine learning algorithm that

corrects for suboptimality under-the-hood. There are many factors that must be considered

when providing feedback to a human. For example, the domain in which the teaching

is taking place, the modality of the feedback, and the content of the feedback must be

considered [59]. Additionally, the end-user’s familiarity and understanding of how the robot

works should be taken into account to ensure that the feedback is provided at the appropriate

level of complexity and abstraction.

Several approaches have investigated how to instruct a suboptimal demonstrator on how

to improve upon their suboptimal demonstrations. These approaches have demonstrated that

actionable feedback can improve a novice demonstrator [60, 59]. Cakmak and Takayama

conducted a study investigating several modalities for communicating improvements to

a demonstrator. This work compared written instructions with video tutorials in an un-

structured setting with naive users. The authors found instructional videos to be the best

modality for improving demonstrators’ teaching abilities [60]. Sena et al. investigated video

feedback and video feedback with rule guidance and found that both modalities produced

better results than no feedback [59].

Much of the prior work in this space has investigated tutorials to instruct the end-user

before they begin teaching. Providing tutorials and instructions at the beginning of the
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teaching process is effective for orienting the end-user on how to best to teach the robot.

However, the end-user may require additional instruction while teaching or stray from

the best teaching strategy and require correctional instruction. There is little prior work

investigating how to provide personalized and adaptive real-time feedback during teaching

to adjust to the instructional needs of the human demonstrator.

2.2.2 Personalized Teaching

Outside of the domain of LfD, prior work has produced novel approaches to providing

personalized instruction to end-users via robotic tutors [64, 65]. This prior work can provide

us with insight into the potential benefits of personalized robotic feedback to improve

demonstrator’s abilities in LfD. For example, prior work has demonstrated that personalized

instructions positively impact learning outcomes for a student tasked with completing a

cognitive task [64]. To improve a robot’s ability to engage students, Szafir et al. developed

an adaptive approach which is capable of measuring students’ engagement in real time via

electroencephalography and providing personalized verbal and nonverbal cues to regain

attention [65] . The authors show that this personalized approach was able to improve recall

in students by 43%.

Similarly, Gordan et al. [66] created a personalized method for teaching children a

second language via a robotic tutor. Using a reinforcement learning strategy based on

valence and engagement cues, the robot was able to learn a personalized strategy to teach

the student. The system produced positive results in terms of the number of new words

learned and the valence of the children. Leyzberg et al. introduced a personalized system for

teaching students via a Hidden Markov Model [67]. This approach was capable of selecting

the appropriate lessons for students based on skill and resulted in large improvements in

skill. The success of personalized teaching approaches exhibited in prior work suggests that

a personalized approach could be beneficial for teaching a novice human demonstrator to be

a better robot teacher.
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2.2.3 Conclusion

Prior work has demonstrated the importance of personalization when developing autonomous

systems capable of teaching end-users. Personalization is particularly important when

instructing an end-user in an LfD paradigm, as demonstrators tend to be heterogeneous in

the way in which they are suboptimal. Yet, much of the prior work has investigated only

one-size-fits-all teaching tutorials that are not capable of adapting to the instructional needs

of the individual end-user in real time. In my work, I aim to fill this gap by creating a

personalized teaching approach which captures the way in which an individual demonstrator

is suboptimal and provides personalized feedback in real-time.

2.3 Autonomous Driving

In the previous sections, I discussed the important considerations for personalization in LfD

and surveyed prior work in learning from heterogeneous demonstrators and teaching subop-

timal demonstrators how to provide better demonstrations. In this section, I survey work

related to a specific application in which personalization is equally important: autonomous

driving.

Prior work has shown that human drivers exhibit a vast array of different driving styles.

Driving style is defined as the characteristics of driving related to the judgment and decisions

of the driver in a specific situation [68]. Prior work has proposed various way to categorize

driving style. For example, Taubman-Ben-Ari et al. divide driving style into four different

categories: risky, anxious, dissociative, and distress reduction driving [69]. Other work

categorizes types of driving styles into aggressive or defensive [70]. Because of these

differing driving styles, humans will expect their AVs to drive in a specific manner that is

likely related to their own driving style [71]. To meet the expectations of human end-users,

AVs must be capable of learning about their end-users and personalizing their driving styles

accordingly. Below I discuss prior work in personalization of AV driving styles and how
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personalization impacts perception of the AV. Next, I review literature that investigates

the question of whether or not AVs should simply mimic an end-user’s driving style or if

other factors should be considered when determining the optimal driving style for a specific

end-user.

2.3.1 Aggressive Driving Style

A common way to categorize driving style is via the level of aggression. Aggression can

be measured objectively or subjectively [72, 69]. For example, Bellem et al. quantify

driving style via objective metrics including jerk and headway distance [72]. To gain an

understanding of a driver’s view of their own aggressive style, Harris and Norman developed

the Aggressive Driving Behavior Scale [73].

Prior work has investigated the impact of the level of aggression of an AV’s driving style

on end-user acceptance. For example, Ekman et al. conducted a Wizard-of-Oz study using

a Vovlo vehicle with a professional driver demonstrating the various driving styles. The

authors compared defensive and aggressive driving styles found that a defensive driving

style produced higher trust scores in a Wizard-of-Oz study [30]. Similar work by Basu et al.,

Yusof et al., and Karlsson et al. found evidence supporting the important impact of the level

of aggression on end-user preferences [71, 74, 75]. Because of the large body of literature

showing the importance of aggressive driving style, aggressiveness of an AV should be taken

into account when designing the optimal AV driving style.

2.3.2 Optimizing Driving Style for Improved End-User Experience

Researchers have demonstrated that personalization of AV driving styles can lead to in-

creased acceptance [30, 29] and may decrease motion sickness [76]. In Sun et al. the

authors create personalized driving styles via personalized controllers [29]. The controllers

were designed based upon an end-user’s own driving style and were intended to mimic an

end-user’s style. The authors found that this personalized framework increased the sense of
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familiarity as well as trust in the system. Ekman et al. investigated the effect of personaliza-

tion of driving style on trust [30]. The authors compared aggressive and defensive driving

styles and measured trust via a mixed methods research design. The authors show that the

defensive driving style is considered more trustworthy, in part because participants rate it as

more predictable.

Motion sickness is a major concern in autonomous vehicles. Prior work has suggested

that motion sickness is caused by a disconnect between expectations and reality during

movement [77]. Motion sickness is commonly measured via questionnaires such as the Fast

Motion Sickness Scale [78]. Iskander et al. conducted an in-depth review of the causes and

consequences of motion sickness in human-controlled and autonomous vehicles [76]. The

authors suggest that the way in which the vehicle drives can both exacerbate or decrease the

risk of motion sickness. AVs should therefore take into account the end-user’s expectations

with regards to driving style to reduce the potential for motion sickness.

2.3.3 Personalization Frameworks

To increase trust, likeability and overall acceptance of the AV there is a need for personalized

control frameworks which are capable of adapting to the AV driving style of individual

end-users. Prior work has introduced a variety of approaches to adapt autonomous vehicles

to meet end-user needs and expectations. Many of these approaches aim to mimic an

end-user’s own driving style. For example, Kuderer et al. utilized an inverse reinforcement

learning approach to produce personalized AV behavior via a learned cost function [79].

The authors employ a feature-based reward function learned from human data to mimic the

driving style of the end-user. While this method was capable of learning distinct driving

styles for different users, the authors did not evaluate their approach in a human subjects

study.

Other work investigates personalization of specific aspects of driving [80, 81]. For

example, Bolduc et al. developed an approach to match driver’s style for adaptive cruise
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control [80]. The authors extract parameters from the end-user’s own driving and utilize

these parameters to inform the cruise control. Feng and Yan explored personalization of

lane changes via a support vector machine [81]. By collecting data from lane changes of

end-users, the authors train a personalized Support Vector Machine (SVM) to mimic the lane

changing style of the end-user. Rather than mimic the driving style of the end-user, Ling

et al. introduced a method to adapt driving style online based on the emotional responses

of passengers [82]. This approach utilizes EEG signals to analyze the emotions of the

passenger and then employs this information to automatically adapt the driving style of

the vehicle to match the emotional state. While these approaches have demonstrated that

personalizing an end-user’s own driving style can lead to increae acceptance and trust in the

AV, the question still remains as to whether or not mimicry is the optimal strategy for an AV.

2.3.4 Should We Mimic End-User Driving Styles?

Despite the many approaches that have been developed for mimicking the driving styles of

an end-user, prior work suggests that end-users may not want an AV to drive exactly as they

drive. Instead various latent factors may influence a driver’s preference for a specific driving

style that may differ from their own driving style [71, 30, 74]. For example, A Wizard-of-Oz

study conducted by Yusof et al. found that many end-users prefer a more defensive driving

style. In this work, the authors conducted a study using an Audi test vehicle to realistically

simulate an AV. Based upon a self-reported questionnaire, participants were categorized

as either defensive or assertive drivers. Then each participant experienced a defensive and

assertive AV driving style. The authors found that preference for an assertive or defensive

driving style depended on the driver’s own style and that aggressive drivers prefer more

defensive AVs [74].

Basu et al. conducted a study investigating preference for driving styles both similar and

different from one’s own. The authors investigated a style intended to mimic the participant’s

driving style, an aggressive driving style, a defensive driving style, and a distractor style.
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More than half of the participants preferred a driving style different from their own. The

largest predictor for preference was perceived similarity suggesting that participants did not

want the AV to drive as they drive, but instead preferred the AV to drive like the end-user

thinks they drive. This finding suggests that, because humans often lack introspection and

have a poor perception of their own driving style, their preferred style often differs from

their actual driving style [71]. Based on these results, the authors suggest that we can not

simply rely on mimicry and instead, must also account for other end-user characteristics to

determine the optimal driving style.

2.3.5 Conclusion

Prior work has shown that personalization of AV driving styles is crucial for improving

the overall experience for the end-user. The optimal driving style for an end-user is likely

related to the end-user’s own driving style, and yet it is unclear exactly how it is related.

Prior work has suggested that perceived similarity may be important but the impact of other

latent factors has not been thoroughly investigated [71]. To answer these questions, we first

require a personalized framework that is capable of both mimicking the driving style and

modulating style of an end-user based upon relevant subjective factors.

While prior work has investigated approaches for mimicking driving style, no prior

work has created an architecture that can modulate driving style with respect to an end-

user’s own style. Yet, prior work provides evidence that this functionality is important

for optimizing driving style for an end-user [71, 74]. Additionally, prior work has not

extensively investigated the relationship between subjective factors and preference for styles

similar to one’s own. In our work, we seek to fill these gaps by proposing an approach

capable of producing more or less aggressive behavior with respect to the end-user’s own

driving style. Additionally, we conduct a thorough investigation into the factors that impact

preference for various driving styles.
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2.4 Healthcare

Assistive machines, robots, and robotic devices are becoming more common-place in

the domain of healthcare to assist clinicians with patient care and make up for a worker

shortage. Healthcare applications require these devices to reason about heterogeneous

patient biology, differing needs of patients, and the safety of the patient. Due to the

diverse biological consideration, disease manifestations, and patient needs, personalization

in healthcare is critical to optimize patient care. One crucial component that must be taken

into account when developing personalized frameworks in healthcare applications is patient

safety. In the previous sections, I discussed personalization approaches in various domains

and applications and how these personalized approaches can improve the human-machine

system. However, many of these approaches do not explicitly reason about safety of the

end-user. In this section I discuss related work in personalization approaches for healthcare

and cover prior work that has investigated safe learning in various contexts.

2.4.1 Personalization in Healthcare

Prior work in personalized human-robot interaction has investigated how to personalize

patient-machine interaction in a healthcare setting. These approaches require the system

to learn about the needs of the patient and adapt accordingly. Polak et al. argued that

personalization in the context of rehabilitation robotics is an important goal and that robots

must take into account individual preferences as well as the nature of the individual’s

affliction so as to provide appropriate support and companionship [83].

To address the need for personalization in rehabilitation settings, Tapus et al. introduced

a robotic behavior-adaptation system for post-stroke rehabilitation. The robotic system is

capable of adapting its interaction to fit the user’s personality traits and task performance

[84]. In a human subjects experiment, the authors found that robots that matched their

behavior and rehabilitation strategy to the personality of the patient were preferred by the
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patient. Work by Irfan et al. investigated the benefits of a personalized healthcare robot for

cardiac rehabilitation [85]. This approach utilizes sensors to measure patient performance in

cardiac related activities and the robot provides personalized feedback based on the sensor

data for individual patients. The authors found that personalization increased adherence

and motivation. Francois et al. [86] created a framework for robots to adapt to different

styles of play via a cascaded information bottleneck method. The authors demonstrated

the adaptability of this method in a case study and detail how the method can be applied to

therapy for autistic children. This prior work in healthcare indicates that personalization can

greatly improve patient care and is important for optimizing patient care.

2.4.2 Safety

When interacting with patients and providing personalized care, autonomous systems must

take into account the safety of the patient. Prior work has investigated safe learning in the

context of safe Bayesian optimization and safe reinforcement learning. For example, Sui

et al. [87] developed the algorithm SafeOpt which balances exploration and exploitation

to learn an unknown function; however, this approach has significant limiting assumptions

about the underlying nature of the task. Turchetta et al. [88] addressed the problem of

safely exploring an MDP by defining an a priori unknown safety constraint updated during

exploration, and Zimmwer et al. [89] utilized a Gaussian process for safely learning time

series data. However, these approaches do not incorporate knowledge from prior data to

increase sample efficiency, limiting their ability to choose the optimal action. Schrum et

al. [33] attempted to overcome this problem by employing a novel acquisition function,

Maximizing Diversity, which is utilized to quickly learn altered system dynamics in a chance

constrained framework. Yet, the hand engineered acquisition function limits the capabilities

of this approach.
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2.4.3 Active Learning

In healthcare settings, often the machine or robotic system must select the next treatment or

diagnostic tool that should be applied to the patient that would provide the most information

about the nature of the patient’s disease. Active learning is one method by which a system

can intelligently and efficiently gather information. My work in personalizing human-

machine systems for healthcare (discussed in Chapter 6) utilizes active learning techniques

to quickly learn how best to treat the patient. In this section, I review the foundations and

prior work in active learning which influence my approach.

Active learning acquisition functions serve as heuristics to select the candidate unlabeled

training data sample that, if the label were known, would provide the most information to

the model being learned [90, 91, 92, 32]. In Hastie et al. [32], the sample is selected that the

learner is least certain about. In work by Ashmaig et al. [18], the authors utilize Expected

Improvement (EI) heuristic to balance exploration versus exploitation to determine the

optimal stimulation parameters in DBS. Prior literature has also investigated on-the-fly active

learning and meta-active learning [93, 94]. Konyushkova et al. [94] describes the algorithm

Learning Active Learning (LAL). The authors present a meta-learning method for learning

an acquisition function in which a regressor is trained to predict the reduction in model error

of candidate samples via hand engineered features. Volpp et. al. [95] alternatively considers

a Gaussian Process based method to meta-train an acquisition function on a distribution of

tasks. Work by Geifman et al. [96] actively learns the neural network architecture that is

most appropriate for a given task, e.g. active learning. Pang et al. [97] additionally proposed

a method to learn an acquisition function that generalizes to a variety of classification tasks.

Yet, this work has only been demonstrated for classification.

2.4.4 Conclusion

Prior work has demonstrated that personalization in healthcare is important for improving

patient care. Additionally, safe learning techniques must be utilized when gathering data
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and interacting with the patient to ensure patient safety. Active learning techniques can be

employed to efficiently reach a solution. In my work, I take inspiration from prior work in

personalization, safe learning, and active learning to develop a personalized framework for

efficiently learning the optimal parameters for deep brain stimulation patients. Our work

fills the gap in prior work by both personalizating parameter selection while also ensuring

safety guarantees.
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CHAPTER 3

MUTUAL INFORMATION DRIVEN META-LEARNING FROM

DEMONSTRATION

3.1 Introduction

When an individual purchases an in-home cleaning robot, the robot will have to be taught

many novel tasks over an extended period of time. The user may have to teach the robot how

to move dishes from the dishwasher to the proper location in the cabinets or how to wash the

windows and take out the trash. Simply pre-programming these tasks may not be an adequate

solution as different users may have differing preferences for how their robot should operate.

Therefore, to effectively meet the needs of the end-user, the robot must be capable of

successfully learning new tasks quickly via demonstration. Learning from Demonstration

(LfD) seeks to enable humans to teach robots new skills via human task demonstrations

without the need for users to have prior experience in computer programming [43]. In LfD,

the robot learns a policy that maps the state of the world to how the robot should act to

accomplish the human-specified or demonstrated task [98]. Researchers have pursued two

principle types of LfD: human-centric and robot-centric [38]. In human-centric LfD, a

human typically performs the task, and the robot infers from this demonstration the task

specification. An example of human-centric LfD is BC, i.e. mimicry [99], where the robot

records the human demonstration of the task and uses supervised learning to learn a policy

mapping states to actions. However, Behavioral Cloning (BC) suffers from covariate shift

issues due to a mismatch between the distribution of states given by the demonstration

versus those experienced by the robot when attempting to accomplish the task [47, 45, 100].

Robot-centric LfD is an alternative to human-centric LfD and addresses the problem

of covariate shift [45] by instead learning from a human’s corrective feedback signal at
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each time step as the robot executes the task [38]. One example of robot-centric LfD is

Dataset Aggregation (DAgger) [45]. Ross et al. showed that learning from human corrective

actions solves the problem posed by covariate shift [45]. Many robot-centric, as well as

human-centric, LfD algorithms assume the demonstrator is an expert at the task and that

they will provide optimal demonstrations or corrective labels [14]. When the demonstrator

is a Wizard-of-Oz oracle [26] and provides optimal demonstrations, prior work has shown

that DAgger can learn policies that are more sample efficient and accurate than human-

centric LfD algorithms [45]. However, these studies may not translate to real-world settings

where non-oracle, heterogeneous human demonstrators provide sub-optimal demonstrations

[101, 53, 38, 102]. Prior work has shown that humans struggle to provide high quality

corrective actions during robot-centric [59]. Additionally, humans are heterogeneous: the

way humans provide demonstrations may differ depending upon the individual’s abilities

and prior experience [103, 104]. Therefore, robot-centric LfD approaches need to account

for the teacher’s suboptimality and heterogeneity to learn effective policies. However, prior

work fails to take into account demonstrator suboptimality and human heterogeneity in

robot-centric LfD. To effectively account for the heterogeneity amongst demonstrators,

personalized LfD techniques are required to ensure that robotic systems can effectively learn

from demonstrators who tend to differ in the way in which they are suboptimal.

To fill this gap, in this chapter, we aim to harness the potential advantages of robot-centric

algorithms (i.e., increased policy performance and sample efficiency) and improve upon

robot-centric algorithms by explicitly learning to account for heterogeneity and suboptimality

in teaching. We introduce Mutual Information Driven Meta-Learning from Demonstra-

tion (MIND MELD), which uses an Long-Short Term Memory Network (LSTM) neural

network-based architecture to meta-learn a person-specific mapping from human-provided,

corrective-action labels to idealized labels, which are inferred based upon a distribution of

calibration tasks with known, optimal labels. Because human feedback is heterogeneous,

we propose to use variational inference to learn a personalized embedding that encapsulates
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information about a person’s style of providing corrective demonstrations. We then use

the personalized embedding to map each individual’s suboptimal labels to labels that more

closely approximate optimal labels, thereby improving the performance of robot-centric

LfD algorithms. Optimal labels (i.e., ground truths) are only necessary for a small set of

calibration tasks [27, 105] to learn to improve upon human labels and are not needed at test

time.

In this chapter, we conduct an Institutional Review Board (IRB)-approved within-

subjects study, comparing the performance of MIND MELD to a robot-centric baseline,

DAgger, and a human-centric baseline, BC. We evaluate these algorithms based on their

ability to learn the task of driving an autonomous vehicle to a goal without collisions as

well as various subjective metrics. Additionally, we analyze how the learned personal-

ized embeddings capture the demonstrator’s style and improve suboptimal labels. Our

approach is the first to improve upon robot-centric learning by inferring demonstrator style

via personalized embeddings to correct for suboptimal demonstrations. We maintain the ad-

vantages of robot-centric learning (i.e., reducing covariate shift) while making robot-centric

LfD more human-aware by accounting for the suboptimality and heterogeneity of human

demonstrators.

In our work, we contribute the following:

1. We formulate MIND MELD, a novel, personalized LfD framework for improving

upon suboptimal corrective labels by inferring individual demonstrator styles.

2. We demonstrate that MIND MELD objectively outperforms prior work in a human-

subjects experiment in its ability to reach the goal more often than BC (p < .001) and

DAgger (p < .001).

3. We show that users prefer MIND MELD over DAgger and BC in terms of trust

(p < .001), workload (p = .005), perceived intelligence (p = .008), and likeability

(p = .004).
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Figure 3.1: This figure shows the MIND MELD network architecture. a
(p)
t represents

demonstrator p’s corrective label, at time t. The recreation subnetwork, qϕ, maximizes
mutual information between the learned embedding, w(p), the encoding, z(p)(t−∆t:t+∆t), and

the output, d̂(p)t . The objective is to minimize the Mean-squared error (MSE) between the
predicted difference, d̂(p)t , and the true difference, d(p)t = a

(p)
t − ot, of the demonstrator’s

corrective labels and the ground truth label, ot. We pass in the sequence of corrective
demonstrations, a(p)(t−∆t:t+∆t), from time t −∆t to t +∆t to the bi-directional LSTM and
extract sequential information to inform the predictions of ground truth label at time t.

3.2 Methodology

In the following section, we provide an overview of the preliminaries of our work and

describe our MIND MELD algorithm for improving robot-centric LfD with suboptimal

human demonstrators. We discuss our network architecture, personalized embeddings, and

the mapping of suboptimal labels to more effective labels.

3.2.1 Preliminaries

The LfD problem can readily be framed as a MDP sans reward function (MDP\R). The

MDP\R is defined by the 4-tuple ⟨S,A, T , γ⟩. S represents the set of states and A the set

of actions. T : S × A × S ′ → [0, 1] is the transition function that returns the probability

of transitioning to state, s′, from state, s, applying action, a. γ weights the discounting of

future rewards. LfD seeks to synthesize a policy, π : S → A, mapping states to actions to

maximize the future expected reward. In an LfD paradigm, a demonstrator provides a set of
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trajectories, {(st, at),∀t ∈ {1, 2, ...T}}, from which the agent learns a policy.

We make the following assumptions in our work.

• In the context of robot-centric learning from demonstration, humans provide corrective

feedback that is suboptimal (e.g., with respect to an optimal, minimum-jerk, collision-

free trajectory planner).

• These human-specified, heterogeneous, sub-optimal strategies can be represented by

a learned embedding.

• Across different tasks, humans provide predictable and consistent, albeit suboptimal,

corrective demonstrations.

• We have access to a distribution of calibration tasks from which we can obtain the

optimal, ground truth labels.

Given these assumptions, we learn an individual’s “ suboptimal style” via a personalized

embedding trained over a set of calibration tasks to represent the human’s style. We then

utilize this embedding to condition a meta-learned mapping from suboptimal corrective

labels to ground truth labels given a set of calibration tasks. Our approach is a type of

meta-learning as we learn an architecture over a distribution of tasks and participants in

order to more effectively learn a specific LfD task.

3.2.2 Architecture

Depicted in Figure B.3 is the architecture of our network, which consists of three components:

1) the bidirectional LSTM encoder, Eϕ′ : A → Z, 2) the prediction subnetwork, fθ : Z ×

W → R, and 3) the mutual information subnetwork, qϕ : Z × R → NW . The label we

aim to improve upon is a(p)t . We denote the set of d-dimensional, personalized embeddings

as W , and the set of k-dimensional encodings extracted from the sequences of corrective

demonstrations as Z ⊂ Rk. Eϕ′ is trained to extract the encoding, z(p)(t−∆t:t+∆t) ∈ Z, for the
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sequence of corrective labels, a(p)(t−∆t:t+∆t), provided by person p from time t−∆t to t+∆t.

fθ maps the encoding, z(p)(t−∆t:t+∆t), and personalized embedding, w(p), to the difference,

d
(p)
t = ot − a(p)t , between the ground truth label (obtained via a controller such as Model

Predictive Control (MPC) [106] or Stanley [107]) and the individual’s corrective label,

where d(p)t ∈ Rk. The subnetwork qϕ learns a mapping of the encoding, z(p)(t−∆t:t+∆t), and

predicted difference, d̂(p)t , to a posterior distribution over the demonstrator’s embedding,

w(p). We initialize w(p) based upon the prior, ŵ(p) ∼ N (0, 1), and obtain an estimate of the

individual’s learned embedding, ŵ(p), by sampling from the approximate posterior.

3.2.3 Variational Inference

This work is motivated by the assumption that humans are not optimal or homogeneous in

how they provide feedback, thus necessitating democratized LfD methods which account

for both heterogeneity and suboptimality. Note that we handle the fact that individuals’

demonstrations are suboptimal and heterogeneous separately. We capture information

about an individual’s corrective “style” (i.e., how they are suboptimal) using a personalized

embedding, w(p), for individual p, which we then use to correct the individual’s suboptimal

and heterogeneous demonstrations, as described in Equation B.1. In our work, we seek

to maximize the mutual information between the corrective mapping, d̂(p)t , our learned

personalized embedding, w(p), and the encoding of the demonstrator labels, z(p)(t−∆t:t+∆t),

such that the uncertainty of our learned embedding decreases, given informative corrective

feedback.

Maximizing mutual information necessitates access to an intractable posterior distribu-

tion, P [w(p)|z(p)(t−∆t:t+∆t), d̂
(p)
t ]. Thus, we train w(p) to capture salient information about an

individual’s style by utilizing the variational lower bound, LI(fθ, qϕ), as derived in Chen et

al. [108] and shown in Equation B.1, where the mutual information between z(p)(t−∆t:t+∆t),

d̂
(p)
t and personalized embedding, w(p), is I(w(p); z

(p)
(t−∆t:t+∆t), d̂

(p)
t ).
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I(w(p); z
(p)
(t−∆t:t+∆t), d̂

(p)
t ) = H(w(p))−H(w(p)|z(p)(t−∆t:t+∆t), d̂

(p)
t )

≥ E[log(qϕ(w
(p)|z(t−∆t:t+∆t), d̂

(p)
t ))] +H(w(p)) = LI(fθ,qϕ) (3.1)

Our network is trained by combining two loss functions: one to learn the embedding,

w(p), and one to learn the difference, d̂(p)t , between the demonstrator’s corrective label and

the optimal label as shown in Figure B.3. L1 minimizes the MSE between the sampled

embedding approximation, ŵ(p), and the personalized embedding, w(p) (equivalent to maxi-

mizing the log-likelihood of the posterior). L2 minimizes the MSE between the predicted

difference, d̂(p)t , and the true difference, d(p)t = ot− a(p)t . We backpropagate the sum of these

losses (Equation B.2) to learn the embedding during training such that the personalized

embedding reflects the individual’s feedback style. Then, at test time, we freeze the network

parameters, θ, ϕ, and ϕ′ and utilize this personalized embedding to inform the mapping of

demonstrator feedback.

L(θ,ϕ,ϕ′,w) = L1(θ,ϕ,ϕ′)
+ λL2(θ,ϕ′)

(3.2)

L1(θ,ϕ,ϕ′)
=

1

K + 1

K∑
k=0

||ŵ(p)
k − w

(p)
k || (3.3)

L2(θ,ϕ′)
= ||d(p)k − d̂

(p)
k || (3.4)

3.3 Synthetic Experiment and Pilot Study

We conduct a synthetic study as shown in Figure 3.2 [109] to fine-tune our architecture and

demonstrate its efficacy. To do so, we create a set of artificial DAgger-like roll-outs. The

ground truth labels are calculated as the difference in heading of the agent and the angle to

the goal. We create a set of artificial, suboptimal demonstrators by randomly assigning each
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Figure 3.2: This figure shows the creation of the synthetic data. a) shows the artificial
DAgger rollouts, b) the ground truth labels, c) the demonstrators, and d) the corrective
feedback. g) shows the mapping of suboptimal labels via our architecture,MIND MELD,
producing embeddings shown in f). In f), the size of a point represents the degree to which an
individual over- or under-corrects. The color represents the individual’s style (i.e., delayed,
anticipatory, or neither).

demonstrator either a delayed, anticipatory, or neither style and to be either an over-corrector

or under-corrector by a randomly selected magnitude. This “style” is then utilized to map

the ground truth labels to suboptimal, artificial human labels. We employ this artificial data

to demonstrate the ability of our architecture to correct for poor human labels.

3.3.1 Results

Figure 3.2f shows the learned embeddings plotted in latent space. Figure 3.2f shows that

the embeddings for individuals that greatly over-correct are clustered towards the right

of the graph and those that greatly under-correct are located towards the left. Those who

neither over-correct nor under-correct are located at the elbow in the plot. Additionally,

those who provided delayed feedback are located towards the top of the plot and those who

provided anticipatory feedback are located towards the bottom. Because demonstrators that

are similar in the way in which they are suboptimal tend to cluster together, these results

confirm that our embeddings learn meaningful representations of an individual’s feedback
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Algorithm 1 MIND MELD Procedure
1: For M training participants, collect calibration task data
2: Perform gradient descent on θ, ϕ, ϕ′, ω until convergence (Equation B.2)
3: Freeze architecture parameters, ϕ, ϕ′ and θ
4: for p in test participants do
5: Initialize w(p) ← 1

M

∑M
i=0w

(i)

6: Collect calibration task data from p
7: Perform gradient descent on ω until convergence (Equation B.4)
8: Obtain initial demonstration from p.
9: Present LfD algorithm conditions {MIND MELD, BC, and DAgger} in randomized

order.
10: for c in conditions do
11: Train learner via condition, c, for N demonstrations.
12: end for
13: end for

style. Furthermore, we confirm that our architecture successfully maps the suboptimal labels

to labels that are closer to the ground truth embeddings. We find a 61% improvement of

labels in the calibration tasks. For unseen test tasks that are not used to train our network,

we find a 55% improvement in the quality of the labels after mapping.

We additionally conducted an IRB approved pilot study [109] to test MIND MELD’s

ability to learn meaningful embeddings and improve upon suboptimal corrective feedback.

After recruiting 34 participants, we found that MIND MELD was able to improve corrective

feedback and learn embeddings that significantly correlate with demonstrators’ stylistic

tendencies, i.e., the way in which they deviate from optimal (p < .001). Based on results

of our pilot study, we redesigned our study to better capture the stylistic tendencies of

demonstrators and expanded upon our participant pool.

3.4 Human-Subjects Experiment

We next evaluate our architecture via a human-subjects experiment with human demon-

strators and compare our approach to baselines in human- and robot-centric LfD. Through

this experiment, we demonstrate MIND MELD’s ability to outperform prior LfD work

by improving upon a user’s suboptimal corrective labels. Our human-subjects experiment
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Figure 3.3: The simulator and steering wheel in our human-subjects experiment are on the
left and the test task is on the right.

consists of a training phase and a testing phase as discussed below. The steps comprising

our study are illustrated in Algorithm Figure 3. Our study has been approved by Georgia

Tech’s IRB.

Calibration Phase - In the calibration phase, we recruit participants to complete a

set of calibration tasks to meta-learn the MIND MELD parameters, θ, ϕ, and ϕ′ and

personalized embeddings, w(p). Additionally, participants in this phase complete the pre-

study questionnaires to capture prior experience and other demographic information.

Testing Phase - For the testing phase, we recruit a set of testing participants for a

within-subjects study. These participants first complete the calibration tasks to learn their

personalized embedding via Equation B.2. The participants then train an LfD agent via the

three learning algorithms, MIND MELD, BC, and DAgger, the order of which is randomized

and counterbalanced to mitigate confounding factors (e.g., fatigue, learning effects, etc.).

The test task differs from the calibration tasks but is similar and falls within the same

distribution (depictions of the calibrations tasks are in the Appendix). The participants in

the testing phase complete both the pre-study and post-study questionnaires.
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3.4.1 Driving Simulator Domain

We evaluate our approach with a human-subjects experiment in a virtual driving environment,

a common domain in prior LfD, HRI, and robotics research [50, 45]. We choose to use the

AirSim [110] driving simulator, an Unreal Engine-based high-fidelity physics simulator.

Individuals in this experiment interact with the virtual driving environment using an Xbox

steering wheel, shown in Figure 3.3. We use a geometric Unreal environment where the LfD

objective is to teach the agent to drive to a large, orange ball while avoiding all obstacles.

The learning algorithms do not have access to the location of obstacles or the orange ball.

We constrain the action space to be the position of the wheel, ranging from -540 degrees to

540 degrees. We define the state space to be composed of an image captured by a camera

positioned at the front of the car as well as the car’s acceleration, velocity, and position.

3.4.2 Calibration Tasks and Ground Truths

We create a series of sixteen Wizard-of-Oz [26] rollouts which are representative of success-

ful and unsuccessful trajectories and allow us to capture the feedback styles of participants.

All participants complete these tasks so MIND MELD can infer their personalized embed-

dings, w.

To determine ground truth optimal states for each point along the trajectories of the

calibration tasks, we employ RRT* [111] (see Appendix for an example). We then apply an

MPC controller along the path to determine the ground truth label at each time step.

3.4.3 Conditions

The participants first complete a set of calibration tasks which are used to learn their personal-

ized embeddings for MIND MELD. Then, participants provide an initial demonstration from

which all three agents learn an initial policy, π0. All agents are trained for N demonstrations.

Each participant experiences the following conditions in a random order.

Supervised BC - Participants in this condition teach the agent via BC. To mirror our
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other conditions, the agent’s policy is rolled out with each iteration of training so that the

participant can observe the agent’s behavior before providing the next demonstration.

DAgger - Participants in this condition teach the agent via vanilla DAgger [45] imple-

mented based on prior work [112, 38]. The agent rolls out policy, πn, and participants

provide corrective labels. The corrective labels are aggregated with the initial demonstration

and corrective labels from trials 1 to n− 1 and the agent is retrained to yield policy, πn+1.

MIND MELD (Ours) - For each demonstration, n, participants provide corrective labels

to the agent. This corrective labels are mapped to predicted ground truth labels via MIND

MELD. The mapped labels are aggregated with the initial demonstration and mapped labels

from trials 1 to n− 1 and the agent is retrained to yield policy, πn+1.

3.4.4 Metrics

Below we discuss the metrics by which we evaluate MIND MELD and the learned em-

beddings. Both training and testing participants complete the pre-study questionnaires to

determine if demographic information correlates with the learned embeddings. Only testing

participants complete the post-study questionnaires. The surveys detailed below comply

with the design guidelines outlined in Schrum et al. [113] and are validated from prior work

when possible. The full text of the surveys and additional surveys that are not relevant to

our results can be found in the Appendix. We report Cronbach’s alpha (α) for each scale.

Objective Metrics

Stylistic tendencies - We analyzed participants’ suboptimality by calculating their stylistic

tendencies via Dynamic Time Warping (DTW) [114] between the participant labels, a, and

ground truths, o, along two-dimensions: 1) over-/under-correcting (i.e., turning the wheel

too far or not enough) and 2) providing delayed/anticipatory feedback. Additional details on

our calculations can be found in [109].

Goal Consistency - We measure the total number of times the agent reaches the goal, the

number of demonstrations required for the agent to reach the goal, and the probability of
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(a) Probability of reaching the goal once. (b) Probability of reaching the goal twice.

(c) Probability of reaching the goal three times. (d) Probability of reaching the goal four times.

Figure 3.4: This figure shows that MIND MELD has a statistically significantly higher
probability of reaching the goal once (Figure 3.4(a)), twice (Figure 3.4(b)), three times
(Fig Figure 3.4(c)), and four times (Fig Figure 3.4(d)) throughout the duration of the study
compared to the baselines.

each agent reaching the goal after each demonstration.

Distance - For each policy rollout of the agent, we measure the final distance between

the agent and the goal.

Pre-Study Questionnaires

Prior Experience - We collect information about a participant’s familiarity and experi-

ence playing video games (Cronbach’s α = .93) and driving a physical car (α = .93) via two

Likert scales to determine if prior experience correlates with the learned embeddings. Each

Likert scale has eight items and a 5-point response format (strongly disagree to strongly

agree). Since this survey on prior experience is ad hoc, the Appendix includes a factor

analysis to validate the scales.

Post-Study Questionnaires

Trust (α = .96) - We measure the participant’s trust of the agent after each trial and for

each condition [115]. In our results, we analyze the final trust survey from each condition

due to the statistical testing considerations detailed in the Appendix.
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Workload - We measure the workload after each condition via the NASA Task Load

Index (NASA TLX) [116].

Likeability (α = .95) - We measure likeability after each condition via the Godspeed

likeability subscale [117].

Intelligence (α = .95) - We also measure the perceived intelligence of the agent after

each condition via the intelligence subscale of Godspeed [117].

3.4.5 Procedure

An overview of our procedure for learning the MIND MELD architecture and validating

MIND MELD’s ability to outperform our baselines is detailed in Alg. Figure 3. We first

recruit 76 training participants by word of mouth and mailing lists. The training participants

provide corrective labels for each pre-recorded rollout which we then use to train MIND

MELD and learn the parameters of MIND MELD’s three subnetworks, θ, ϕ, and ϕ′ as well

as learn the personalized embedding, w(p), via Equation B.2-Equation B.4. All training

participants additionally answer the pre-study questionnaires.

We then recruited 42 different testing participants who experience each of the conditions

discussed in Subsection 5.3.4. To learn their personalized embeddings, all participants

complete the calibration tasks. We then present each of the conditions discussed in Subsec-

tion 5.3.4 in a randomized order. All testing participants complete the pre- and post-study

questionnaires.

To ensure that participants are familiar with the system before providing corrective labels,

all participants drive around in the simulator for several minutes. Additionally, participants

practice providing corrective labels in the first four calibration tasks which are not used in

the training of MIND MELD so as to reduce novelty effects.
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3.4.6 Hypotheses

Hypothesis 1 - MIND MELD will improve the corrective labels provided by the participants

in the calibration tasks. We hypothesize that MIND MELD will learn to map suboptimal

labels to labels that more closely approximate optimal labels by learning an embedding of

stylistic tendencies of individuals.

Hypothesis 2 - The learned embeddings will correlate with participants’ stylistic ten-

dencies and prior experience. Based on our pilot study [109] illustrating that the learned

embeddings correlated with stylistic tendencies, we predict that we will be able to reproduce

these results with a larger participant pool. We also predict that the embeddings will correlate

with participants’ experience with video games and driving.

Hypothesis 3 - MIND MELD will outperform DAgger and BC in terms of ability to

reach the goal. We hypothesize that, due to MIND MELD’s ability to correct for suboptimal

labels, MIND MELD will be more likely to reach the goal and achieve a shorter average

distance from the goal.

Hypothesis 4 - The amount by which a participant deviates from the optimal feedback

style will correlate with MIND MELD’s ability to outperform DAgger. We hypothesize

that participants who provide feedback that differs the most from optimal (i.e., greatly

over-correct) will produce poor results for DAgger. Because MIND MELD can correct for

this suboptimality, the advantage of our MIND MELD algorithm over DAgger will increase

with increasingly suboptimal demonstrations.

Hypothesis 5 - We hypothesize that MIND MELD will achieve higher ratings on our

subjective metrics compared to baselines. Because MIND MELD corrects for suboptimality,

we hypothesize that MIND MELD will be rated higher in terms of perceived intelligence,

likeability, workload, and trust.

3.5 Results
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We recruited 76 training participants (M = 22.8; SD = 5.5; 31.2% Female), each of whom

completed the calibration tasks and filled out the pre-study questionnaires. We then recruited

42 testing participants (M = 22.1; SD = 2.72; 40% Female), each of whom completed the

calibration tasks, all questionnaires, and experienced the three conditions. In our following

analysis, we first determine if the data complies with parametric test assumptions before

employing a parametric test. Additionally, we test each model for ordering effects and

confounding factors from our covariates and find none. Specific details for all parametric

testing assumptions and covariates can be found in the Appendix.

We first test if our findings support Hypothesis 1 which predicts that MIND MELD

will improve upon the corrective labels provided in the calibration tasks. We find a 55%

improvement in the labels for our training participants and 37.6% improvement for our

testing participants. In the Appendix, we provide graphical depictions of MIND MELD’s

ability to correct for suboptimal trajectories.

Figure 3.5: This figure shows the average distance and standard deviation from the goal for
each algorithm after each iteration. At each iteration, the agent rolls out the current policy
and the participant provides a demonstration.

To test Hypothesis 2, we conduct a correlation analysis between the learned embeddings

and the results of our dynamic time warping describing participants’ over-/under-correcting
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MIND MELD-DAgger MIND MELD-BC DAgger-BC

Workload -8.1 (2.8)
p = .005

-10.0 (2.8)
p < .001

-2.0 (2.9)
p = .87

Likeability 1.1 (.25)
p = .004

1.4 (.28)
p = .001

.31 (.27)
p = .37

Intelligence 1.2 (.32)
p = .008

1.7 (.31)
p < .001

.53 (.31)
p = .35

Trust 0.80 (.16)
p < .001

1.1 (.14)
p < .001

0.32 (.14)
p = .192

Distance -4.5 (.88)
p < .001

-7.7 (.80)
p < .001

-3.2 (.82)
p = .01

Table 3.1: We report the means (standard deviations) of the difference between the agents
and associated p-values for objective and subjective metrics.

and delayed/anticipatory tendencies. We find support for the results in our pilot study and

find that the learned embeddings significantly correlate with participants’ tendency to over-

/under-correct (r(116) = −.47, p < .001) and provide anticipatory/delayed demonstrations

(r(116) = .49, p < .001). To further investigate Hypothesis 2 and determine if prior

experience correlates with the learned embeddings, we conduct a correlation analysis

between experience with driving and experience with video games. We find that experience

with video games significantly correlates with the learned embedding (ρ = .19, p = .038).

To investigate Hypothesis 3, we next analyze the ability of each agent to reach the goal,

in terms of both probability and frequency, over the course of the study. To determine the

probability of reaching the goal at each iteration, we conduct a survival analysis, a statistical

technique commonly used in medical research to assess the expected time until an event

takes place [118]. Survival analysis allows us to analyze data for which an event may never

occur. For example, an agent may never reach the orange ball during the study, yet we

can still include this data in our survival analysis as “censored” data. In our study, time

corresponds to the number of demonstrations that the agent has experienced. An event

occurs when the agent reaches the goal the specified number of times.

Figure 3.4 shows the Kaplan-Meier curves for reaching the goal once, twice, three times,

and four times. We find that MIND MELD is statistically significantly more likely to reach
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the goal once (log rank p < .001), twice (log rank p < .001), three times (log rank p < .001),

and four times (log rank p < .001) throughout the course of the study compared to DAgger

and BC. We find that MIND MELD has a 100% chance of reaching the goal once after

the seventh iteration whereas the baselines never achieve 100% probability of reaching the

goal even once. Likewise, we find that MIND MELD has a > 80% chance of reaching the

goal three times after the ninth iteration whereas the baselines have a < 50% chance. This

result supports Hypothesis 3 and shows MIND MELD learns a better policy in terms of

probability of reaching the goal.

Figure 3.6: This figure shows a plot of participants’ tendency to provide delayed/anticipatory
feedback vs. the difference between the average performance of MIND MELD and DAgger.

We additionally apply a Poisson regression with a Tukey post hoc to determine if there

is a statistically significant difference between the total number of times that each agent

reaches the goal throughout the study. We find that MIND MELD reached the goal 2.1x

more than DAgger (p < .001) and 2.6x more than BC (p < .001).

Next, we analyze the average distance from the goal across iterations for each algorithm.

We conduct a repeated measures Analysis of Variance (ANOVA) with a Tukey post hoc

comparing the distance to the goal for each condition. As shown in Table B.2, we find that

MIND MELD achieved a statistically significantly lower average distance from the goal
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(M = 20.4, SD = 5.58) compared to DAgger (M = 24.8, SD = 5.92, p < .001) and BC

(M = 28.2, SD = 4.86, p < .001). Figure 3.5 shows the average distance to the goal for

each trial and condition. Note that a trial ends after the agent either reaches the orange ball

or crashes into an obstacle.

To determine if our findings support Hypothesis 4, we conduct a correlation analysis

between the participants’ stylistic tendencies and the average performance difference be-

tween MIND MELD and DAgger. We find that participants’ delayed/anticipatory tendencies

significantly correlate with MIND MELD’s advantage over DAgger (r(40) = .36, p = .017),

as shown in Figure 3.6.

We lastly investigate our findings in the context of Hypothesis 5 to determine if MIND

MELD is rated subjectively higher by participants. We conducted a repeated measures

ANOVA with a Tukey post hoc or Friedman’s test (see omnibus statistics in the Appendix).

As shown in Table B.2, MIND MELD is rated statistically significantly higher compared to

both DAgger and BC for all subjective metrics. These findings support Hypothesis 5.

3.5.1 Sensitivity Analysis for Ground Truth Labels

To determine how close to optimal the ground truths need to be for MIND MELD to

outperform DAgger, we conduct a sensitivity analysis. We train MIND MELD on ground

truths which are incrementally shifted from optimal and compare the performance of the

agent that has been trained via MIND MELD using suboptimal ground truths to DAgger’s

performance.

We expect to see that, as the ground truth labels are shifted further from the optimal,

MIND MELD’s advantage over DAgger in terms of ability to reach the goal will decrease.

Fig. Figure 3.7 shows a plot of the percentage by which the ground truths are shifted from

the optimal versus MIND MELD’s advantage over DAgger in terms of average distance

from the goal. We find that MIND MELD’s advantage over DAgger negatively correlates

with the amount by which the ground truths are shifted (r(3) = −0.97, p = .0072) and that
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MIND MELD outperforms DAgger even if the ground truths have been shifted by as much

as 15% from the optimal. These results suggest that MIND MELD is robust to deviation of

the ground truth labels from optimal.

Figure 3.7: This figure shows the percentage by which the ground truths deviate from
optimal versus the advantage that MIND MELD has over DAgger.

3.5.2 Importance of Personalized Embeddings

In this section, we conduct an analysis to determine if personalization of the embeddings

improves the ability of the agent to learn from the demonstrator. To investigate the impor-

tance of the personalized embeddings, for each subject, we randomly select a personalized

embedding belonging to another subject and use this random embedding to map the subject’s

corrective labels to new labels. Then, we retrain the agent on the adjusted, corrective labels.

We hypothesize that agents trained on corrective labels that have been mapped using a

random personalized embedding will perform worse than agents trained on corrective labels

mapped using the embedding that was learned for the specific participant. To investigate our

hypothesis, we conduct a Friedman’s test to determine if there is a statistically significant dif-

ference between the average distance to the goal for agents trained on the correct embedding

versus the random embedding. We find that the average distance from the goal is statistically
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significantly larger (χ2(1) = 9.92, p = .0016) when a random embedding is used compared

(M = 22.2, SD = 7.1) to when the correct embedding is used (M = 20.4, SD = 5.5). We

also employ Spearman’s test to determine if the amount by which the random embedding

differs from the original embedding correlates with decreased performance. We find a sig-

nificant correlation between the percent increase in distance from the goal and the distance

between the random embedding and original embedding (ρ = 0.28, p < .001). These results

suggest that the personalization of embeddings is an important factor contributing to the

success of MIND MELD.

3.6 Discussion

In our analysis, we find support for Hypotheses 1-5, illustrating that MIND MELD can learn

stylistic tendencies of suboptimal and heterogeneous demonstrators, map the suboptimal

demonstrations to better demonstrations, and, as a result, outperform prior work in both

robot-centric and human-centric LfD. We find that MIND MELD is able to learn various

participant styles, such as participants’ tendency to over-/under-correct (p < .001) and

provide delayed and anticipatory demonstrations (p < .001), suggesting that MIND MELD

can provide positive results with a diverse user pool. For more discussion on stylistic

tendencies, please refer to the Appendix.

Because MIND MELD is able to learn heterogeneous tendencies and utilize this infor-

mation to correct for suboptimal behavior, we find that MIND MELD outperforms prior

work in terms of its ability to reach the goal in an LfD task. MIND MELD achieves both a

higher probability of reaching the goal and a lower average distance from the goal compared

to both baselines, DAgger (p < .001) and BC (p < .001). Additionally, we observe that

the more delayed a participant is at providing demonstrations, the better MIND MELD per-

forms over DAgger (p = .017). We find that, for participants who provide less suboptimal

demonstrations, MIND MELD and DAgger exhibit more similar performance because there

is less of a need to correct a participants’ demonstrations. When a participant’s behavior
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deviates more from the optimal, DAgger performs worse, whereas MIND MELD is able to

correct for the suboptimality.

Not only do we see improved performance in terms of objective metrics, we also find

that MIND MELD outperforms both DAgger and BC in terms of our subjective metrics.

Participants rate MIND MELD to be more likeable (p = .004), intelligent (p = .008),

and trustworthy (p = .001) compared to DAgger. Additionally, we find the participants’

perceived workload is rated as lower for MIND MELD (p = .005). This is an interesting

finding considering that for both MIND MELD and DAgger, participants are tasked with

providing corrective demonstrations to the agent. With respect to performance and human

usability, MIND MELD achieves the best of both worlds. MIND MELD improves upon the

performance of robot-centric algorithms, while being easy to teach, likeable, intelligent, and

trustworthy.

3.7 Limitations/Future Work

Due, in part, to the recruiting difficulties imposed by the COVID-19 pandemic, our sample

population consisted primarily of students with a mean age of 22.6. In the future, we

plan to conduct this experiment with a more diverse set of participants. We also note

that MIND MELD requires training participants to meta-learn the model parameters and

a set of calibration tasks with ground-truth labels to learn the personalized embeddings.

However, our results demonstrate that MIND MELD improves the quality of the corrective

demonstrations by 37.6% and LfD outcomes (p < .001), making this additional step

worthwhile.

Additionally, MIND MELD makes several assumptions, listed in Section 3.2, about

the way in which individuals provide corrective demonstrations. Yet, the success of our

algorithm suggests that these assumptions appear to be sufficiently met for our experimental

setup. For this study, we assume that a person’s demonstration style will remain constant;

however, we do expect that, over a longer period of interaction, a person’s style of demon-
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strations may change and adapt. In future work, we plan to investigate how to update our

framework to account for and learn changing styles during longitudinal LfD.

Lastly, we aim to investigate if we can replicate the benefits of MIND MELD in other

domains. We plan to implement MIND MELD on a robot arm domain, which may produce

different behavior and stylistic tendencies amongst participants due to more degrees of

freedom and a more complex user interface.

3.8 Conclusion

In this chapter, I introduce MIND MELD, a novel LfD framework that learns personalized

embeddings for heterogeneous demonstrators and improves upon suboptimal human feed-

back for robot-centric LfD algorithms. Through a human-subjects experiment, we showed

that MIND MELD outperforms a human-centric baseline, BC, and a robot-centric baseline,

DAgger, with regards to multiple measures of algorithm performance. Furthermore, users

found MIND MELD more intelligent, likeable, trustworthy, and easier to teach than BC and

DAgger.

Our MIND MELD framework fills a gap in prior work by introducing an approach

which enables a robot to learn from suboptimal and heterogeneous demonstrators in a

robot-centric LfD paradigm. This approach exemplifies the potential for personalized

frameworks to improve human-machine interaction. In keeping with the goals of my thesis,

I have demonstrated that MIND MELD enables learning from a large population while

also personalizing for an individual end-user. By accounting for end-user heterogeneity,

we are able to improve upon the human-machine relationship as demonstrated in a large

human-subjects study.
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CHAPTER 4

PERSONALIZED TEACHING VIA RECIPROCAL MUTUAL INFORMATION

DRIVEN META-LEARNING FROM DEMONSTRATION

4.1 Introduction

In the previous Chapter, I introduced MIND MELD, a personalized framework for learning

from suboptimal and heterogenous demonstrators. I demonstrated that MIND MELD

is capable of effectively learning a personalized embedding describing a demonstrator’s

style and mapping the demonstrator’s suboptimal demonstrations to better demonstrations.

Despite MIND MELD’s positive results, by correcting for suboptimality under-the-hood,

the robot and human will not have a shared understanding about how best to accomplish

the task. This lack of transparency can lead to decreased trust in the system and a lower

likelihood of task success [101, 119]. Instead, in this chapter, I propose an approach to

provide personalized robotic feedback to demonstrator’s to improve upon their suboptimality,

thus increasing transparency and creating a shared understanding between the human and

robot.

Many non-expert users lack a functional understanding of the robotic systems they are

teaching, which may contribute to their suboptimal tendencies. This lack of understanding is

concerning because prior work has shown that trust and reliance decrease when the end-user

does not understand how the robot operates [101, 119]. Furthermore, if an underlying

algorithm is correcting for teacher suboptimality, the teacher will likely never learn to be a

better demonstrator. Correcting for suboptimality via an algorithm without communicating

to the demonstrator how to improve upon their demonstrations is problematic for several rea-

sons. Producing positive results from poor demonstrations will only reinforce the teacher’s

suboptimal tendencies, thereby preventing the teacher from improving. Additionally, re-
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inforcing low quality and suboptimal demonstrator tendencies will likely have long-term

consequences. For example, when the teacher provides demonstrations to a different robotic

platform that may be incapable of correcting for demonstrator suboptimality, the robot will

struggle to learn from the teacher.

Furthermore, as shown in prior work, humans may generalize better to out-of-distribution

tasks and, if they are capable of providing high-quality demonstrations, will be more effective

teachers [28]. Therefore, we hypothesize that correcting for suboptimal demonstrations

under-the-hood as MIND MELD does may not be the best long-term strategy because doing

so may 1) contribute to end-users’ lack of functional understanding, 2) reinforce suboptimal

tendencies, and 3) result in poor performance on out-of-distribution tasks and novel robotic

platforms [101, 119, 28]. Consequently, there is a need for a framework that can coach

demonstrators to become better teachers.

While several approaches have attempted to improve upon a teacher’s ability to provide

high quality demonstrations via tutorials and videos [60, 59, 120], prior work has primarily

focused on correcting for suboptimality after-the-fact rather than directly improving teaching

abilities. In Chen et al., the authors introduce Self-Supervised Reward Regression (SSRR) in

which the authors improve upon an agent’s ability to learn from suboptimal demonstrations

by characterizing the relationship between noise and performance [41]. Their approach

bootstraps off of suboptimal demonstrations to learn an idealized reward function. Similarly,

T-Rex and D-Rex improve upon the ability to learn from suboptimal demonstrations by

learning a reward function from a ranked set of demonstrations [37, 16].

Rather than correcting for suboptimality under-the-hood as much of prior work does, in

this chapter, I introduce an approach to provide personalized robotic feedback to a human

demonstrator to directly improve upon their ability to provide high-quaility demonstrations,

To achieve this goal, I propose Reciprocal MIND MELD (Reciprocal Mutual Information

Driven Meta-Learning from Demonstration (MIND MELD)). Reciprocal MIND MELD is

based upon the MIND MELD framework but is meant to guide the human demonstrator to

62



proactively improve their feedback. Reciprocal MIND MELD differs from MIND MELD in

three significant ways. First, Reciprocal MIND MELD learns a semantically meaningful

personalized embedding via calibration tasks that describes the way in which a demonstrator

is suboptimal (Figure 4.1b and e). Second, based upon this personalized embedding, Recip-

rocal MIND MELD provides robotic feedback to the demonstrator to improve their teaching

abilities (Figure 4.1c and f) and consequently improve learning outcomes for the agent rather

than correcting for suboptimality retroactively. Third, we introduce an Embedding Predictor

Network (EPN) which dynamically updates the demonstrator’s personalized embedding

by estimating its new location (Fig. 1e), thus eliminating the need to repeat the calibration

tasks. In this chapter, we contribute the following:

1. We propose Reciprocal MIND MELD, a novel method for providing personalized

feedback to demonstrators to improve their teaching abilities via a personalized

embedding.

2. We develop an EPN to dynamically update the demonstrator’s personalized embedding

and without the need to repeat the time-consuming calibration tasks (Figure 4.1).

3. We demonstrate that Reciprocal MIND MELD can improve an individual’s demon-

strations (p < .001), accurately estimate a demonstrator’s new embedding (p = .002),

and improve learning outcomes of the robot (p = .045) in a driving simulator domain.

4.2 Preliminaries

Reciprocal MIND MELD is inspired by the MIND MELD architecture demonstrated in

previous work [1]. The objective of MIND MELD is to learn a personalized embedding

to describe the way in which a demonstrator is suboptimal in an Robot-Centric (RC) LfD

paradigm in which the demonstrator provides corrective feedback to the robot. MIND

MELD then utilizes this embedding to map a demonstrator’s suboptimal demonstrations
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Figure 4.1: This figure illustrates an overview of our methodology and study designs. Figs
1a, 1b, and 1c show the methodology for Studies 1 and 2 and Figs 1d, 1e, and 1f the
methodology for Study 3.

to demonstrations closer to the optimal. The MIND MELD architecture (shown in gray in

Figure 4.2) is trained via calibration tasks, which are used to learn the mapping (fθ, Eϕ′ ,

and qϕ) from suboptimal labels, a(p)t−∆t:t+∆t, to better labels, d̂(p)t , and learn the personalized

embedding, w(p), representing an individual demonstrator. The calibration tasks consist

of a set of pre-recorded policy rollouts with known optimal labels. Participants provide

corrective demonstrations to the robot during these rollouts to direct the robot to a goal.

MIND MELD learns to map the participant’s corrective labels to higher-quality labels while

simultaneously inferring the personalized embedding, w(p), representing an individual, p’s,

suboptimal style. To ensure that w(p) can represent various and distinct feedback styles,

MIND MELD maximizes a lower bound on mutual information between the way in which a

demonstrator is suboptimal and w(p) via variational inference [108]. Additional details can

be found in the Appendix.

While prior work demonstrated that MIND MELD is capable of improving upon subop-

timal demonstrations, MIND MELD suffers from several key limitations: 1) MIND MELD

corrects for suboptimality under-the-hood and does not convey to the demonstrator how best
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Figure 4.2: This figure shows the MIND MELD architecture from Schrum et al. [2] in
gray and the additional network head, pψ, in blue for learning a semantically meaningful
embedding space (see Subsection 4.3.1).

to improve their suboptimal tendencies, and 2) MIND MELD assumes that demonstrators

are static (i.e., the way in which they are suboptimal does not change over time). Reciprocal

MIND MELD overcomes these limitations by 1) providing actionable robotic feedback to

the demonstrator to improve upon the quality of their demonstrations and 2) dynamically

updating the estimate of their personalized embedding online via our EPN in order to

account for changes in suboptimal tendencies and teaching ability.

Driving Simulator Domain - In keeping with prior work [2], we utilize a driving simulator

domain based on the high-fidelity physics simulator, Airsim, and an Xbox steering wheel

to evaluate Reciprocal MIND MELD. Driving simulators allow researchers to study novel

algorithms in an environment that is safe for human subjects. In this domain, participants

are tasked with teaching a car to drive from a start location to a goal in various environments

while avoiding obstacles. The action space consists of the position of the wheel (-540° to

540°), and the state space consists of images, position, velocity, and acceleration. Feedback

is provided to demonstrators via verbal instructions.

4.3 Methodology

Because humans have a greater ability to generalize to novel tasks and domains than a

machine-learning algorithm [28], our objective is to provide demonstrators with knowledge

65



about how to improve their demonstrations rather than correcting suboptimality under-the-

hood. We propose an approach to reason about a demonstrator’s embedding and provide

robotic feedback derived from their embedding that is intended to improve upon their

demonstration abilities. In keeping with prior work [2], we investigate the abilities of

our approach in a driving simulator domain. We break the problem of improving upon a

demonstrator’s teaching abilities into three research questions.

RQ1: Can robotic feedback improve upon a demonstrator’s teaching abilities?

RQ2: What is the best method to provide robotic feedback to improve teaching abilities?

RQ3: Does robotic feedback result in improved learning outcomes on novel tasks and

over time?

4.3.1 Semantically Meaningful Embedding Space

Prior work [1, 2] has illustrated that MIND MELD learns embeddings that correlate with

suboptimal tendencies and that demonstrators tend to over-/under-correct and provide

anticipatory/delayed feedback in a driving simulator domain. We note that domain expertise

is required to determine these dimensions of suboptimality. This suboptimality is related to

the unintuitive nature of RC LfD as well as the correspondence problem [38, 121] which

arises from differences in embodiment between humans and robots. These suboptimal

tendencies are unrelated to the specific task itself, but are related to the task specifications

(e.g., providing corrective feedback via a steering wheel). While there may be additional

dimensions of suboptimality depending on the robotic domain, we focus our investigation on

the over-/under- (o/u) and anticipatory-/delayed- (a/d) dimensions, as these were determined

in prior work to be principle dimensions of suboptimality [2]. We posit that these two

dimensions will be common across RC LfD paradigms which require continuous control

input. We aim to test this hypothesis in future work. Our goal is to learn a semantically

meaningful embedding space (i.e., a space that can be translated into robotic feedback) and

then utilize the location of the demonstrator’s embedding within the embedding space to
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Figure 4.3: The learned embedding space and decision boundaries. Each point represents
the embedding of a demonstrator, and the diameter represents the magnitude of over-
/under-correction. The arrows indicate the direction an embedding should move to be
closer to the perfect embedding. A similar plot showing the magnitude and quartiles for
the anticipatory/delayed dimension can be found in the Appendix. Blue points represent
participants who tend to over-correct and are delayed, red points represent participants
who under-correct and are delayed, and green represent those who over-correct and are
anticipatory. The yellow line represents the decision boundary for the a/d dimension and
the purple line represents the boundary for the o/u dimension. This plot demonstrates
that demonstrators that are similar in the way in which they are suboptimal tend to cluster
together and these these suboptimal tendencies are linearly separable.

provide actionable robotic feedback.

To learn a semantically meaningful embedding space whose dimensions reflect subop-

timal tendencies, we add an additional network head, pψ(w(p)) = ˆ⃗m(p), as shown in blue in

Figure 4.2, to the MIND MELD architecture to estimate the suboptimal tendency, m⃗(p), (i.e.,

the magnitude by which the demonstrator over-/under-corrects and is anticipatory/delayed).

We utilize a Mean-squared error (MSE) loss, L(ψ,w) = 1
N

∑
i ||pψ(w(i))− m⃗(i)

∣∣|22, to train

the network to predict the suboptimal tendency, m⃗(p), given the personalized embedding.
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This loss helps to ensure that the dimensions of the embedding space are semantically

meaningful and can therefore be translated into actionable robotic feedback. Under IRB

approval, we leverage the calibration dataset collected in Schrum et al. [2] to learn a seman-

tically meaningful embedding space. This dataset consists of 76 participants who provided

demonstrations on a set of calibration tasks. The suboptimal magnitude, m⃗(p), is determined

via Dynamic Time Warping (DTW) [114] between the participants’ feedback and optimal

labels from the calibration tasks. Because MIND MELD outputs the difference between

the participant’s corrective label and the optimal label, the perfect demonstrator’s embed-

ding, w∗, is defined as the embedding which minimizes the output of the MIND MELD

architecture as shown in Equation 4.1. Here, a(p)t−∆t:t+∆t is a sequence of demonstrations.

w∗ = argmin
w(p)

∑
t,p

Mθ,ϕ′(a
(p)
t−∆t:t+∆t, w

(p)) (4.1)

Our next objective is to determine the semantically meaningful dimensions of the em-

bedding space. We train a Support Vector Machine (SVM) with a linear kernel to learn the

decision boundaries which best separate the demonstrators into their respective suboptimal

categories (o/u and a/d). The SVM training labels are determined via DTW between the

participant labels and the optimal labels from the calibration tasks. We utilize an SVM to

learn the decision boundaries so that we can add the additional constraint that the classifier

must pass through the point representing the perfect demonstrator, w∗. The distance between

the embedding and the decision boundary along the suboptimal dimension determines the

magnitude by which the demonstrator is suboptimal.

Figure 4.3 depicts our embedding space with linear classifiers separating over-correctors

from under-correctors and delayed from anticipatory. The size of the point represents the

magnitude by which the demonstrator is suboptimal in the o/u dimension as determined by

DTW. The plot illustrates that demonstrators who are more suboptimal in o/u (as represented

by larger points) are farther from the o/u decision boundary, supporting our hypothesis that

distance from the decision boundary can be used to measure the degree of suboptimality.
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To further support our claim, we apply Spearman’s correlation and find that distance from

the decision boundary strongly correlates with magnitude of suboptimality in both the o/u

(ρ = .84, p < .001) and in a/d dimensions (ρ = .93, p < .001).

4.3.2 Robotic Feedback

To determine the feedback the robot should provide, we calculate the distance, ϵ, along

the semantically meaningful dimension between the personalized embedding, w(p), and

perfect embedding, w∗, as shown in Figure 4.1. In the driving domain, we are interested

in ϵ(i)o/u and ϵ(i)a/d, which define the distance between the demonstrator’s embedding and the

hypothetical perfect demonstrator’s embedding in the o/u dimension and the a/d dimension

respectively after the ith round of feedback. In our framework, the feedback is proportional

to the distance from w∗.

Table 4.1: This table shows the feedback a participant receives based on their quartile and
study condition for Study 1. Analogous feedback for the Cooperative condition is provided
in Study 2 for the anticipatory/delayed dimension in addition to the over-/under-correcting
dimension.

Cooperative Quartile Adversarial Quartile Robotic Feedback

First Fourth
“Your feedback is good! Keep it

up.”

Second Third
“You are slightly

over-/under-correcting. Please turn
the wheel a bit more/less.”

Third Second
“You are over-/under-correcting.
Please turn the wheel more/less.”

Fourth First
“You are over-/under-correcting a

lot. Please turn the wheel a lot
more/less.”

To convert ϵ(i)o/u into actionable and intelligible robotic feedback, we discretize the range

of ϵ(i)o/u by splitting the embeddings from the previously collected calibration participants

into quartiles as shown in Figure 4.3. Our objective is to move a participant’s embedding

so that they are in the range denoting the 25% of calibration participants who are the least

suboptimal (i.e., quartile one). Participants who fall in a quartile farther from the decision

69



(a) Over-/under-correcting (b) Anticipatory/delayed

Figure 4.4: Figure 4.4(a) and Figure 4.4(b) show the confusion matrices for for predicting
the quartile that the embedding falls within on holdout test tasks.

boundary receive feedback proportional to their quartile. For example, if a participant falls

in the fourth quartile in the o/u dimension, the robot will instruct the participant to turn

the wheel a lot less compared to slightly less in the second quartile. A table showing the

feedback for each quartile and dimension can be found in Table Table B.1.

4.3.3 Online Embedding Estimate

To determine if additional feedback should be provided to the demonstrator and if so, the

form of the feedback, we must update our estimate of w(p) after each iteration of robotic

feedback. One option to update our estimate of the embedding is to have the demonstrator

redo the calibration tasks. However, doing so is time consuming and increases the workload

of the demonstrator.

Instead, we propose to dynamically update the embedding online using a Long-Short

Term Memory Network (LSTM)-based architecture which extracts salient features from the

demonstrations to estimate the personalized embedding rather than relying on calibration

tasks which require known, optimal labels. For example, the velocity and magnitude with

which the demonstrator turns the steering wheel are two salient features which can inform
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0.50

Figure 4.5: This figure illustrates our EPN architecture. τ (p)0:m is the set of demonstrations
provided by the participant in round i. r(p)0:i−1 is the set of previous robotic feedback provided
to the demonstrator and w(p)

0:i−1 are the participant’s previous embeddings.

the estimate of the new embedding. We call this network the EPN (Figure 4.5). The input to

the EPN is the set of new demonstrations, τ (p)0:m, the demonstrator’s previous embeddings,

w
(p)
0:i−1, and the robotic feedback that was previously provided to the demonstrator, r(p)0:i−1.

The output of the EPN is an estimate of the new personalized embedding, ŵ(p)
i . This network

utilizes two LSTM subnetworks, hϕ and dθ, the output of which is then fed into subnetwork,

gϕ′ , made up of linear layers with ReLU activations. The inputs to hϕ are w(p)
0:i−1 and r(p)0:i−1.

Each trajectory, τ (p)t , is fed into an LSTM subnetwork, dθ. We then average across the

outputs of dθ and feed the result into gϕ′ which produces our embedding estimate, w(p)
i . We

choose to average across the outputs of dθ so that our network is agnostic to the number of

trajectory inputs.

We train our EPN on the data collected in Studies 1 and 2 as described in Section 4.4.

Figure 4.4(a) and Figure 4.4(b) show confusion matrices depicting the ability of the network

to accurately predict the quartile of suboptimality in the o/u dimension and the a/d dimension

respectively on holdout test tasks.

71



4.4 Human-Subjects Studies, Results, and Discussion

To determine if Reciprocal MIND MELD is able to improve upon a demonstrator’s ability

to provide high-quality demonstrations, we conduct three human-subjects studies. The

objective of Study 1 is to determine if we are able to shift a demonstrator’s embedding via

verbal robotic feedback in the o/u dimension (R1). In Study 2, we investigate if, and how best,

we can shift a demonstrator’s embedding in two dimensions (R2). In Study 3, we determine

if 1) robotic feedback derived from our EPN rather than the calibration tasks is a good metric

of teacher suboptimality and 2) if robotic feedback improves teaching outcomes over time

(RQ3). During each study, we measured trust, team fluency, workload, and understanding

to determine how robotic feedback altered participants’ subjective attitude towards each

agent. In our analysis, we check parametric models for normality and homoscedasticity.

Model details, tests for assumptions, and additional results are in the Appendix. Each study

is approved by Georgia Tech’s IRB

Table 4.2: This table shows the mean, (standard deviation), and test statistics of the subjective
metrics and ∆ϵo/u for Study 1. ∆ Trust and ∆ Fluency describe the change in Trust and
Fluency respectively between rounds one and four.

Cooperative Adversarial None Test Statistic p-value
∆ϵo/u 0.33 (0.2) -0.30 (0.2) 0.01 (0.2) F (2, 24) = 20.2 p < .001

Workload 37.5 (16.4) 46.1 (19.5) 53.5 (11.6) F (2, 24) = 2.21 p = .132
Likeability 6.69 (2.0) 6.81 (1.5) 6.86 (1.4) F (2, 24) = .024 p = .978
Intelligence 6.31 (1.6) 5.57 (1.1) 6.24 (1.4) F (2, 24) = 1.03 p = .372
∆ Trust 0.56 (0.4) -0.01 (0.4) 0.05 (0.2) F (2, 24) = 5.15 p = .014

∆ Fluency 0.34 (0.4) -0.13 (0.3) -0.04 (0.4) F (2, 24) = 5.10 p = .014

4.4.1 Study 1 (RQ1)

Our objective in Study 1 is to demonstrate that robotic feedback can effectively modulate

a participant’s teaching. In this study, we start by investigating feedback only in the o/u

dimension. After completing pre-study surveys, participants complete four rounds of

the calibration tasks to measure how their embedding is changing. Participants receive
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robotic feedback between each round and complete trust [115] and fluency [122] surveys to

determine their subjective perceptions of the robot.

0.50

Figure 4.6: This figure shows the difference between the embedding distance at round i,
ϵ
(i)
o/u, and the embedding distance at round one, ϵ(1)o/u, in the o/u dimension for Study 1.

Conditions: In the Cooperative condition, the robot provides feedback to improve the

demonstrator’s teaching. In the Adversarial condition, the robot provides feedback to make

the participant a worse demonstrator. We include this condition to determine if we are able to

move a participant’s direction in any direction and to ensure that a participant’s abilities are

not changing simply due to interaction with the agent. In the None condition, the participant

does not receive any feedback.

Results: In Study 1, we recruited 27 participants (Mean age = 24.15, SD = 3.4; 37.0%

Female). Figure 4.6 shows the change in the distance (ϵ(i)o/u − ϵ
(1)
o/u) in the o/u dimension

between round one and rounds one through four. We plot ϵ(i)o/u−ϵ
(1)
o/u to show how participants

change irrespective of their initial teaching skill. We find that the distance at round one, ϵ(1)o/u,

is significantly greater from the distance, ϵ(4)o/u, at round four in Cooperative (χ2(1) = 5.44,

p = .020) suggesting that participants’ embeddings move closer to perfect embedding.

Adversarial produces the opposite result, i.e. the embedding moves significantly farther

from the perfect embedding (F (1, 8) = 20.1, p = .002).

We additionally find that Adversarial results in the embedding shifting significantly

farther from the perfect embedding between rounds one to four (F (2, 24) = 20.2, p < .001)
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compared to Cooperative (p < .001) and None (p = .014). Cooperative shifts the embedding

significantly closer to the perfect embedding (p = .009) compared to None. Together, these

findings indicate that our approach is capable of modulating teaching style in either direction

along the suboptimal dimension. Further, the results in None shows that participants are not

simply improving due to repeated interactions.

0.50

Figure 4.7: This figure shows the difference between the embedding distance at each round,
ϵa/d, and the embedding distance at round one, ϵ(1)a/d for the a/d dimension.

Interestingly, we find that participants become significantly worse in the a/d dimension

when they only receive Cooperative feedback in the o/u dimension. Participants become

better in the a/d dimension when they receive Adversarial feedback in the o/u dimension.

Figure B.4(c) shows the change in the amount by which a participant provides antici-

patory/delayed feedback as calculated by the distance from the perfect demonstrator in

embedding space. We show that as participants improve in the over-/under-correcting dimen-

sion, they tend to become worse in the anticipatory/delayed dimension and vice versa when

no feedback is provided. This suggests that the task of improving participants demonstration

quality in both the over-/under-correcting dimension and the anticipatory/delayed dimension

may be particularly difficult since improving in the over-/under-correcting dimension tends

to produce greater suboptimality in the anticipatory/delayed dimension.

We find that participants’ trust (Table B.2) increased significantly more (F (2, 24) =

5.15, p = .014) in Cooperative compared to Adversarial (p = .020) and None (p =
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.038). Additionally, we find a positive change in fluency (F (2, 24) = 5.10, p = .014)

in Cooperative compared to Adversarial (p = .017) as shown in Table B.2. Takeaway:

Robotic feedback can effectively improve a participant’s teaching abilities in a driving

simulator domain.

4.4.2 Study 2 (RQ2)

0.50

Figure 4.8: This figure shows the difference between the embedding distance at round i, and
the embedding distance at round one for Study 2.

In Study 2, we next determine how best to provide robotic feedback to both prevent

cognitive overload and efficiently improve upon a participant’s teaching abilities. Our study

design follows the same procedure as Study 1, in which participants complete five rounds of

the calibration tasks, receive robotic feedback between each round, and complete surveys

between each round.

Conditions: In Simultaneous, the robot provides feedback related to both the o/u and

the a/d dimensions. In Greedy, the robot only provides feedback related to the condition in

which the participant is worst (i.e., furthest from w∗). This condition is intended to reduce

cognitive overload for the demonstrator as it reduces the amount of information provided at

once. In None, the participant receives no feedback.

Results: We recruited 39 participants (Mean age = 22.46, SD = 3.3; 38.5% Female). Fig-

ure B.5 shows the overall change in the distance (ϵ(i)o/u+a/d − ϵ
(1)
o/u+a/d) in the two dimensions
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of suboptimality between round one and rounds one through five. We find that the distance

at round one, ϵ(1)o/u+a/d, is significantly greater from the distance, ϵ(5)o/u+a/d, at round five in

Simultaneous (F (1, 12) = 22.3), p < .001). We next compare ∆ϵo/u+a/d across conditions

(F (2, 36) = 3.77, p = .033). We find that Simultaneous results in the embedding shifting

significantly closer to the perfect embedding between rounds one to five compared to None

(p = .034). We do not find significance between None and Greedy or Simultaneous and

Greedy. We additionally find that Simultaneous results in an improvement across both the

o/u and a/d dimensions of suboptimality.

Additionally, we find that participants’ trust (F (2, 36) = 3.81, p = .032) and team

fluency (F (2, 36) = 7.23, p = .002) significantly increased in Simultaneous compared

to None (p = .029, p = .002 respectively). Lastly, although the result is not significant,

we find that participant’s understanding of the robot increased more in the Simultaneous

(M = 0.61, SD = 0.62) condition compared to None (M = 0.14, SD = 0.69) and

Greedy (M = .15, SD = 0.58). Takeaway: Providing feedback in both dimensions

simultaneously produces better results for both objective and subjective metrics.

4.4.3 Study 3 (RQ3)

0.50

Figure 4.9: This figure shows the final distance from the goal for the robot after each round
of Study 3.

In Study 3, we aim to show that our approach and the results from Study 1 and 2 translate

76



to improved learning outcomes for an LfD agent on novel tasks. Participants first complete

the calibration tasks to obtain an initial estimate of their embedding, w(p)
0 , and determine

ϵ
(0)
o/u and ϵ(0)a/d. Next, the robot provides feedback to the participant intended to improve their

demonstrations in both the o/u and the a/d dimension given our positive findings for the

Simultaneous condition in Study 2. Participants then train the robot for three rounds in

three different novel environments (i.e., new start and goal locations) for six demonstrations

each. Between each environment, we estimate the participant’s new embedding, w(p)
i , via

the EPN, and calculate ϵ(i)o/u and ϵ(i)a/d after each round, i ∈ {1, 2, 3}. The robot provides

robotic feedback based upon the new estimate of the participant’s embedding derived from

the EPN. At the end of the study, the participants redo the calibration tasks to determine ϵ(4)o/u

and ϵ(4)a/d. By redoing the calibration tasks, we are able to obtain a ground truth estimate of

how the quality of their demonstrations has changed over the course of the study.

Conditions: In Feedback, the robot provides feedback to the participant about their

demonstrations. In No Feedback, the robot still interacts with the participant but does not

provide feedback.

Results: We recruited 60 participants (Mean age = 21.9, SD = 2.89; 28.3% Female).

Figure 4.9 shows the robot’s final distance from the goal for Feedback and No Feedback for

rounds 1-3. Participants in Feedback achieve a lower final distance to the goal in round one

despite starting off as worse demonstrators on average as measured via the initial calibration

tasks (Mean ϵ(0)o/u+a/d in Feedback: 0.93, Mean ϵ(0)o/u+a/d in No Feedback: 0.89). Additionally,

the final distance of the robot improves over the rounds in Feedback whereas in No Feedback,

the robot improves slightly then gets worse in the final round. In round three, the robot

achieves a significantly lower final distance from the goal (Z = −2.0, p = .045) compared

to No Feedback.

To determine if the embedding as estimated by the EPN is a good metric of performance,

we compute the correlation between the distance, ϵ(i)o/u+a/d, of the estimated embedding from

the perfect embedding and performance as measure by the average distance from the goal
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Figure 4.10: Correlation between the em-
bedding distance, ϵ(i)o/u+a/d, and distance
from the goal.

Figure 4.11: Change in ϵo/u and ϵa/d be-
tween first and last calibration tasks.

for each round, i. Figure 4.10 shows a significant correlation (ρ = .23, p = .002) between

embedding distance and performance, suggesting that the embedding estimated by the EPN

is a good measure of suboptimality.

Next, we investigate the overall change in the quality of the participants’ demonstrations

as measured via the first set of calibration tasks (conducted at the beginning) and last set

(conducted at the end). Figure 4.11 shows the change, ϵ(0) − ϵ(4), for the o/u dimension

and the a/d dimension. We find that participants became significantly better in Feedback

(t(52) = 2.62, p = .006) compared to No Feedback in the o/u dimension. While we do

not find significance in a/d, we do find that participants improve in Feedback whereas they

become worse in No Feedback in this dimension. Lastly, we investigate Feedback versus

No Feedback in terms of subjective metrics. We find that Feedback significantly increases

trust (Z = −2.33, p = .019) and decreases workload [116] (t(58.0) = −1.79, p = .039)

compared to No Feedback. Takeaway: Feedback derived from our EPN improved

participant teaching and resulted in better learning outcomes for the robot in novel

tasks.

4.4.4 Discussion and Limitations

In this work, we aim to determine 1) if we can shift a demonstrator’s personalized embedding

in one-dimension, 2) how best to provide feedback to shift a demonstrator’s embedding in

multiple dimensions, and 3) if robotic feedback results in better learning outcomes. In Study
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1, we demonstrated we can shift a demonstrator’s embedding both farther from and closer

to the perfect embedding depending on whether the demonstrator received feedback from

an Adversarial robot or a Cooperative robot respectively (p < .001). This finding suggests

that demonstrators are able to appropriately alter their demonstrations based upon robotic

instruction derived from our Reciprocal MIND MELD architecture. Furthermore, the strong

correlation between embedding distance and ground truth performance determined via DTW

(p < .001), suggests that demonstrators are objectively improving their demonstrations in

the Cooperative condition and becoming worse demonstrators in the Adversarial Condition.

In Study 2, we explored how best to provide robotic feedback across multiple dimensions

of suboptimality to both reduce cognitive overload while providing maximal information. We

found that providing feedback intended to improve upon both dimensions of suboptimality

simultaneously is the best strategy and does not cause participants to suffer from an undue

level of cognitive overload (p < .001). Furthermore, participants preferred the Simultaneous

robot and rated Simultaneous as better in terms of both trust (p = .032) and team fluency

(p = .002).

Studies 1 and 2 present strong evidence that robotic feedback is capable of improving

upon the quality of a teacher’s demonstrations, suggesting that a robot will learn better

from a teacher who has received robotic feedback. In Study 3, we tested this hypothesis

and determine if Simultaneous robotic feedback results in improved learning outcomes

for the robot compared to when no feedback is provided. We found that final distance of

the robot from the goal improves as the demonstrator receives more feedback about their

demonstrations (p = .045) whereas we did not find improvement with no feedback. Thus,

we have demonstrated that robotic feedback derived from our Reciprocal MIND MELD

architecture results in better learning outcomes for a robot.

Limitations: A limitation of Reciprocal MIND MELD is that domain knowledge is

required to determine the dimensions of suboptimality. However, robotic domains share

many similarities in terms of the control interfaces and the potential for suboptimality,
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suggesting that the dimensions in one domain will likely be similar in others. In this

work, we investigate verbal feedback to improve upon demonstration quality. However,

prior work has suggested that alternative methods of providing feedback may be more

effective at improving teaching abilities [60]. We leave to future work an investigation of

the best modality for providing demonstrator feedback. Furthermore, we only investigate

two dimensions of suboptimality in a driving simulator domain. We leave to future work an

investigation of Reciprocal MIND MELD’s ability to generalize to additional dimensions of

suboptimality in other domains. Additionally, our population consisted mostly of college

aged students. In future work, we propose to sample from a more diverse participant pool.

4.5 Conclusion

We introduce Reciprocal MIND MELD, a novel LfD framework for providing robotic

feedback to a human demonstrator based upon a personalized embedding to improve

suboptimal teaching tendencies. We demonstrate our approach in a series of three human-

subject experiments in which we show that robotic feedback can improve upon the quality

of a teacher’s demonstrations, providing feedback in multiple dimensions simultaneously is

the most effective method, and robotic feedback results in improved learning outcomes for a

robot. Additionally, we show that our EPN is capable of accurately estimating the updated

personalized embedding online, thus enabling continuous feedback to be provided to the

demonstrator.

My Reciprocal MIND MELD framework is the first approach to enable personalized

teaching to improve the ability of suboptimal demonstrators in an LfD paradigm. Beyond

LfD, Reciprocal MIND MELD has the potential to be deployed as a general tutoring and

coaching framework to improve end-user suboptimality in a variety of domains.
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CHAPTER 5

MANIPULATING AUTONOMOUS VEHICLE EMBEDDING REGION FOR

INDIVIDUALS’ COMFORT

5.1 Introduction

In Chapter 3 and Chapter 4, I developed personalized frameworks to both learn from

heterogeneous, suboptimal demonstrators and also provide robotic feedback to improve

upon a teacher’s ability to provide high-quality demonstrations. I demonstrated that a

personalized framework allows a robot to better learn from a suboptimal demonstrator. The

ability to adapt to suboptimal humans and provide tailored feedback to a suboptimal end-user

is an important skill for robots to acquire and will enable them to better operate in human-

robot teams. However, suboptimality is only one aspect of human heterogeneity which

human-machine systems will have to account for. Humans have evolved over thousands

of years to have differing preferences for food, habitats and objects and these differing

preferences played an integral role in human survival [123]. This innate tendency to have

differing preferences, which is known as ”evolutionary aesthetics” will affect the way in

which humans interact with and regard robots. The way that a robot looks, behaves, and

the decisions it makes will all be judged through an individual’s unique aesthetic lens. To

account for individual preferences, robots should be capable of learning about the unique

preferences of the end-user and adapting accordingly [123].

One area in which we see strong differential preferences emerge with regards to robot

behavior is in autonomous driving. Prior work has shown that individuals preferences vary

greatly with regards to autonomous vehicle driving style [71]. This finding is not surprising

considering the diversity that has been demonstrated in individuals’ own driving styles. Prior

work has broken driving style into numerous categories including aggressive, defensive,
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cautious, reckless, anxious, etc [69]. Naturally, such diversity would be reflected in an

end-user’s preference for AV driving styles.

Driving style is defined as the characteristics of driving related to the judgment and

decisions of the driver in a specific situation [68]. Research has shown that driving styles

differ greatly amongst individuals [124]. For example, the way in which a driver interacts

with other drivers, the level of aggression that a driver exhibits, and tendency to commit

traffic violations are characteristics that define an individual’s unique driving style. For

example, the way in which a driver interacts with other drivers, the level of aggression that

a driver exhibits, and the decisions that a driver makes are characteristics that define an

individual’s unique driving style. Because of these individual differences, when riding in

an AV, end-users’ expectations and preferences for the behavior of the AV will likely be

influenced by their own driving style [125, 126, 29]. One-size-fits-all models employed

by AVs which ignore driver differences may lead to decreased acceptance [125]. Instead,

the driving style of AVs should be personalized to fit the preferences and expectations of

individual end-users.

Prior work has assumed that, to increase end-user acceptance and trust, AVs should

mimic end users’ unique driving styles [29, 30]. However, even if we are able to personalize

an AV’s behavior, not all end-users will necessarily want the AV to drive exactly as the

end-user drives [74, 71]. In fact, prior work has suggested that end-users may want an AV to

drive more cautiously than they drive [30, 74, 71]. Additionally, factors such as trust and

familiarity with AVs and various personality traits may affect preference for driving styles

similar to one’s own [127, 128, 129].

From prior work [127, 128, 129, 30], we hypothesize that an individual’s optimal driving

style is a function of both the end-user’s own driving style and various subjective factors. In

this work, we develop a data-driven approach capable of producing an optimized driving

style for an end-user based upon their driving style and relevant subjective factors.

We introduce MAVERIC, a learning from demonstration approach for personalizing the
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Figure 5.1: 6-DOF driving simulator developed by Toyota Research Institute.

driving style of an AV. By observing the driving of an end-user, MAVERIC learns a high-

level model via a neural network architecture that predicts personalized control parameters

for low-level controllers. Simultaneously, MAVERIC learns a personalized embedding

representing the driving style of an end-user. By shifting the personalized embedding along

the gradient of aggression, MAVERIC tunes the AV driving style to be more aggressive

or cautious while maintaining other personalized characteristics. This capability allows us

to modulate the AV’s aggressive driving style with respect to an end-user’s style so as to

optimize the AV’s driving style.

In two human-subjects studies, we investigate if MAVERIC can effectively mimic an

individual’s driving style as well as modulate aggression. Additionally, we investigate the

factors that influence the effect of homophily - i.e., preference for a driving style similar to

one’s own. We demonstrate that preferred driving style is related both to one’s own style as

well as personality traits, perceived similarity, and high-velocity driving.

In this work we contribute the following:

1. We formulate MAVERIC, a novel framework to personalize driving style and modulate

aggressiveness while maintaining other aspects of driving style.

2. We demonstrate that MAVERIC can closely match an end-user’s driving style (p <

.001) as well as produce more aggressive (p < .001) and more cautious (p < .001)

driving in a high-fidelity driving simulator.

3. We find that personality (p < .001), perceived similarity (p < .001), and high-velocity
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driving style (p = .0031) significantly impact the effect of homophily.

Figure 5.2: This figure shows our domain of light traffic and associated state information.
v
(ev)
t is the velocity of the ego at time t, v(lv)t the velocity of the leading vehicle, d(x)t the

distance between the leading vehicle and ego in the x direction at time t, and d(y)t the distance
in y at time t.

5.2 Methodology

In the following section we provide an overview of MAVERIC. We discuss our architecture

and how we endow our framework with the ability to modulate aggression. Figure 5.2

depicts the state information relevant to our architecture.

5.2.1 Network Architecture

Our network architecture is depicted in Figure 5.3. Our network simultaneously learns

the high-level parameters of low level controllers and the personalized embedding, w(p),

representing the driving style of an individual, p. See Section Subsection 5.2.3 for details on

the low-level controllers. Our network is composed of five subnetworks: the Lane Change

Predictor, Cψ, Velocity Predictor, Vβ , Following Distance Predictor, Fϕ, Style Predictor, Sθ,

and Mutual Information,Mα. All subnetworks consist of linear layers with ReLU activations

and are trained via a mean-squared error loss unless otherwise specified.

Lane Change, Velocity, and Following Distance Predictors: The Lane Change (Cψ),

Velocity (Vβ), and Following Distance (Fϕ) Predictor subnetworks each take as input the
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Figure 5.3: This figure shows our network architecture. Fϕ predicts the following distance.
Cψ predicts when a lane change should occur for the ego vehicle. Vβ outputs the velocity of
the ego vehicle. Sθ is the style predictor subnetwork which predicts the subjective aggressive
style of the participant from the personalized embedding, w(p). v(ev)t−∆t:t is the ego velocity
and v(lv)t−∆t:t is the velocity of the lead vehicle from time t−∆t to t. d(x)t−∆t:t is the distance
between the ego and leading vehicle in x and d(y)t−∆t:t is the distance in y. ŵ(p) is the estimate
of the participant’s personalized embedding sampled from the approximate posterior defined
by Mα.

personalized embedding, w(p), and the relevant states as shown in Figure 5.3. Cψ and Vβ

utilize a LSTM network to predict the probability, l̂(ev)t , of a lane change occurring and the

desired velocity of the ego vehicle, v̂(ev)t , respectively. We utilize a Softmax activation for

the last layer of Cψ and this subnetwork is trained via a cross-entropy loss. Fϕ predicts the

desired following distance, f̂ (ev)
t , between the ego vehicle and the lead vehicle.

Style Predictor: The Style Predictor subnetwork, Sθ, takes as input the personalized

embedding, w(p), and is trained to predict the subjective aggressiveness, ŝ(p), of the partici-

pant, p. In Section Subsection 5.2.2, we discuss the importance of this subnetwork and how

we obtain s(p).

Mutual Information: The Mutual Information subnetwork, Mα, seeks to maximize

mutual information between the driving style of the individual and w(p) so as to ensure
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that the learned embedding captures the differences in driving style between individuals

[104, 1, 2]. Mα takes as input encodings z(l)t−∆t:t and z(v)t−∆t:t and the outputs of each of the

other subnetworks, l̂t
(ev)

, v̂(ev)t , f̂ (ev)
t , and ŝ(p). The subnetwork learns to map these inputs to

ŵ(p) ∼ N (µ(p), σ(p)).

5.2.2 Modulating Aggression

We designed MAVERIC to be capable of both matching driving styles of individuals and

modulating aggression with respect to an individual’s driving style. Because MAVERIC

learns a latent embedding space, we can create a dimension of aggression within the

embedding space, allowing us to shift an embedding along that dimension and modulate

aggression, while keeping other driving characteristics constant. To achieve this, we add

an additional signal when learning the embedding space. We add a network head, Sθ,

composed of a linear layer which takes as input the personalized embedding, w(p). Sθ is

trained to predict the subjective aggressive driving style of the end-user as measured by the

participant’s response to the Aggressive Driving Behavior (ADB) scale [73]. We train the

network to predict the aggressive driving style, thereby creating an aggressive dimension

within the embedding space. We can then move along the gradient of aggression (∇Sθ) to

produce a more or less aggressive driving style as shown in Figure 5.4.

While driving style has multiple dimensions [69], we focus on the aggressive dimension,

as prior work has shown that this dimension has a large impact on end-user preference

[71, 30, 74]. Other characteristics of driving could be modulated by following a similar

procedure. While we acknowledge that the ADB scale is a noisy metric, as discussed in

Section 5.4, our results demonstrate that our method can effectively produce more and less

aggressive behavior.
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5.2.3 Low Level Controllers

MAVERIC learns the parameters for low-level controllers (e.g., velocity, timing of lane

change, etc.) rather than directly learning the low-level control inputs (i.e., throttle and

steering) to enable safety constraints and account for unexpected or dangerous behavior

that could be produced by the network. For example, by learning the desired following

distance for an end-user and utilizing an adaptive cruise controller to maintain this distance,

we can ensure that the following distance remains safe. Additionally, by predicting when

a lane change should occur via the neural network and utilizing a low-level controller to

execute the lane change, we ensure consistent and smooth lane changes. Furthermore, this

hierarchical method of learning and control has been shown to produce better results in prior

work [130].

Lane Change Controller: Our lane change controller is based on a Stanley controller

[107] and follows a Bezier curve [131]. We compute the Bezier curve based upon the desired

distance (selected to produce natural behavior) to complete the lane change, while ensuring

that the ego vehicle will not collide with the leading vehicle. The lane change controller

executes a lane change when l̂(ev)t > δ.

Velocity Controller: We utilize a Proportional and Integral (PI) controller to maintain

the desired velocity, v̂(ev)t of the ego vehicle as predicted by the neural network.

Following Distance Controller: When the distance between the ego and leading vehicle

falls below threshold, λ, we switch from the velocity controller to the following distance

controller. The following distance controller is a PI controller that minimizes both the error

between the desired following distance, f̂ (ev)
t , as predicted by the neural network and the

difference in speed between the ego and leading vehicle subject to safety constraints on

following distance.
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5.3 Human Subjects Studies

We conducted two human subjects studies: A Model Training Study (Study 1) and a Model

Testing Study (Study 2). In Study 1, we collect data from 30 participants to train MAVERIC

and learn θ, ϕ, ψ, α, and β, and the participants’ embeddings. In Study 2, we collect driving

data from 24 participants to learn their embeddings and then each participant experiences

the four AV conditions (Subsection 5.3.4). Additional details for our studies can be found in

[132].

5.3.1 Driving Simulator

To test the abilities of MAVERIC, we utilize a high-fidelity driving simulator developed by

TRI.1 The simulator (Figure 5.1) is an immersive 6-DOF platform capable of emulating the

motion of a vehicle. The simulator is based on CARLA [133], ROS2, and Unreal Engine.

5.3.2 Participants

Model Training Study (Study 1): We recruited 30 participants (Mean age 35.4; 27%

Female) from TRI and Woven Planet via word of mouth and mailing lists. Four of the

participants were professional drivers who demonstrated aggressive, cautious, and their own

driving style. In total, we collected 38 data points representing various driving styles.

Model Testing Study (Study 2): Study 2 was run with two different populations of

participants to increase diversity. For the internal study, 12 subjects were recruited from

TRI and Woven Planet (Mean age 34.42; 33.4% Female). For the external study, 12 subjects

(Mean age 43.92; 41.7% Female) were recruited from the general public via Fieldwork

recruiting. Except where noted, the studies are analyzed as a collapsed dataset because the

procedure was identical.

1https://medium.com/toyotaresearch/driver-in-the-loop-simulation-for-guardian-and-chauffeur-
847f36ea103e
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Figure 5.4: This figure shows the learned embedding space. The size of the points represents
the subjective aggressive style of the participant and color represents the average velocity.
The black line shows the vector of the aggressive gradient. The red square represents a
candidate learned embedding of a participant. We shift the embedding along the gradient to
increase (orange square) or decrease (yellow square) the ADB score by 15 points to produce
behavior for the aggressive and cautious conditions respectively. We randomly sample from
the gray points to produce the Perpendicular behavior.

5.3.3 Procedure

We investigate personalization of driving styles in the domain of light traffic on a two-lane

highway (Figure 5.2). Research was approved by WCG IRB (protocol #20221727). External

participants were compensated $250.

Model Training Study (Study 1): Participants control the vehicle and demonstrate their

driving style for 10 minutes. Their task is to drive as they would in their own vehicle. They

are instructed to maintain the speed they would typically drive if the speed limit is 55mph
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and to pass other vehicles when they feel it is appropriate. In this domain, participants

encounter vehicles in the same lane (leading vehicles) and in the adjacent lane (off-lane

vehicles). Participants must make decisions about changing lanes, following distance, and

velocity. The speed of the leading vehicles is randomly selected without replacement from

the set {0.85ve, 0.9ve, 0.97ve, 0.9s, s, 1.1s} where ve is the ego target speed and s the

posted speed (55mph). These speeds ensure consistency across participants but also ensure

that some of the leading vehicles are slower than the ego, thus forcing the participant to

make a decision about changing lanes.

Participants first complete pre-study surveys to collect information about demographics

and attitude towards AVs (Subsection 5.3.5). Participants complete a practice session to

familiarize themselves with the vehicle controls and domain. We next collect driving data

from the participants to learn the network parameters and their personalized embeddings.

Model Testing Study (Study 2): In the testing study, we freeze the network parameters,

ϕ, θ, ψ, β, and α learned from Study 1 data. Participants fill out the pre-study surveys and

then drive the vehicle in the highway domain. We collect their data to learn their embedding.

This procedure is the same procedure experienced by training participants. Participants

next experience four AV conditions as described in Subsection 5.3.4. After each condition,

participants fill out surveys about their subjective perception of the AV (Subsection 5.3.5).

5.3.4 Model Testing Study Conditions

The behaviors described below are created by shifting a participant’s embedding in the

embedding space. Figure 5.4 shows the learned embedding space and how we choose the

embedding to create the behavior for each of the conditions. We hypothesize that Mimic

will produce similar behavior relative to the participant’s driving, Aggressive will produce

more aggressive behavior and Cautious, less aggressive.

Mimic: In Mimic, we utilize the personalized embedding learned from the participant’s

data to produce driving behavior to mimic the participant’s own driving style.
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Aggressive: In Aggressive, we shift the participant’s embedding in the positive gradient

of aggression (equivalent to fifteen points on the ADB survey) to produce more aggressive

behavior while maintaining other characteristics of driving style (i.e., Sθ(ŵ(p)) = ŝ(p) + 15).

We constrain ŝ(p) + 15 to be no more than the largest possible score on the ADB survey (55

points).

Cautious: In Cautious, we shift the embedding in the negative gradient of aggression

(Sθ(ŵ(p)) = ŝ(p) − 15) to produce less aggressive behavior while maintaining other charac-

teristics of style. We constrain ŝ(p) − 15 to be no less than the smallest possible score on the

ADB (11 points).

Perpendicular: We include Perpendicular to conduct an exploratory investigation into

the behavior produced when we maintain the level of aggression but move the embedding

within the plane perpendicular to the aggressive gradient. Our objective is to investigate

which driving characteristics change as a result of this shift. To select the embedding, we

randomly sample a point along an ellipse on the plane one standard deviation away from the

participant’s embedding as shown by the gray points in Figure 5.4. By doing so, we are able

to keep the degree of aggression constant, while altering other aspects of driver style. We

hypothesize that Perpendicular will produce similarly aggressive behavior compared to the

participant’s driving.

5.3.5 Metrics

Participants in both Study 1 and Study 2 complete the pre-study surveys. Only participants

in Study 2 complete the post-trial surveys. The surveys detailed below comply with the

design guidelines outlined in Schrum et al. [113] and are validated from prior work when

possible.

Pre-study: The pre-study survey is intended to measure the participants’ subjective

attitudes towards AVs. We collect demographic information and Big-Five personality infor-

mation via the Mini International Personality Item Pool [134]. To measure a participant’s
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(a) Mean velocity. (b) Mean headway time.

(c) Distance headway merge back. (d) Mean number of lane changes

(e) Time headway merge back (f) Subjective aggressive rating

Figure 5.5: This figure depicts the difference between the AV’s driving style and the
participants’ driving style for our objective and subjective metrics. We show that both
objectively and subjectively our approach can mimic an individual’s driving style as well as
modulate aggression.

aggressive driving style, we utilize the Aggressive Driving Behavior Scale [73]. We measure

other aspects of driving style via the Multi-Dimensional Driving Style Inventory [69] and

measure experience with cars/racing games/AVs [2], trust in AVs [135], perception of AVs

[136], and trust in automation [137].

Post-trial: The post-trial surveys capture the participants’ subjective attitudes towards

each of the AV conditions. We measure perceived intelligence [138], competence [139],
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discomfort [139], and trust [135]. We modify each of the subscales for AVs. Additionally,

we create two custom scales to measure perceived similarity and aggressiveness relative to

the participant’s own driving style.

Objective Measures: In keeping with prior work [71, 140], we measure various metrics

to determine how similar the driving style of each condition is compared to the participant’s

own driving style. We investigate mean velocity and mean number of lane changes. We also

measure mean headway time (the distance between the lead vehicle and ego divided by the

speed of the ego when a lane change occurs), distance headway merge back (the distance

between the following vehicle and ego), and time headway merge back (distance headway

merge back divided by the speed when a lane change occurs).

Figure 5.6: This figure shows the trajectories generated by the four conditions compared to
the participant’s demonstration (black).

5.4 Results

Figure 5.6 shows an example of the trajectories produced by the four conditions. Mimic

changes lanes to pass the leading vehicle at a similar time as the participant whereas

Aggressive and Cautious change lanes sooner and later respectively. Because of Cautious’s

lower speed, the AV never passes the leading vehicle. Perpendicular executes a lane change

at a similar time to that of the participant. However, the AV changes back to the right lane

sooner.
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5.4.1 Analysis of Embedding Space and Aggressive Gradient

We first investigate if our embedding space is capable of representing and producing diverse

driving styles and if the aggressive gradient correlates with relevant objective metrics. To

investigate these questions, we project the learned embeddings of the test participants

onto the line representing the gradient of aggression. We then analyze how driving style

changes as a result of the position of the embedding along this line. We find that as we

move along the aggressive gradient, the average velocity of the participant increases. The

average velocity along the aggressive gradient ranges from 54.5 mph (in the most negative

direction of the gradient) to 78.56 mph (in the most positive direction of the aggressive

gradient. We find a strong correlation (r = .49, p = .022) between the embedding’s position

along the aggressive gradient and the average velocity of the participant. This finding

suggests that, in keeping with prior work [141], velocity is an important component of

aggression within the embedding space. We find similar results for mean headway time

(r = −.46, p = .032), distance headway merge back (r = −.43, p = .046), mean number

of lane changes (r = .47, p = .028), and time headway merge back (r = −.48, p = .025).

Lastly, we show that a participant’s subjective aggressive rating of their own driving style

strongly correlates with the position of their learned embedding along the aggressive gradient

(r = .92, p < .001). These findings provide evidence that our embedding space is capable

of representing diverse driving styles and that aggressiveness objectively and subjectively

increases as we move along the aggressive gradient.

5.4.2 Algorithm Validation

We next investigate MAVERIC’s ability to mimic end users’ driving styles and produce

more and less aggressive behavior in terms of both objective and subjective metrics. In

our following analysis, we verify that data complies with assumptions before applying a

parametric test. We first investigate MAVERIC’s ability to accurately mimic driving style.

We find that the accuracy with which we are able to mimic the participant’s velocity is
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93.6%, time headway is 80.2%, distance headway merge back is 92.4%, mean number of

lane changes is 81.0%, and time headway merge back is 81.8%.

Figure 5.5 shows the differences in our objective and subjective metrics between the

participant’s driving style and the behavior produced by our four conditions. To determine

if there are significant differences between conditions for each of the metrics, we conduct

a repeated measures ANOVA with Holm’s post hoc correction or a Friedman’s test when

the data fails assumptions. We find that the difference between Mimic and the participant’s

driving is significantly less compared to Aggressive and Cautious for all objective metrics

(p < .001) (Fig Figure 5.5(a) - Figure 5.5(e)). We find that Aggressive maintains a higher

velocity compared to Mimic. Additionally, as predicted by prior work [71, 140], aggressive

achieves a lower headway merge back time and headway merge back distance. Furthermore,

Aggressive commits more lane changes compared to Mimic despite encountering the same

number of leading vehicles. We find opposite results with the Cautious condition. We

illustrate that the characteristics of our AV driving styles align with the characteristics

indicative of aggression in prior work, suggesting that our approach can effectively modulate

aggression with respect to one’s own driving style [71, 140, 141].

Additionally, as shown in Figure 5.5(f), we find that participants rate Cautious as sig-

nificantly less aggressive compared to Mimic (p = .002) and Aggressive as significantly

more aggressive (p = .017). Furthermore, we find that Mimic and Perpendicular are rated

as similarly aggressive compared to the participant’s own driving. Our objective and

subjective results together support our hypotheses that 1) our approach is capable of

mimicking driving style and 2), by shifting a participant’s learned embedding along

the aggressive dimension, we are able to produce objectively and subjectively more

aggressive and cautious behavior.

5.4.3 Maintaining Other Aspects of Driving Style

One of the goals of our approach is to modulate aggression while maintaining other aspects
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Figure 5.7: This figure shows the changes in minimum headway distance as we move around
the ellipse within the plane perpendicular to aggression. Minimum headway distance was
not significantly correlated with aggression (Subsection 5.4.3) and is modulated by moving
in the plane perpendicular to aggression.

of driving style. If moving along the gradient of aggression modulates the aggressive aspect

of the driving style, then we hypothesize that moving within the plane perpendicular to

aggression will modulate other aspects of driving style unrelated to aggression. Interestingly,

we found that minimum headway distance and fraction of time in the left lane were not

significantly correlated with the embeddings position along the aggressive gradient. Moving

along the gradient does not significantly alter minimum headway distance or fraction of

time in the left lane, suggesting that, in our learned embedding space, these factors do not

play a large role in aggressiveness. Therefore, we predict that these aspects of driving will

instead be modulated when we move perpendicular to the gradient of aggression. To test this
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Table 5.1: This table shows our correlation analysis. M represents Mimic, A represents
Aggressive, and C represents Cautious.

Independent Dependent Statistic p-value
Conscientious M-C Competence ρ(22) = −.71 p < .001
Conscientious M-C Intelligence ρ(22) = −.5 p = .012
Conscientious M-C Discomfort r(22) = .46 p = .024
Conscientious M-C Trust ρ(22) = −.62 p = .0011
Conscientious M-A Competence ρ(22) = −.51 p = .011
Conscientious M-A Intelligence ρ(22) = −.51 p = .01
Conscientious M-A Discomfort r(22) = .45 p = .028
Conscientious M-A Trust ρ(22) = −.48 p = .0018

Openness M-A Discomfort ρ(22) = .49 p = .015
Similarity Trust ρ(94) = .16 p = .001
Similarity Intelligence ρ(94) = .34 p < .001
Similarity Competence ρ(94) = .27 p < .001

High-Velocity M-A Intelligence ρ(94) = −.58 p = .0031
High-Velocity M-A Competence r(22) = −.44 p = .03
High-Velocity M-A Trust r(22) = −.43 p = .036

hypothesis, in Fig Figure 5.7 we plot the difference in minimum headway distance between

Mimic and Perpendicular versus the position around the ellipse that is depicted in Figure 5.4.

We find that minimum headway distance does in fact correlate with position around the

ellipse (r = .68, p < .001). We additionally find that the fraction of time in the left lane

significantly correlates with position around the ellipse (r = −.47, p = .025).

We note that minimum headway distance is often associated with aggression [142].

However, this is most often the case when the ego vehicle is not capable of changing lanes

and is instead forced to following a leading vehicle. We hypothesize in our work that

minimum headway distance is not correlated with aggression because the participant can

choose to change lanes at any point to pass a slower driver and therefore is not forced to

maintain a following distance if they do not want to.

5.4.4 Homophily

As shown in Figure 5.8 not all participants preferred the Mimic condition. More than 20% of

participants preferred the Aggressive condition and more than 25% of participants preferred
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the Cautious condition. To explain this finding, we next explore the factors that modulate

the effect of homophily (Table 5.1) to determine why some participants prefer a driving

style different from their own. First we investigate if a participant’s personality impacts their

preference via a correlation analysis. As shown in Table 5.1, we find a strong correlation

between conscientiousness (i.e., the extent to which one is responsible and dependable

[143]) and the difference between a participant’s perceived competence of Mimic compared

to Cautious, suggesting that individuals higher in conscientiousness prefer a more cautious

style to their own. This finding may explain why 62.5% of participants rated Mimic as

less than or equal in competence relative to Cautious. To further support the hypothesis

that conscientiousness influences the effect of homophily, we find that participants who are

higher in conscientiousness rate a more cautious style as significantly more intelligent, com-

fortable, and trustworthy compared to Mimic and significantly more competent, intelligent,

comfortable, and trustworthy compared to Aggressive.

We additionally find that openness (the degree to which one is broad-minded [143])

correlates with the difference between a participant’s comfort with Aggressive compared to

Mimic. This finding suggests that those who are more open to new experiences may prefer a

more aggressive AV and may explain why 37.5% of participants rated Aggressive as causing

greater comfort compared to Mimic.

Prior work suggests that perceived similarity to one’s own driving style is an important

aspect of AV acceptance [71]. To investigate this claim, we conduct a correlation analysis

between perceived similarity and an end-users preference for the AV. We find a positive

correlation between perceived similarity and trust, intelligence, and competence. This

finding suggests that perceived similarity should be taken into consideration when optimizing

AV driving style.

Prior work demonstrated that one’s own driving style may impact preference for an

AV’s style (e.g., more aggressive drivers prefer relatively less aggressive AVs) [71, 74]. To

investigate this question further, we conduct a correlation analysis between the dimensions
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Figure 5.8: This figure shows the percent of participants who rated Aggressive and Cautious
as better than Mimic in terms of each of our subjective metrics.

of the Multi-Dimensional Driving Style Inventory [69] and preference for Aggressive and

Cautious compared to Mimic. We find that participants who report a high-velocity driving

style rate Aggressive to be significantly higher than Mimic in intelligence, competence,

and trustworthiness. This findings suggests that high-velocity drivers may prefer a more

aggressive AV. Due to the contradictory findings with prior work, we aim to conduct a

deeper analysis into how the specific dimensions of one’s own aggressive style impact the

effect of homophily in future work.

We note that the results we present are an exploratory analysis and we do not claim

to demonstrate a causal relationship between the subjective factors discussed above and

homophily. However, our findings suggest that these factors warrant further investigation

in future work. Overall, our findings demonstrate that personality traits, perceived

similarity, and high-velocity driving style may be important factors in modulating the

effect of homophily.

5.5 Discussion

Our results demonstrate the our MAVERIC framework is capable of both mimicking and
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modulating driving style by learning an embedding representing an end-user’s own driving

style. Given other relevant factors related to end-user characteristics, we can then tune this

driving style to better match the preference of the end-user. Thus, while other approaches

either directly mimic the end-user’s own driving style or do not take into consideration

the end-user’s driving style at all, our approach is capable of integrating both information

about an end-user’s own driving style and subjective characteristics that are predictive of the

optimal AV driving style.

In our analysis, we show that our learned embedding space captures salient aspects of

driving style and that the gradient of aggression correlates with objective and subjective

aggressive metrics. An interesting aspect of our aggressive dimension is that this representa-

tion of aggression is not based on a pre-defined or hand-crafted heuristic but is instead based

upon end-users’ perception of what is meant by aggressive driving. By defining aggression

via this subjective metric, we are able to produce driving styles that are perceived to be more

aggressive or more cautious by end-users.

In our analysis of the effect of homophily, we aim to determine the subjective factors

that future work should consider when optimizing driving style. We show that simply

mimicking an end-user’s own driving style is often not preferred and that certain subjective

characteristics may explain the discrepancy between an end-user’s own driving style and

their preferred AV driving style. By conducting a correlation analysis, we uncover several

characteristics that impact homophily. We find that personality should be considered when

determining the optimal driving style and that specifically, conscientiousness and openness

to experience are important factors. Additionally, participant’s perception of their own

driving style, e.g. self-reported high-velocity driving style may influence an individual’s

preference for a more aggressive driving style. We additionally find that perceived similarity

is a relevant factor as supported in prior work [71]. These findings provide us with insight

into what factors should be considered when determining exactly how much and in which

direction to shift an end-user’s personalized embedding along the aggressive gradient so as
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to optimize driving style.

5.6 Limitations and Future Work

In future work we aim to quantify the relationship between relevant subjective factors and the

preferred level of aggression. By doing so, we will be able to determine exactly how much to

shift an individual’s embedding along the aggressive dimension so as to produce the optimal

driving style for an individual. Additionally, we plan to investigate MAVERIC’s abilities to

learn driving styles in domains involving more traffic and the potential for more complex

decision making. A limitation of our work is that we only recruited internal participants for

Study 1. However, despite this limitation, our study comprises a more diverse population

pool than many studies in human-robot interaction which typically recruit from a pool of

college students [144]. Another limitation is that the perceived similarity and aggressiveness

surveys are not verified in prior work. Additionally, because we only conduct a correlation

analysis, we cannot conclude that the subjective factors are causally related to homophily.

However, our results suggest that these factors are worthy of further investigation in future

work.

5.7 Conclusion

We have presented MAVERIC, a novel framework to personalize driving style and modulate

aggressiveness. We demonstrated MAVERIC’s ability to reproduce an end-user’s own

driving style and investigated how the preference for one’s own style is modulated by

personality, perceived similarity, and high-velocity driving style. To our knowledge, ours is

the first framework to combine subjective metrics with end-user training data to produce a

personalized AV controller. Our results indicate that personalizing AV control is a research

area that merits further investigation and may provide a path towards greater AV acceptance.

My MAVERIC framework fills a gap in prior work by enabling personalization of AV

driving styles beyond simple mimicry. By taking into account relevant end-user charac-
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teristics to determine the optimal level of aggression, MAVERIC is capable of optimizing

driving style for an end-user and thereby improve end-user experience and acceptance.
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CHAPTER 6

SAFE META ACTIVE LEARNING FOR DEEP BRAIN STIMULATION

6.1 Introduction

In his book I, Robot, Isaac Asimov states that the First Law of Robotics is that “a robot

may not injure a human being or, through inaction, allow a human being to come to harm”

[145]. This law, though developed for a fictional setting, must be taken seriously by robotics

researchers to ensure safety of the human end-user [146]. Thus far in this thesis, I have

developed novel algorithms to personalize human-machine interaction. Yet we have not

explicitly considered safety critical domains in which machines must not only adapt to

humans, but must do so safely.

Personalization of robots and autonomous systems in the domain of healthcare is critical.

Patients experience different disease manifestations as well as differing needs based on

biology, age, and other factors and therefore, human-machine systems will have to adapt

to meet the requirements of individual patients. However, personalization is not the only

important consideration in healthcare. The safety of patients is paramount when deploying

machines to support patient care. Therefore, these systems must be equipped with strong

safety guarantees to ensure the well-being and safety of the patient.

Deep Brain Stimulation (DBS) is an example of a healthcare application which requires

the machine to both adapt to the patient’s biology as well as ensure patient safety. DBS de-

vices implanted in the brain can improve memory deficits in patients with Alzheimers [147]

and responsive neurostimulators can counter epileptiform activity to mitigate seizures. How-

ever, because the brain anatomy, electrode placement and other variables differ across

patients, the relationship between the electrode parameters and clinical outcome is not

consistent across patients. Therefore, surgeons must manually test various stimulation pa-
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rameters for each patient, a process which is time-consuming and laborious, often resulting

in extended patient suffering. Furthermore, certain parameter settings can be risky and

possibly trigger an ictal state or brain damage. The ability to efficiently and safely learn a

model of the brain which maps parameter setting to seizure reduction has the potential to

improve clinical outcomes and the lives of patients.

To address the problem of sample efficient learning, researchers have previously inves-

tigated active learning techniques for [148, 149]. However, prior work in active learning suf-

fers from three weaknesses: 1) an inability to accurately quantify expected informativeness

[94], 2) a lack of generalizability [97], and 3) a lack of safety considerations [33]. Active

learning approaches typically hand-engineer heuristics or acquisition functions to select the

best action [32, 33]. However, these heuristics are only proxies for true informativeness of

a data point and may not accurately quantify the actual informativeness of a data point when

updating the model with this new training data. Additionally, heuristics that are well suited

for one active learning domain may not be effective in another. The few meta-active learning

approaches proposed in recent years rely only on hand-engineered features which reduce

generalizability and require expert feature selection [94]. Furthermore, prior approaches

do not consider applications in safety critical domains in which constraints must be placed

on the acquisition function to prevent the model from sampling unsafe configurations [150].

Yet, efficient learning is not the only criteria that must be met when dealing with

safety critical domains. For example, when learning the optimal parameter settings for

a DBS pateint, one must reason about the safety of the patient in addition to expected

informativeness of an action to prevent the patient from experiencing unwanted or dangerous

side-effects. If the optimal parameter settings can be learned efficiently and safely, the

patient may experience improved symptoms without negative side-effects.

To achieve the goal of safe and efficient adaptation, in this chapter, I introduce Safe

MetAL, a hybrid meta-learning and mathematical programming approach that enables

efficient, safe, and computationally fast optimization of a latent human-machine system.
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Figure 6.1: This figure shows our meta-learning framework, grounded in our DBS appli-
cation. The red, blue and green curves represent the hypothetical manifolds within our
distribution of patients. Our meta-learning algorithm samples from the distribution of pa-
tients and learns a function, Qϕ, describing the expected informativeness of taking an action.
We embed this Qϕ in a MILP to enforce safety-constraints, thereby ensuring patient safety
while enabling efficient learning of the optimal parameters.

The key to our approach is that we safely and efficiently meta-learn an acquisition function

based on a learned representation of sample history that accurately quantifies the expected

informativeness for an unknown, latent model when taking a given action and experiencing

the resultant state. By directly encoding this acquisition function in a chance-constrained

mixed-integer linear program (Mixed-Integer Linear Program (MILP)), we can simulta-

neously enforce safety guarantees [33] while taking an action which maximizes expected

informativeness. This acquisition function is meta-learned offline over a distribution of

tasks, allowing the policy to benefit from past experience and provide a more robust measure

of the value of a labeled data point.

We demonstrate the advantage of Safe MetAL for deep brain stimulation, a safety

critical environment in which personalization, safety, and sample efficiency are of utmost

importance. Our approach outperforms previous Bayesian [18, 151], meta-learning [94,

151], and active learning approaches [32, 33] in terms of expected informativeness, safety,

and computation time.

Contributions:
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1. We present Safe MetAL, a meta-learning algorithm for learning the personalized

parameter settings for DBS patients via a domain-specific acquisition function that

accurately quantifies expected informativeness. Safe MetAL (1) meta-learns an

acquisition function to quantify domain specific expected informativeness of a data

point without the need for hand-derived features and ad hoc engineering, and (2)

reasons explicitly about exploitation vs. exploration by trading off gaining information

and probabilistically-safe control.

2. We formulate a novel bridge between deep learning and mathematical programming

techniques in a way that is fully, end-to-end differentiable and trainable by embed-

ding this meta-learned acquisition function within a chance-constrained optimization

framework to achieve probabilistic guarantees.

3. We show that our approach sets a new state-of-the-art for model accuracy (41%) com-

pared to Bayesian [18, 151], active [32, 33] and meta-learning [94, 151] approaches

and computational speed (+20%) versus two active and meta-learning baselines while

also providing probabilistic guarantees.

6.2 Problem Set-up

We describe our problem set-up in the context of DBS. Our objective is to safely and

efficiently learn the model of the patient’s brain (i.e., the mapping from parameter setting

to brain state), f̂ψ, and thereby determine the optimal parameter settings. Specifically, we

seek to determine the parameter setting that should be applied next to provide maximum

information about the nature of the parameter-brain state relationship given the patient’s

previously experienced brain states and parameters without causing unwanted side-effects.

To do so, we learn a function that describes the expected informativeness when applying

any parameter setting, conditioned on the prior parameters applied to the patient and subject

to safety considerations. We set up our problem in three steps: (1) active learning, (2) safety,

and (3) meta-learning.
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First, we define our unlabeled dataset, DU = ⟨s⃗(i), a⃗(i)⟩ni=1, as consisting of all possible

state-parameter pairs that the patient could potentially experience and the labeled dataset,

DL = ⟨s⃗(i), a⃗(i), s⃗(i+1)⟩mi=1, as the set of state transition triples previously experienced by the

patient. s⃗(t+1) is the state that results from applying parameter a⃗(t) in state s⃗(t) at time t as

governed by the latent dynamical model, f (Figure B.3).

Our Long-Short Term Memory Network (LSTM) neural network, with parameters θ,

learns an encoding of sample history, z(t) = Eθ(S(t)). This sample history through time, t,

is defined as S(t) = ⟨s⃗(0), a⃗(0), s⃗(1), . . . , a⃗(t−1), s⃗(t)⟩ which we refer to as the meta-state. Our

acquisition function, Qϕ : A×Z → R, learns to map a candidate parameter, a⃗, to a measure

of expected informativeness conditioned on the embedding of sample history, z⃗. This

problem setup corresponds to a Partially Observable Markov Decision Process (POMDP),

where the observations are our samples, and the state describes the latent dynamics (i.e.,

the transition function, f ) with actions, a⃗, discount factor, γ, and reward function, R. We do

not have access to the observation function, Ω. Similar to [152], we convert this POMDP

to an MDP in which we use function approximation to (1) learn a compact representation,

z(t), of the history of observations via Eθ and leverage this representation to (2) train a

history-dependent Q-function, Qϕ.

We utilize expected informativeness (i.e., improvement in model accuracy due to the

addition of new observations to the training set) as our reward signal for training the network.

To determine the decrease in model error, as shown in Equation 6.1, we create a dataset,

DTest, by sampling from the known dynamics model, which we have access to during

training. The reward signal, R(t), which is defined in Equation 6.2, is the decrease in

model error when applying parameter, a⃗(t), in state, s⃗(t), and experiencing state, s⃗(t+1) (i.e.,

DL ∪ ⟨s⃗(t), a⃗(t), s⃗(t+1)⟩). Intuitively, a large reward means that we have selected a parameter

that greatly decreases the error of the dynamics model, f̂ψ. ψ is the parametrization of f̂ψ(t)

at time, t.
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Lψ(DL) =
1

|DL|

|D|∑
i=1

(
f̂ψ

(
s⃗(i), a⃗(i)

)
− s⃗(i+1)

)2

(6.1)

R(t) =

(
Lψt(DTest)− Lψt−1(DTest)

)
Lψt(DTest)

(6.2)

In our formulation, chance-constraints allow us to model uncertainty and ensure the prob-

ability of failure remains under a certain threshold. Thus, by utilizing a chance-constrained

MILP, we can efficiently arrive at a solution for non-convex optimization problems while

also providing probabilistic guarantees [153]. We transform each piece-wise term in our

acquisition function into a set of integer, linear constraints via the “big M” method [154].

We solve our chance-constrained MILP via linearization techniques discussed in [153, 33].

While limited prior work [155] has explored safety and chance constraints for learning and

control, we go beyond this prior work by taking into account the effect that querying a

label has on the underlying system’s ability to remain in a safe configuration. In our DBS

domain, choosing a sequence of unsafe parameters can lead to an ictal state in the brain. As

depicted in Figure 6.2, we assume a set of known safe states and we allow the system to

deviate from a safe region temporally to gain information provided that the system has a

sufficient probability of returning to a safe state. We elaborate on how these safe states are

identified and the external validity in Section 6.4. To approximate the uncertainty of the

states, we assume our model error comes from a Gaussian distribution with a known mean

and variance calculated via the bootstrapping method described in [32].

Finally, we seek to enable our system to generalize beyond a single active learning task

(e.g., learning the optimal parameters for a single patient) to a broader class of tasks (i.e.,

learning the optimal parameters for any patient). We aim to learn this acquisition function

without hand-engineering features or heuristics. Therefore, we incorporate meta-learning

to train our acquisition function, Qϕ, and embedding of previously experienced states and

actions, Eθ. We train Qϕ over a distribution of optimization problems (i.e., a set of patients
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with differing anatomy and disease manifestation) to enable Qϕ to generalize to an novel

patient.

6.3 Safe Meta-Learning Architecture

Our architecture consists of three key components: (1) an LSTM-based representation of

sample history, (2) a meta-learned acquisition function that accurately quantifies expected

informativeness, and (3) safety constraints imposed via the linear program. An overview of

our architecture is shown in Figure B.3, and is described below.

Policy - Our policy (Equation 6.3) is determined by maximizing both the probability of

the system remaining in a safe configuration and expected informativeness along the finite

trajectory horizon, [t, t+ T ). Therefore, our policy selects the set of actions, a⃗(t:t+T ), which

maximizes both safety and expected informativeness. We linearize our objective function

following the linearization procedures introduced in [33].

a⃗(t:t+T ) = π
(
Eθ(S(t))

)
(6.3)

=a⃗(t:t+T ),ϵ λ
[
Qϕ

(
a⃗(t:t+T ), z⃗(t)

) ]
+ (1− λ)

[
1− ϵ

]

subject to

1− ϵ ≤ Pr
{
s⃗(t+T ) − s⃗r(t)1 ≤ r⃗

}
(6.4)

Qϕ(⃗a
(t:t+T ), z⃗(t)) describes the expected informativeness along the trajectory when the

set of parameters, a⃗(t:t+T ), is applied in the context of the sample history encoding, z⃗(t). π

is the chance-constrained policy which selects the set of parameters that should be applied

to the patient to maximize both expected informativeness and safety. The LSTM neural net-

work, Eθ, maps the sample history, S(t) = ⟨s⃗(0:t), a⃗(0:t)⟩, (i.e., previously experienced states
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and parameters), to the encoding, z⃗(t). λ is a hyper-parameter that allows us to adjust the

trade-off between safety and expected informativeness while still guaranteeing a minimum

level of safety. Properly balancing λ, as in any multi-criteria optimization problem, requires

domain expertise. The estimated probability of remaining in a safe configuration is 1− ϵ,

where ϵ ∈ [0, ϵmax] and 1− ϵmax is the minimum acceptable safety level. We provide more

details on safety in the following section.

Definition of Safety - Next, we detail our safety constraints which are enforced via our

MILP. We define a volume of safety, as depicted in Figure 6.2, around a desired safe state,

s⃗r(t), and enforce the constraint that the system must be able to return with probability 1− ϵ

to a state, s⃗t+T , at time t + T , such that s⃗t+T is within this volume of safety. Intuitively,

this means that the system will be able to move outside of the volume of safety to gain

information but must return to a safe state at time t+T . Mathematically, we define this safety

constraint in Equation 6.4. s⃗r defines a safe state (e.g., non-cital state for a DBS patient),

and r⃗ is the radius encompassing all known safe system states. The radius of the volume is a

hyperparameter defined by the user and requires domain expertise to determine. The closer

the user wants the system to remain to the nominal safe state, the smaller the radius should

be. 1−ϵ is the probability of remaining in the safe region. This volume can be converted into

linear constraints, thus creating a convex optimization problem [33]. Leveraging such a pre-

defined safety envelope is consistent with prior work in safe robotics and chance-constrained

optimization [156, 157, 158, 159, 160]. By formulating our safety constraints in this way,

we can guarantee a minimum probability of safety while simultaneously optimizing for

additional safety and expected informativeness. In other words, the MILP will select an

parameter that meets the minimum safety requirements, and if possible, will select an even

safer parameter than the minimum specified level of safety, all other things being equal.

Meta-learning - To infer the acquisition function, we meta-learn over a distribution of

related tasks, which, in our motivating example, consist of a set of diverse DBS patients as

shown in Figure B.3. By meta-learning over this distribution, we can construct an acquisition
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Figure 6.2: This figure depicts the volume of safety, i.e. convex constraints around reference
trajectory, s⃗r(t). Action, a⃗(t), is an exploratory action, which may bring the system outside
of the safe region. Given f̂ψ(t) , Safe MetAL ensures the probability that a⃗(t+2) returns the
system to a safe state is at least 1− ϵ.

function that accurately defines the expected informativeness of a parameter when learning

the unknown brain model.

The acquisition function, Qϕ, is trained via Deep Q-Learning [161] with target network,

Qϕ′ , which has been shown in prior work to improve training stability [162]. The learned

acquisition function, Qϕ, is utilized by our MILP policy, which selects the optimal actions,

a⃗(t:T ), subject to safety-constraints. The reward, R(t), for applying a set of parameters in

a given state is defined as the decrease in the MSE error of the model, f̂ψ(t) , achieved by

adding training data, ⟨s⃗(t), a⃗(t), s⃗(t+1)⟩, to DL, as described in Equation 6.1-Equation 6.2.

The Q-function is trained on a set of optimization problems drawn from a distribution of

similar black-box functions to minimize the Bellman Residual (Equation 6.5).

Lθ,ϕ =
(
R(t) + γQϕ′

(
π
(
Eθ(S(t+1))

)
, z⃗(t+1)

)
−Qϕ(⃗a

(t), z⃗(t))
)2

(6.5)

This Bellman loss of the Q-function is backpropagated through the Q-function in the

MILP and through the LSTM encoder, Eθ. The dynamics model, f̂ψ(t) , is retrained with each

new set of state-parameter pairs.

Algorithm - Algorithm Figure 2 describes our training procedure. For each episode,

we sample from the patient population and limit each episode to the number of time steps,

M , tuned to collect enough data to accurately learn the brain model. At each iteration, we

select a⃗(t) (line 6) via our MILP objective described in Equation 6.3 and apply the parameter

setting to observe the resultant state, s⃗(t+1) (line 7-8). Our brain model, f̂ψ(t) , is retrained by
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Algorithm 2 Meta-learning for training

1: Randomly initialize Qϕ and Qϕ′ with weights ϕ = ϕ′

2: Initialize replay buffer, D
3: for episode=1 to N do
4: Initialize f̂ψ(0) based on meta-learning distribution
5: for t=1 to M do
6: Select a⃗(t) from Equation 6.3
7: Execute a⃗(t) +N with exploration noise, N
8: Observe state, s⃗(t+1)

9: DL ← DL ∪ ⟨s⃗(t), a⃗(t), s⃗(t+1)⟩
10: ψ(t) ← argminψLψ(DL); observe R(t)

11: Update Qϕ and Eθ via Equation 6.5
12: Qϕ′ ← τQϕ + (1− τ)Qϕ′

13: end for
14: end for

minimizing the MSE, as shown in Equation 6.1. After observing the reward (Equation 6.2),

we update our Q-function (line 11-12) via a sampled batch of transitions.

Algorithm Figure 3 describes how we perform our online, safe, active learning. Intu-

itively, our algorithm initializes a new brain model (line 2) to represent the unknown model,

and we iteratively sample information rich, safe actions via our MILP policy (line 5), update

f̂ψ(t) , (line 9) and repeat. We assume at test time that the unknown model comes from the

same distribution as the training models.

6.4 Experimental Evaluation - DBS Domain

We compare Safe MetAL against several baseline approaches in our DBS domain described

below.

DBS is a cutting-edge approach for treating seizure conditions that cannot be controlled

via pharmacological methods. Currently, surgeons employ trial-and-error to find control

settings that reduce seizures. However, there is no clear mapping from parameter values to
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Algorithm 3 Meta-learning for testing

1: Draw test example from distribution
2: Initialize f̂ψ(0) based on meta-learning distribution
3: DL ← ∅
4: for t=1 to M do
5: Select a⃗(t) according to Equation 6.3
6: Execute a⃗(t)

7: Observe state s⃗(t+1)

8: DL ← DL ∪ ⟨s⃗(t), a⃗(t), s⃗(t+1)⟩
9: ψ(t) ← argminψLψ(DL)

10: end for

reduction in seizures that applies to all patients, as the optimal parameter settings can depend

on placement of the device, the individual anatomy, and other confounding factors. Further,

a latent subset of parameters can cause negative side-effects. In keeping with [18], we create

simulation environments based on data from six rats where, at each DBS parameter setting,

the cognitive function of a rat is measured by a “memory score.” Data from each rat is then

dissimulated into many digital twins of the rat, creating a population pool over which we

can meta-learn. To create these digital twins, we employ a validated in silico procedure in

which we bootstrap Gaussian Process models trained on in vivo data of DBS in rats to create

a virtual experimental domain. The task is to determine the DBS parameters (i.e., signal

amplitude) in the simulation environments that maximize each rat’s memory score (i.e., rat’s

ability to recall the location of objects) without causing unwanted side effects (e.g., memory

deficits or seizures) which occur when the memory score drops below zero. The reward

signal utilized by our meta-learner is the percent decrease in error between the predicted and

actual optimal parameters. This domain and the established in silico evaluation procedure

are described further in [18].
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(a)

Method Expected Info Safety

Our Approach 1.58 (.022) 97% (3.2 %)

BaO [18] 1.00 (.105) 86% (3.0%)

Meta BO [95] 0.43 (.183) 83% (11%)

LAL [94] 1.07 (.098) 88% (2.3%)

Max. Diversity [33] 1.12 (.153) 90% (1.9%)

Uncertainty [32] 0.80 (.241) 97% (1.1%)

(b) (c)

Figure 6.3: This figure depicts our empirical validation in the DBS domain, benchmarking
algorithm accuracy per time step (Figure 6.3(a)), overall (Figure 6.3(b)), and vs. computation
time (Figure 6.3(c)). The optimal parameter accuracy is defined as 1− a⃗∗−ˆ⃗a

a⃗∗
where a⃗∗ is the

optimal stimulation parameter and ˆ⃗a is the predicted parameter. In Figure 6.3(b) we also
report the ground truth safety of our algorithm compared to baselines. The results shown in
Figure 6.3(a) comply with the safety results reported in Figure 6.3(b)

6.5 Results

Baseline Comparisons - To demonstrate that meta-learning is a vital component of our

framework and produces results superior to prior work, we benchmark against active learning

functions, Epistemic Uncertainty [32] and Maximizing Diversity [33]. These active learning

functions are linearized and embedded in our safety constrained framework therefore

providing a head-to-head comparison between our meta-learned acquisition function and

these active learning heuristics. We additionally benchmark against several Bayesian and

meta-learning approaches. We empirically validate that Safe MetAL outperforms baselines

in the DBS domain in terms of its ability to safely and actively learn latent parameters.

• Epistemic Uncertainty [32] - Selects the parameter which maximizes the uncertainy of

the model, while also imposing safety constraints via a chance-constrained linear program.

• Maximizing Diversity [33] - Selects actions which maximize the difference between

previous states and parameters, subject to safety constraints via a chance-constrained

linear program.

• Bayesian Optimization (BaO) [18] - Developed in previous work for the DBS domain

(Figure 6.1) and is based upon a Gaussian Process model which attempts to efficiently

determine the optimal parameters.
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• Meta-Bayesian Optimization (Meta BO) [95] - Meta-learns a Gaussian process prior

offline.

• LAL [94] - Meta-learns an acquisition function leveraging hand-engineered features.

Active Learning – Results from the DBS domain empirically validate that our algorithm

more efficiently learns the optimal parameters (Figure 6.3) compared to baseline approaches.

Safe MetAL selects an action that results in 58% higher expected informativeness

and a 267% higher expected informativeness on average compared to our two Bayesian

baselines, BaO and Meta BO respectively. Compared to our active learning baselines,

Maximizing Diversity and Uncertainty, Safe MetAL performs 41% and 98% better in

terms of average expected informativeness respectively. This large increase in expected

informativeness that Safe MetAL is able to achieve compared to hand-engineered heuristics,

suggests that the meta-learning aspect of Safe MetAL is vital for synthesizing a precise,

task-specific acquisition function. Lastly, we show that Safe MetAL outperforms by 47%

our meta-learning baseline, LAL, which meta-learns over hand-engineered features. These

results demonstrate that our meta-learned embedding is more capable of extracting salient

information than the hand-engineered features in LAL.

Safety - Because Safe MetAL is able to more quickly learn the optimal parameter

settings, it is also able to ensure safe operation to a greater degree. To empirically validate

the safety of each algorithm, we perform a Monte Carlo simulation and determine the

percentage of the time that the patient remains in a safe state.

In our DBS domain, Safe MetAL achieves a 6.3% higher guarantee of safety compared

to Maximizing Diversity [33] in Figure 6.3. Safe MetAL achieves a 98% greater expected

informativeness compared to Uncertainty [32] and achieves an equivalent safety guarantee.

In Figure 6.4(b), we show the trade-off between the probability of safety as determined by

the MILP and the expected informativeness of an action as a result of adjusting λ. This

flexibility allows for greater emphasis on safety in more safety critical domains, whereas

in less safety critical domains, these constraints can be relaxed in favor of higher expected
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informativeness.

Computation Time - The computation time of active learning algorithms can be of

critical importance especially in the time senstive operating room. In our DBS environment

(Figure 6.3(c)), BaO has a slight advantage in computation time, but Safe MetAL trades the

time for 58% greater expected informativeness. Additionally, Safe MetAL is 68x faster than

LAL and 61x faster than Meta BO, our two meta-learning benchmarks.

Ablation Study - To further verify that the meta-learning aspect of Safe MetAL is

necessary for achieving high expected informativeness, we perform an ablation study as

shown in Figure 6.4. Figure 6.4(a) shows our approach compared to when there is no

active learning (i.e., λ = 0). We show that active learning results in faster selection of the

optimal parameter setting. Without active learning, there is little exploration and the optimal

parameter setting is never achieved. Additionally, in Figure 6.4(b), we show the tradeoff

between safety and expected informativeness when varying λ. We show that expected

informativeness decreases very little even with high safety guarantees. By tuning λ we can

vary the trade-off between safety and expected informativeness

6.6 Discussion

We present a novel architecture, SafeMetAL, which, unlike previous hand-engineered

approaches, leverages sample history to meta-learn a domain-specific acquisition func-

tion for safe and efficient control of an unknown system. Through our empirical inves-

tigation, we demonstrate that our meta-learned acquisition function operating within a

chance-constrained optimization framework outperforms prior work in active learning,

meta-learning, and Bayesian optimization [32, 33, 18, 94, 151]. Our approach simultane-

ously increases expected informativeness while decreasing computation time. Safe MetAL

achieves a 41% increase in expected informativeness while decreasing computation time by

20% versus active learning and Bayesian baselines in the DBS domain.
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(a) (b)

Figure 6.4: This figure shows the results of our ablation analysis and the trade-off between
expected informativeness and safety. In Figure 6.4(a) (DBS domain), we set λ = 0, meaning
there is no active learning and only safety is maximized. This results indicates that our
meta-learned acquisition function is an important component to achieve efficient learning.
Figure 6.4(b), shows an ablation study, demonstrating the trade-off between expected
informativeness and safety when we vary λ. We show that we can tune λ to achieve the
desired tradeoff between expected informativeness and safe operation.

To the best of our knowledge, Safe MetAL is the first architecture to meta-learn an

acquisition function for active learning embedded within a chance-constrained program for

probabilistically safe control. Further, our approach sets a new state of the art over prior

work ([18, 32, 94, 33, 151]) for active learning. Our novel, deep learning architecture, offers

a unique ability to learn an LSTM-based embedding of sample history while utilizing the

power of deep Q-learning to learn a task-specific acquisition function. Safe MetAL is able to

optimize both for safety and expected informativeness by embedding our learned acquisition

function in a chance constrained optimization framework. With this novel formulation, we

demonstrate that Safe MetAL maintains a high probability of safety while also maximizing

the expected informativeness based on a learned representation of sample history.

6.7 Limitations and Future Work

Safe MetAL assumes that the safety region is defined by an unchanging volume of safety

and that uncertainty over our states is Gaussian. Additonally, Safe MetAL requires data
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to meta-learn an acquisition function. However, our results demonstrate that Safe MetAL

enables greater expected informativeness and safety when sufficient training data is available.

An additional limitation is that the distribution of scenarios from which we meta-learn over

requires domain knowledge to determine. Finally, we hypothesize that Safe MetAL’s

performance depends on the representativeness of the training data, which we will explore

further in future work.

6.8 Conclusion

In this paper, we demonstrate Safe MetAL a state-of-the art meta-learning approach for

personalized learning with safety constraints. In our approach we 1) accurately quantify

domain specific expected informativeness, 2) learn from sample history to improve general-

izability and 3) include safety constraints to probabilistically ensure safe sample selection.

We demonstrate that our approach achieves a 41% increase in expected informativeness, a

20% speedup in computation time and ensures a high degree of safety across both domains.

In this chapter, we advance the field of personalized learning by introducing an approach

that is capable of not only learning a personal model of the end-user but is also able to do so

in a safe manner.
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CHAPTER 7

A NOTE ON HUMAN-SUBJECT STUDIES AND LIKERT SCALES

One of the objectives of my thesis is to not only develop data-driven personalized algorithm

for human-machine interaction, but to also thoroughly validate these approaches with real

human subjects in large human subject studies. To properly validate these approaches,

correct measurement tools must be employed and the collected data properly analyzed to

ensure statistically sound results.

Likert scales are the most common metric employed in studies to measure a participant’s

subjective attitude towards a construct. In my work discussed in this thesis, I measure

subjective attitudes and characteristics via many different Likert scales including trust in

robots [115], Big-Five personality [134], driving style [69], and trust in automation [137]. I

rely on these metrics in my work to draw conclusions about the efficacy of our approaches

and to determine a human’s attitude towards them. However, prior work has shown that

Likert scales are often improperly constructed and the data incorrectly analyzed in the field

of HRI [163, 113]. For example, researchers often do not employ enough items when

constructing a scale and frequently conduct analysis on single Likert items rather than the

full scale which can produce inaccurate results [163]. Such improper use and analysis of

Likert scales increases the risk for type I errors. To reduce this risk, we as HRI researchers

must ensure that we are properly employing and analyzing Likert scales and associated

data. Otherwise, we cannot ensure that the algorithmic approaches we develop produce the

intended results.

Researchers in the field of psychometrics have conducted extensive analysis on the best

way to employ Likert data so as to accurately measure the intended construct [163]. To

provide guidance to researchers and decrease the misuse of Likert scales and associated

data in my own work, I conducted a review of the psychometric literature on Likert scales
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Figure 7.1: This figure illustrates a portion of a balanced Likert scale measuring trust
(Courtesy of [166]).

and created recommendations for best practices for researchers [163]. My goal is for this

review and the following recommendation to improve my own research practices and ensure

that the results presented in this thesis are statistically sound. Additionally, my goal is to aid

others in the community in employing best practices with regards to Likert scales. Below

are a summary of the recommendations.

7.1 What is a Likert Scale?

Likert scales were created in 1932 by Rensis Likert and were originally designed to scientifi-

cally measure attitude [164]. A Likert scale is defined as ”a set of statements (items) offered

for a real or hypothetical situation under study” in which an individual must choose their

level of agreement [165]. The original response scale for a Likert item ranged from one to

five (strongly disagree to strongly agree). A seven-point scale is also common practice. An

example Likert scale is shown in Figure Figure 7.1.

Response Format - Confusion often arises around the term ”scale.” A Likert scale does not

refer to a single prompt which can be rated on a scale from one to n or ”strongly disagree”

to ”strongly agree”. Rather, a Likert scale refers to a set of related prompts or ”items” whose

individual scores can be summed to achieve a composite score quantifying a participant’s

attitude toward a latent, specific topic [167]. ”Response format” is the more appropriate term

when describing the options ranging from ”strongly disagree” to ”strongly agree” [168].
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This distinction is important for the following reasons. First, a high degree of measurement

error arises when a participant is asked to respond only to a single prompt; however, when

asked to respond to multiple prompts, this random measurement error tends to average

out. We note that multiple items will reduce random error, but not necessarily systematic

error. Second, a single item often addresses only one aspect or dimension of a particular

attitude, whereas multiple items can report a more complete picture [169, 170]. Therefore,

it is important to distinguish whether there are multiple items in the scale or simply multiple

options in the response format. [168] emphasizes the importance of this distinction by

stating that the meaning of the term scale ”is so central to accurately understanding a Likert

scale (and other scales and psychometric principles as well) that it serves as the bedrock

and the conceptual, theoretical and empirical baseline from which to address and discuss a

number of key misunderstandings, urban legends and research myths.”

It is not uncommon in HRI, as well as psychometric literature, for a researcher to

incorrectly refer to a response format as a Likert scale. To ground this distinction in an

example, Figure Figure 7.1 depicts a Likert scale with four Likert items and a seven-option

response format. To avoid such confusion, it is important to be precise when describing a

Likert scale, as a five-option response format has a very different meaning from a five-item

Likert scale

Distinguishing Between Other Metrics - A psychometric tool should only be labeled as a

Likert scale if it complies with the description in this section. Various scales exist that are

similar to Likert scales but differ in important ways. For example, a ”semantic continuum”

consists of a set of semantic differential scales similar to how a Likert scale consists of

several Likert items [171]. A semantic continuum differs from a Likert scale in that it

utilizes a bipolar scale of antonyms and measures how much of a quality a specific object

has. For example, a Likert item may consist of the statement ”The robot makes me sad,” and

the user is prompted to select how much they agree or disagree with the statement. On the

other hand, a semantic differential scale will prompt the user to select how the robot makes

121



them feel, ranging from sad to happy. Multiple semantic differential scales measuring the

same attribute can be summed together to form a ”semantic continuum.” While a semantic

continuum is appropriate to utilize in many contexts, it has important inherent differences

from a Likert scale (for further reading on the differences in data arising from semantic

continuums versus Likert scales, please see [172]). For example, semantic continuums are

specifically useful for measuring the ”intensity and direction of the meaning of concepts”

and have their own set of requirements for design as detailed in [172]. As such, we should

be careful to not mislabel one as the other. Additionally, scales such as NASA TLX and

SWAT that utilize different or additional methods for calculating composite scores should be

distinguished from standard Likert scales via terms such as ”Likert variant” or ”Likert-like”

[173, 174].

Recommendation - We recommend that HRI researchers be deliberate when

describing Likert response formats and scales to avoid confusion and misin-

terpretation and to only refer to scales that meet the criteria discussed in this

section as Likert Scales.

7.2 Design and Development

Because HRI is a relatively new field, HRI researchers often explore novel problems for

which they appropriately need to craft problem-specific scales. However, care must be

taken to correctly design and assess the validity of these scales before utilizing them for

research. The design of the scale is one of the least agreed upon topics pertaining to Likert

questionnaires in the psychometric literature. Disagreement arises around the optimal

number of response choices in an item, the ideal number of items that should comprise a

scale, whether a scale should be balanced, and whether or not to include a neutral midpoint.

The development of the scale also requires rigorous validity and reliability analysis. Below,

we address each topic.
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Number of Response Options - Rensis Likert himself suggested a five point response

format in his seminal work, A Technique for the Measurement of Attitudes [164]. However,

Likert did not base this decision in theory and rather suggested that variations on this five-

point format may be appropriate [164]. Further investigation has yet to provide a consensus

on the optimal number of response options comprising a Likert item [175]. [176] found that

scales with four or fewer points performed the worst in terms of reliability and that seven to

nine points were the most reliable. This finding is backed up by [177] in their investigation

of categorization error. [178] demonstrated via simulation that the more points a response

contains, the more closely it approximates interval data and therefore recommended an

11-point response format.

This line of reasoning may lead one to believe that one should dramatically increase the

number of response points to more accurately measure a construct. However, just because

the data may more closely approximate interval data does not mean increasing the number

of response points monotonically increases the ability to measure a subject’s attitude. A

larger number of response options may require a higher mental effort by the participant,

thus reducing the quality of the response [179, 180]. For example, [179] conducted a study

that suggested that response quality decreased above eleven response options. [181] also

investigated the optimal number of response options and found that no further psychometric

advantages were obtained once the number of response options rose above six and [180]

suggested based on study results that the optimal number is between four and six.

Recommendation - As a general rule-of-thumb, we recommend the number of

response options be between five and nine due to the declining gains with more

than ten and lack of precision with less than five. However, if the study involves

a large cognitive load or lengthy surveys, the researcher may want to err on the

side of fewer response items to mitigate participant fatigue [176].

Response Format Label - By the formal definition, a Likert scale response format should be

labeled from ”strongly disagree” to ”strongly agree” [164]. Although there is little evidence
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in the psychometric literature to suggest that this choice of label is superior to other choices,

other response format labels have not been widely studied and therefore are not as well

understood. Furthermore, a review conducted by [182] suggests that the response format

label may have an impact on data quality and interpretation.

There is further debate about the label of the midpoint (see below for a discussion

about inclusion versus omission of a midpoint). Likert’s original scale utilized the label

”undecided” for the midpoint [164]. However, researchers have suggested that either

”neutral” or ”neither agree nor disagree” are better alternative to ”undecided” as ”undecided”

may represent an absence of opinion and therefore not comply with the ordinal nature of the

response format [183].

Prior work [184] has also investigated the labeling of Smiley-o-Meter scales which are

Likert-like scales commonly employed in research with children. The standard Smiley-

o-Meter utilizes smiley faces as labels, typically ranging from sad to happy. Hall and

Hume conducted several studies with various response labels and found that children rarely

selected the negative ratings, perhaps because children are tuned to more positive attitudes

[184]. To solve this issue, the researchers created the Five Degree of Happiness scale which

utilizes varying degrees of happy faces for the response labels which produced higher quality

responses by encouraging the use of all scale points in studies with children.

Recommendation - We recommend that authors adhere to the ”strongly dis-

agree” to ”strongly agree” response format label when possible, as this has

been thoroughly validated. Further, we recommend that authors utilize either

”neutral” or ”neither agree nor disagree” when labeling a midpoint to maintain

the ordinal nature of the scale. When deviating from this label, we recommend

that authors instead refer to their scale as ”Likert-like” to differentiate it from

the classical Likert scale. When soliciting responses from children, utilize the

Five Degrees of Happiness scale [184]

Neutral Midpoint - Another point of contention which influences the response format of
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a scale is whether or not to include a neutral midpoint. Likert, with his five-point scale,

included a neutral, “undecided” option for participants who did not wish to take a positive

or negative stance [164]. Some argue that the inclusion of a neutral midpoint provides more

accurate data because it is entirely possible that a participant may not have a positive or

negative opinion about the construct in question. Studies have shown that including a neutral

option can improve reliability in other, similar scales [185, 186, 165, 187]. Furthermore, the

lack of a neutral option precludes the participant from voicing an indifferent opinion, thus

forcing them to pick a side which they does not agree with.

On the other hand, a neutral midpoint may result in users ”satisficing” (i.e., choosing

the option that may not be the most accurate to avoid extra cognitive strain resulting in an

over-representation at the midpoint) [188]. The authors in [189] argue that ”. . . the midpoint

should be offered on obscure topics, where many respondents will have no basis for choice,

but omitted on controversial topics, where social desirability is uppermost in respondents’

minds.”

Recommendation - We adopt the recommendation of [189], which suggests that

HRI researchers utilize their best judgement based on the context of use when

deciding the merits of including a neutral option in their response format. For

example, if the authors are conducting a pre-trust survey to gauge a baseline

level of trust before the participant has interacted with the robot, they may want

to include a neutral option since some participants, especially those unfamiliar

with robots, may not truly have a good sense of their own trust in robots. A

neutral option would allow participants to present this sentiment. However, if a

survey is being utilized to assess trust after a participant has interacted with

a robot, the researchers may want to remove the neutral option, based on the

notion that participants should have developed a sense of either trust or distrust

after the interaction. Nonetheless, there may be cases when ”neutral” truly is

appropriate, which is why we argue in favor of researcher discretion [189].
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Overall Response Format Design - The number of response options and the response

format labels are intrinsically linked. The number of response options inevitably influences

the choice of response labels. The more response options, the more difficult it is to assign a

label to each option. Typically scales with many response options must rely on anchor labels

with either number labels or no labels for intermediate options. Prior work has investigated

the differences that arise in fully labeled versus partially labeled scales as well as the effect of

gradation of (dis)agreement (e.g., a five-point scale has two gradations whereas a seven-point

has three) when labeling the response scale [190]. Weijters et al. found that a fully labeled

scale led to higher quality responses [190]. Thus, the authors recommend in situations of

opinion measurement and scale development to utilize either a five-point or seven-point fully

labeled response format. These findings are supported in other studies which demonstrate

that a fully labeled scale produces higher reliability [191, 192].

Recommendation - In alignment with our above recommendations on number of

response options and response format labels and the recommendations provided

in [190], we recommend that authors utilize a five-point or seven-point fully

labeled response format to achieve high-quality responses. In a five-point re-

sponse format, authors should label the options ”strongly disagree,” ”disagree,”

either ”neutral” or ”neither agree nor disagree,” ”agree,” and ”strongly agree.”

In a seven-point response format, authors should label the options ”strongly

disagree”, ”disagree”, ”slightly disagree,” either ”neutral” or ”neither agree

nor disagree,” ”strongly agree,” ”agree,” and ”slightly agree.” However, we

recognize that little research has been conducted on the exact nature of the

response format labels and therefore, we provide this recommendation only as

a soft guideline.

Number of Items - The next point of contention we address is the ideal number of Likert

items in a scale. In his original formulation, Likert stated that multiple questions were

126



imperative to capture the various dimensions of a multi-faceted attitude. Based on Likert’s

formulation, the individual scores are to be summed to achieve a composite score that

provides a more reliable and complete representation of a subject’s attitude [169, 170].

Yet, in practice it is not uncommon for a single item to be used in HRI research due to

the efficiency that such a short scale provides. Research into the appropriateness of single

item scales has been extensively studied in marketing and psychometric literature [193]. For

example, [193] investigated the use of a single-item scale for measuring a construct con-

cluding that a single-item scale is only sufficient for simple, uni-dimensional, unambiguous

objects.

Multi-item scales on the other hand are ”suitable for measuring latent characteristics with

many facets.” [194] proposed a procedure for developing scales for evaluating marketing

constructs and suggested that if the object of interest is concrete and singular, such as how

much an individual likes a specific product, then a single item is sufficient. However, if the

construct is more abstract and complex, such as measuring the trust an individual has for

robots, then a multi-item scale is warranted. This line of reasoning is supported by [195,

196, 197]. As to the exact number of items, [196] demonstrated via simulation that at least

four items are necessary for evaluation of internal consistency of the scale. However, as

suggested by [Willits], one should be cautious of including too many items, as a large scale

may result in higher refusal rates (i.e., more unanswered questions).

Recommendation - Due to the complexity of attributes most often measured

in the field of HRI (e.g., trust, sociability, usability, etc.), we recommend that

researchers in the HRI community utilize multi-item scales with at least four

items. The total number of items again is left to the discretion of the researcher

and may depend on the time constraints and the workload that the participant is

already facing. Because an average person takes two to three seconds to answer

a Likert item and individuals are more likely to make mistakes or ”satisfy” after

several minutes, we recommend surveys not be longer than 40 items [198].
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Recall that this recommendation for the number of ”Likert Items” is distinct

from our recommendation regarding the number of ”response options,” which

we recommend generally be between five and nine options, as noted previously.

Scale Balance - The last aspect of scale design which we will discuss is that of balance.

The question of whether the items within a scale should be balanced, i.e., there should be

a parity of positive and negative statements, is one less often addressed in literature. It is

believed that balancing the questionnaire can help to negate acquiescence bias, which is

the phenomenon in which participants have a stronger tendency to agree with a statement

presented to them by a researcher. Likert [164] advocated that scales should consist of

both positive and negative statements. Many textbooks, such as [199], also state that scales

should be balanced. Perhaps the most compelling evidence that balance is an important

factor when developing Likert scales is provided by [200]. The authors in [200] conducted a

study in which they asked participants to respond to a positively worded question to which

60% of participants agreed. They asked the same question but rephrased in a negative way

and again, 60% of participants agreed. This study reveals the extent to which acquiescence

bias can sway participants to answer in a particular way that is not always representative of

their true feelings.

One would find this evidence to be sufficiently compelling to recommend scale balance;

however, this debate is not so easily settled. Recent work suggests that although including

both positively and negatively worded items reduces the effects of acquiescence bias, it

may have a negative impact on the construct validity (i.e., if the scale adequately measures

the construct of interest) of the scale [201, 202]. This result may be due to the fact that

a negatively worded item is not a true opposite of a positively worded item. Therefore,

reversing the scores of the negatively worded items and summing may have an impact on

the dimensionality of the scale due to the confusion that reversed items cause [203, 204].

Recommendation - Because of a lack of consensus and the problems arising from
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both approaches, we do not provide a concrete recommendation to researchers

about scale balance.

Validity and Reliability of Likert Scales - The reliability (i.e., the scale gives repeatable

results for the same participant) and the validity (i.e., the scale measures what is intended)

of the scale are both contingent on the guidelines listed above. For example, [170] found

that a single item scale decreased reliability, and as discussed by [205], using scales with

five to seven response options improves reliability and validity. Additionally, Likert’s

original work states that the prompts of a Likert scale should all be related to a specific

attitude (e.g., sociability) and should be designed to measure each aspect of the construct.

Each item should be written in clear, concise language and should measure only one idea

[206, 164]. This formulation helps to ensure the reliability and the validity of the scale.

Therefore, to improve validity and reliability, researchers should closely adhere to the above

recommendations when designing Likert scales.

Even if these guidelines are followed, ensuring the reliability and validity of a scale is

not a simple task. Rigorous analysis and repeated studies should be conducted to confirm

the legitimacy of the scale before use. When designing a scale, an initial pool of items (two

times to five times the size of the desired size of the final scale) should be created [207].

Items should be derived from theory and prior work. Content validity of each item should be

verified by experts in the field. Items can then be eliminated via factor analysis and measures

of internal validity to form the final scale. Common methods for item reduction include the

Classical Test Theory (CTT) and Item Response Theory (IRT) which rely on item difficulty

index, discrimination index, inter-item and item-total correlations, and distractor efficiency

analysis to determine the best items in the pool [208, 209, 207, 210]. If, after CTT or IRT

has been applied to the scale, the number of items are less than the recommended minimum

of four items, the researchers should create additional items based on theory and expert

knowledge.

Recommendation - Due to the complex nature of scale design, we recommend
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that researchers utilize well-established and verified scales provided in literature

when possible. Many common constructs measured in the field of HRI can be

measured with already validated scales such as the ”HRI Trust Scale” for

human-robot trust [211] or the RoSAS scale for perceived sociability [212].

This practice will reduce the prevalence of employing poorly designed scales.

Internal Consistency and Dimensionality - A poorly formed scale may result in data that

does not assess the intended hypothesis. Thus, before a statistical test is applied to a Likert

scale, it is best practice to test the quality of the scale. Cronbach’s alpha is one method by

which to measure the internal consistency of a scale (i.e., how closely related a set of items

are). A Cronbach’s alpha of 0.7 is typically considered an acceptable level for inter-item

reliability [213]. If the items contains few response options or the data is skewed, another

method, such as ordinal alpha, should be employed [214]. Cronbach’s alpha alone does not

ensure the reliability of a scale. For example, a scale consisting of unrelated prompts may

achieve a high Cronbach’s alpha for other underlying reasons or simply because Cronbach’s

alpha can increase as the number of items in the scale increases [215, 216]. Therefore, it

is also good practice to utilize a test-retest method in which the scale is tested within the

same population across multiple points in time in addition to reporting Cronbach’s alpha

[217]. Furthermore, recent work has suggested that other internal consistency metrics such

as McDonald’s omega coefficient, ω, may provide better estimates of reliability [218, 219].

For further discussion on this topic, please reference [218].

While Cronbach’s alpha and other reliability tests are important metrics, a full item

factor analysis (IFA) should be conducted to better understand the dimensionality of a scale.

A scale can show internal consistency, but this does not mean it is uni-dimensional. On the

other hand, a factor analysis is a statistical method to test whether a set of items measure the

same attribute and whether or not the scale is uni-dimensional. Factor analysis thus provides

a more robust metric to assess the scale quality [220].

Additionally, factor analysis is crucial in scale development to determine which items
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load on each factor. A factor, in this context, describes a latent variable. For example, in

the RoSAS scale, a tool commonly used in HRI research, these latent variables are warmth,

competence, and discomfort [212]. During scale development, factor eigenvalues, derived

from Factor Analysis (FA), are utilized to determine the importance of each factor. Factors

with an eigenvalue greater than one are retained. Factor loading values are commonly

employed to determine which items load onto each factor. It is recommended to retain items

that have a factor loading of above 0.4 because these items explain more than 10% of the

variance in the data [221, 207].

Recommendation - If researchers choose to create their own scales rather than

employing well-established scales from prior work, a thorough analysis of the

internal consistency and dimensionality of new scales should be conducted

before deployment. Factoring loading values for individual items should be at

least 0.4 and factors with eigenvalues greater than one should be retained. For

in-depth instructions on how best to construct Likert scales from the ground up,

please see [222, 223, 207].

7.3 Statistical Tests

Once a scale is designed and its validity statistically verified, it is important that correct

statistical tests are applied to the response data obtained from the scale. Another fiercely

debated topic is whether data derived from single Likert items can be analyzed with para-

metric tests. We want to be clear that this controversy is not over the data type produced by

Likert items but whether parametric tests can be applied to ordinal data.

Ordinal versus Interval - Previous work has demonstrated that a single Likert item is

an example of ordinal data and that the response numbers are generally not perceived as

being equidistant by respondents [224]. Because the numbers of a scale for Likert items

represent ordered categories but are not necessarily spaced at equivalent intervals, there
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is not a notion of distance between descriptors on a Likert response format [225]. For

example, the difference between ”agree” and ”strongly agree” is not necessarily equivalent

to the difference between ”disagree” and ”strongly disagree.” Thus, a Likert item does not

produce interval data [226]. While it has been speculated that a large-enough response scale

can approximate interval data, Likert response scales rarely contain more than 11 response

points [227, 178].

Recommendation - Because a Likert item represents ordinal data, parametric

descriptive statistics, such as mean and standard deviation, are not the most

appropriate metric when applied to individual Likert items. Mode, median,

range, and skewness are better to report.

Parametric versus Non-Parametric - The question now becomes, given the ordinal nature

of individual Likert items, is it appropriate to apply parametric tests to such data? A famous

study by [228] showed that the F test is very robust to violation of data type assumptions

and that single items can be analyzed with a parametric test if there are a sufficient number

of response points. [224] demonstrates through simulation that ANOVA is appropriate when

the single-item Likert data is symmetric but that Kruskal-Wallis should be used for skewed

Likert item data. [177] also found that skew in the data results in unacceptably high errors

when the data is assumed to be interval. [229] compared the use of the t-test versus the

Wilcoxon signed rank test on Likert items and found that the t-test resulted in a higher Type

I error rate for small sample sizes between 5 and 15. [230] made a similar comparison and

also found that Wilcoxon rank-sum outperformed the t-test in terms of Type I error rates.

As demonstrated by these studies, the field has yet to reach a clear consensus on whether

parametric tests are appropriate, and if so when, for single Likert item data.

Likert scale data (i.e., data derived from summing Likert items) can be analyzed via

parametric tests with more confidence. [228] showed that the F test can be used to analyze

full Likert scale data without any significant, negative impact to Type I or Type II error rates
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as long as the assumption of equivalence of variance holds. Furthermore, [231] showed that

Likert scale data is both interval and linear. Therefore, parametric tests, such as analysis

of variance (ANOVA) or t-test, can be used on full Likert scales as long as the appropriate

assumptions hold.

Recommendation - Because studies are inconclusive as to whether parametric

tests are appropriate for ordinal data, we recommend that researchers err on the

conservative side and utilize non-parametric tests when analyzing single Likert

items. However, we also recommend that HRI researchers avoid performing

statistical analysis on single Likert items altogether. As [168] so eloquently

states, ”one item a scale doth not make.” A single item is unlikely to be the

best measure for the complex constructs that are of interest in HRI research

as discussed in Section 7.2. Therefore is best to avoid the ordinal vs. interval

controversy altogether and instead perform analysis on a multi-item scale

since Likert scales can be safely analyzed with parametric tests if appropriate

assumptions are met. If a researcher does choose to analyze an individual

item, they should clearly state they are doing so and acknowledge possible

implications. At the very least, it is recommended to test for skewness.

Post-hoc Corrections - The importance of performing proper post-hoc corrections and

testing for assumptions applies to all data and is not specific to Likert data. Nevertheless,

they are important considerations when analyzing Likert data and are often incorrectly

applied in HRI papers.

As the number of statistical tests conducted on a set of data increases, the chances

of randomly finding statistical significance increases accordingly even if there is no true

significance in the data [232]. Therefore, when a statistical test is applied to multiple

dependent variables that test for the same hypothesis, a post-hoc correction should be applied.

Such a scenario arises frequently when a statistical analysis is applied to individual items
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in a Likert scale [168]. In 2006, [233] conducted a study investigating whether individuals

born under a certain astrological sign were more likely to be hospitalized for a certain

diagnosis. The authors tested for over 200 diseases and found that Leos had a statistically

higher probability of being hospitalized for gastrointestinal hemorrhage and Sagittarians

had a statistically higher probability of a fractured humerus. This study demonstrated the

heightened risk of Type I error that occurs when no post-hoc correction is applied.

There is controversy as to which post-hoc correction is best. [234] suggests applying

the Bonferonni correction when only several comparisons are performed, i.e., ten or less.

The authors recommend employing a different correction such as Tukey or Scheffé with

more than ten comparisons to avoid the increased risk of Type II errors that stems from

the conservative nature of the Bonferonni correction. The authors of [235] suggest that

researchers should, instead of performing post-hoc correction, focus on reporting effect size

and confidence intervals, such as Pearson’s r.

Recommendation - Because of the danger that comes with performing many

statistical tests without predefined comparisons, we recommend that researchers

always perform the proper post-hoc corrections. Due to the increased risk of

Type II error that some post-hoc tests pose, we encourage researchers to also

report the effect size and confidence interval to provide a more informative and

holistic view of the results. In general, we recommend against pair-wise com-

parisons performed on individual Likert items for reasons already discussed.

Test Assumptions - Most statistical tests require certain assumptions to be met. For example,

an ANOVA assumes that the residuals are normally distributed (normality) and the variances

of the residuals are equal (homoscedasticity) [236]. Tests to ensure these conditions are met

include the Shapiro-Wilk test for normality and Levene’s test for homoscedasticity [237].

[228] argues that even when assumptions of parametric tests are violated, in certain situations,

the test can still be safely applied. However, [238] counters [228] and contends that [228]

134



failed to take into account the power of parametric tests under various population shapes

and that these results should not be trusted.

Recommendation - To navigate this controversy, we suggest that researchers err

on the conservative side and always test for the assumptions of the test to reduce

the risk of Type I errors. If the data violates the assumptions, and the researchers

decide to utilize the test despite this, they should report the assumptions of the

test that have not been met and the level to which the assumptions are violated.

7.4 Conclusion

A majority of published HRI papers rely on Likert data to gain insight into how humans

perceive and interact with robots, leading Likert questionnaires to be a fundamental part of

HRI studies [113]. I conducted a review of the psychometric literature focused on incorrect

design and statistical testing of Likert scales and associated data to explore the implications

of these infractions. These guidelines have aided me in following best practices in my own

research. It is my hope that our recommendations are taken into consideration and that HRI

researchers, authors, and reviewers employ best practices when addressing Likert data.
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CHAPTER 8

CONCLUSION

Throughout this thesis, I have made contributions to data-driven personalization techniques

for human-machine interaction. This thesis sets out to develop and validate novel personal-

ized frameworks that 1) learn from both the population as well as the individual end-user,

2) do so in a variety of domains, and 3) consider safety of the end-user. Throughout this

thesis, I have developed novel approaches which have accomplished these three objectives;

in large human-subject studies with over 330 total participants, I demonstrated that these

frameworks produce personalized behaviors and improved the machine’s ability to interact

with the end-user. These frameworks not only objectively perform better but are also viewed

as more likeable and trustworthy by participants. The following section provides a summary

of each of these methods.

8.1 Mutual Information Driven Meta-Learning from Demonstration

I have presented MIND MELD, a novel framework for learning from suboptimal and

heterogeneous demonstrators. My approach learns a personalized embedding that describes

the way in which an individual is suboptimal via data collected through calibration tasks.

My experimental results show that our approach is capable of improving an agent’s ability

to learn from novice end-users. I show that our approach both objectively and subjectively

outperforms human-centric and robot-centric LfD approaches.
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8.2 Personalized Teaching via Reciprocal Mutual Information Driven Meta-Learning

from Demonstration

I introduced Reciprocal MIND MELD which expanded upon our MIND MELD approach

to provide personalized instructions to suboptimal demonstrators. Reciprocal MIND MELD

provides actionable robotic feedback based upon the location of a demonstrator’s person-

alized embedding to improve upon their quality of demonstrations. Across three human-

subject experiments, I demonstrated that our approach improves upon a demonstrator’s

ability to provide high-quality feedback. I also showed that Reciprocal MIND MELD is

capable of predicting how a demonstrator’s teaching abilities change over time and adapting

feedback accordingly.

8.3 Manipulating Autonomous Vehicle Embedding Region for Individuals’ Comfort

In my next work, I presented an approach for learning about and accounting for an individual

end-user’s preferences in an AV domain. I introduced MAVERIC, a personalized framework

that learns to mimic an end-user’s own driving style and adjust the level of aggression

based upon individual characteristics. I experimentally show that our approach is capable

of mimicking driving style as well as producing more cautious and aggressive behavior.

Additionally, I find that certain latent factors including personality, perceived similarity, and

self-reported high-velocity driving style impact the effect of homophily.

8.4 Safe Meta-Active Learning for Deep Brain Stimulation

Finally, I presented Safe MetAL, a personalized algorithm for efficiently selecting the

optimal parameter settings and reasoning about the safety of a DBS patient in a healthcare

setting. In this work, I combine a deep-learning based acquisition function with safety con-

straints to safely and efficiently learn the optimal parameter settings for a DBS patient. My

experimental results show that our approach outperforms prior work in terms of information
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gain, safety, and computation time.
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CHAPTER 9

FUTURE WORK

While my work discussed in this thesis demonstrates the potential for data-driven personal-

ization approaches to improve upon human-machine interaction, there is still much untapped

potential left to be explored. Below I discuss some of the possible avenues for future

work. I propose future directions related to personalization in LfD and discuss future work

in learning to transfer knowledge about an individual demonstrator from one domain to

another. I additionally propose future steps for learning to differentiate between preference

and suboptimality in LfD. I then discuss how Reciprocal MIND MELD can be employed

as a general tutoring framework to provide personalized coaching to correct for end-user

suboptimality in a variety of domains. I also suggest future steps for improving upon my

MAVERIC framework. Lastly, I discuss future work in evaluating Safe MetAL on a target

population and how personalized frameworks can be used to improve patient care on a broad

scale.

9.1 Transferring Understanding of Suboptimality Across Domains via MIND MELD

In my MIND MELD work, I introduced an approach for learning about the way in which an

individual demonstrator is suboptimal within a specific domain. However, because end-users

will likely need to teach a variety of different robotic platforms, robots should be capable of

transferring the learned knowledge about an individual’s suboptimal tendencies from one

domain to another. For example, an individual may need to teach a mobile robot a new route

in their home but also teach a dish-washing robot how to move dishes from the cabinet to

sink. In both domains, the suboptimality of the individual’s demonstrations must be taken

into account to effectively learn from the human. In future work, I propose an approach

called Domain Agnostic MIND MELD which learns to map the personalized embedding
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learned in one domain to an embedding describing the demonstrator’s suboptimality in

another domain.

To learn this mapping, I propose to collect human calibration data to learn an individual’s

personalized embedding, w(p)
d , in one domain (e.g., a driving domain). The same participants

will also perform calibration tasks in a different domain (e.g., 7-DOF arm domain) to learn

their embedding, w(p)
a . By collecting calibration data from a set of participants, we can learn

a mapping of the personalized embeddings, w(p)
d = ma→d(w

(p)
a , c⃗(p)) from one domain to

another, conditioned on relevant covariates, c⃗ (e.g., experience with video games, experience

teleoperating a robot, etc.). This transferred embedding will be used to improve upon

suboptimal labels in the new domain, thereby enhancing the robot’s ability to learn from

suboptimal human feedback across disparate domains.

9.2 Differentiating Between Preference and Suboptimality

In my work discussed in this thesis, I investigated the question of heterogeneity with regards

to suboptimality in LfD. However, humans are also heterogeneous with respect to their

preferences for how new tasks should be performed. Prior work has investigated how to

extract different preferences from heterogeneous demonstrators. For example, Chen et

al. proposed Fast Life-Long Adaptive Inverse Reinforcement Learning or FLAIR [15].

FLAIR distills common knowledge from demonstrators while still preserving demonstrator

preferences. By training FLAIR on a distribution of demonstrators representing the range of

preference for end-users, the authors show that we can gain an understanding of the set of

prototypical strategies employed by demonstrators.

While this work is able to successfully learn preference based policies for heterogeneous

end-users, FLAIR assumes that all demonstrators are optimal when demonstrating their

preferences. However, as I illustrated in our MIND MELD work, this assumption often

does not hold. Therefore, a robot must be capable of distinguishing between heterogeneity

that is a consequence of suoptimality versus heterogeneity due to differing preferences
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to effectively learn the intended policy. Yet it can be difficult to elicit which aspects of

heterogeneity are due to suboptimality as opposed to preference.

One way to approach this problem is for the robot to actively query the user about their

intentions to gain further insight into the goal of the end-user. This information enables the

robot to determine what aspects of heterogeneity are related to preference and which are

related to suboptimality. The robot can then learn to preserve the aspects of demonstrations

related to preference and correct for those related to suboptimality. In future work, I plan

to achieve this goal by combining FLAIR and MIND MELD. By doing so, the machine

can learn to differentiate between suboptimality and preferences and avoid the incorrect

assumptions that 1) there is an optimal way to complete the task, and 2) human demonstrators

are optimal.

9.3 Personalized Tutor Via Reciprocal MIND MELD

In this thesis, I introduced Reciprocal MIND MELD as a personalized teaching framework

for LfD. However, Reciprocal MIND MELD has the potential to quantify suboptimality and

provide robotic feedback in a multitude of domains unrelated to LfD - i.e., to be used as a

general coaching and tutoring framework. By learning about the way in which a student is

suboptimal, our Reciprocal MIND MELD approach could provide personalized instructions

in a variety of different domains.

For example, Reciprocal MIND MELD could be utilized in a domain such as table tennis

to teach a human how to improve upon their table tennis stroke. By observing the human

playing table tennis and collecting data about the human’s stroke, we could employ a similar

framework as Reciprocal MIND MELD to learn a personalized embedding which captures

information about the way in which the human is suboptimal. In this approach, the robot

would then utilize this information to provide feedback to the human.

This aim provides many different avenues for future research. For example, a domain

such as table tennis poses different challenges compared to a driving simulator domain. The
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dimensions of suboptimality are likely much more complex and difficult to communicate

to the end-user. Additionally, players will exhibit differing playing styles which should

be accounted for when providing feedback. Because of the complexity of suboptimality,

verbal feedback may not be the best option. We can instead take inspiration for how human

coaches communicate about suboptimality in complex physical tasks. Prior work has shown

that teaching by example is a powerful tool for improving upon suboptimality in physical

skills. For a robot to teach by example, it must have a notion of what better and worse looks

like and be able to translate this notion into physical movement.

Another challenge in table tennis is that a robotic coach must consider differing playing

styles. One individual’s stroke may differ from another’s but that doesn’t necessarily mean

that one stroke is superior. Thus, in such a domain, we want to ensure that a robot can

provide examples of what a better demonstration looks like while preserving the individual’s

style of play. To address these challenges, I take inspiration from our MAVERIC work in

which we learned the aggressive gradient in embedding space. In a similar manner, in a

table tennis domain, we can learn the skill gradient within embedding space. Moving an

embedding in the positive direction of the skill gradient would provide an example of what

a better stroke looks like while preserving style. Moving an embedding in the direction

perpendicular to the skill gradient would maintain skill while varying style. This framework

would allow a robot to provide examples of what better and worse strokes look like while

maintaining the style of the individual player. By doing so, the robot could coach a table

tennis player via examples.

9.4 Establishing Causal Relationships and Quantifying Magnitude of Embedding

Shift to Optimize Driving Style

My MAVERIC framework introduced an approach for mimicking an end-user’s driving

style and increasing and decreasing the aggressiveness relative to one’s own driving style.

In this work, we found that various latent factors impacted an individual’s preference for a
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driving style different from one’s own. However, to optimize driving style for an individual,

we must determine the amount by which to shift an end-user’s personalized embedding in

the direction of the aggressive gradient. Therefore, one avenue for future work is to study

and quantify the relationship between these subjective factors and preference for style. To

do this, in future work I aim to conduct a human-subject study to determine the optimal

aggressive driving style for each participant and then utilize this information to quantify the

relationship between the optimal style and latent subjective factors.

Furthermore, there are likely many different situational and environmental factors that

influence an individual’s preference for a specific driving style. For example, inclement

weather will likely impact the optimal driving style and certain individuals may prefer a less

aggressive driving style in these situations. On the other hand, if an individual is late for an

appointment, they may prefer their AV to drive in a more aggressive manner. In future work,

I am aim to explore how we can adapt driving style on-the-fly to account for these different

variables.

9.5 Evaluation of Safe MetAL with Target Population

One of the goals of my research is to develop data-driven approaches for human-machine

interaction while also rigorously validating these approaches in large human subject studies.

Due to the limitation of deploying novel frameworks in a medical setting with patient

populations, we have only demonstrated our Safe MetAL work in a simulation based on rat

models. In future work, I aim to validate our approach with human patients with Parkinson’s

disease. We aim to collect a dataset of DBS stimulation parameters and metrics related to

symptom improvement and side-effects of Parkinson’s patients. By training our Safe MetAL

architecture on this dataset, we hypothesize that we will be able to efficiently determine the

optimal DBS parameter setting for an individual patient and demonstrate the efficacy of our

approach with the target population.

There are many interesting challenges that arise when deploying a machine learning
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framework in a clinical setting. For example, our framework will likely need to learn from

incomplete datasets with only partial parameter sweeps for each patient. One technique to

solve this problem is to employ Generative Adversarial Networks (GANs) to artificially

increase the size of the dataset for each patient. Another challenge is that our safety

constraints will have to be carefully designed and tested to ensure patients do not experience

negative side-effects. By addressing these challenges and deploying Safe MetAL in a clinical

setting, we will move one step closer to improving the lives of patients via our Safe MetAL

approach

9.6 Personalized Learning Applied to Healthcare

A patient’s response to medication and treatments is often hard to predict, making it difficult

for physicians to determine the right course of action for an individual patient. My Safe

MetAL framework addressed this problem for DBS patients by predicting the optimal

personalized parameter setting. Yet, DBS is only the tip of the iceberg when it comes to

data-driven systems supporting personalized patient care. With modern electronic patient

databases, we now have the resources to develop data-driven, personalized care systems to

aid physicians in diagnosis as well as provide real time feedback to patients about how they

can adjust their diet and lifestyle habits to improve their health.

The frameworks developed in this thesis serve as a strong starting point for developing

personalized healthcare approaches that can provide unique insight into a patient’s health. By

learning a personalized embedding from large datasets of patient information, we can utilize

this embedding to gain insight into informative biomarkers such as the gut microbiome

which can be otherwise difficult to measure. Such approaches can be particularly useful in

healthcare paradigms in which individual responses vary greatly due to latent factors that

can be difficult for physicians to understand.

For example, the postprandial glucose response from the same meal varies greatly across

individuals. This variation, which is likely due to a variety of latent variable (e.g, the makeup
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of the gut microbiome, physical activity, etc.), makes it difficult for diabetic patients to

optimize their diet and effectively reduce the magnitude of their glucose response [239].

Utilizing the techniques introduced in this thesis, we can learn a personalized embedding that

captures information about these latent variables and produces a more accurate prediction

of glucose response, thus allowing patients to make better dietary choices. This serves as

one example of many in which personalization techniques have the potential to improve the

lives of patients.

9.7 Ethics of Personalization

To effectively support humans, machines must be capable of recognizing individual desires,

abilities, and characteristics and adapt to account for differences across individuals. However,

personalization does not come without a cost. In many domains, for robots to effectively

personalize their behavior to match the needs of end-users, the robot must solicit often private

and intimate information about an end-user so as to optimize the interaction. However, not

all end-users may be comfortable sharing this information, especially if they do not have

insight into why the robot is requesting it. As HRI researchers, we have the responsibility of

ensuring that the robots we create do not infringe upon the privacy rights of end-users.

In future work, I aim to conduct a study investigating questions related to sharing private

information for personalization purposes. Specifically, I propose to investigate the impact

of domain, robot embodiment, nature of personal information requested, and the role of

explanations with regards to end-user willingness to share information with a robot. My

goal is to provide guidance for HRI researchers who are conducting work in personalization

by examining the factors that may impact acceptance of personalized robots. Furthermore,

to reduce the amount of sensitive information that a machine must collect from an end-user,

I aim to investigate methods for active learning and uncertainty quantification with regards

to learning a model of the end-user.
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9.8 Developing a Unified Personalized Framework

My thesis and my proposed directions for future work are stepping stones to developing a

unified framework to enable a machine to understand its end-user and utilize this information

to optimize interactions in many domains and across time. An end-user’s personality, prior

experiences, disposition, and environmental factors influence the way in which the individual

interacts with and perceives the world. My goal is for machines to be capable of integrating

this information to better understand individual end-users so as to optimize the machine-

end-user relationship in a variety of different domains and settings.
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APPENDIX A

MUTUAL INFORMATION DRIVEN META-LEARNING FROM

DEMONSTRATION

A.1 Calibration Tasks

We created a set of sixteen calibration tasks, which are depicted in Figure A.1. The tasks

are ”Wizard-of-Oz” [26] style rollouts representative of an agent’s behavior. The rollouts

were prerecorded to be consistent across participants, but participants believed an agent

was driving the car. For each task, the car drives along the prerecorded trajectory and

the participants provide corrective feedback. We calculated ground truth for each of the

calibration tasks and use the ground truths and participant corrective feedback to train MIND

MELD’s parameters.

In our pilot study, we had a set of twelve calibration tasks; however, after running pilot

participants, we concluded that this set of tasks did not adequately capture enough of the

distribution of the task domain. The original calibration tasks did not have many obstacles,

whereas the test task has participants navigating around multiple obstacles. Additionally,

none of the trajectories successfully made it to the goal. In our final set of calibration

tasks (Figure A.1), there are successful and unsuccessful trajectories as well as tasks with

more obstacles that are more representative of the test task. We thought a wider and more

representative set of tasks would more effectively capture the range of stylistic tendencies.

A.1.1 Calculating Ground Truth

For each prerecorded rollout in the calibration tasks, we calculated the optimal action to get

to the goal. At each timestep along the rollout, we used Rapidly-exploring Random Trees

(RRT)* [111] to find a path to the goal. RRT* treated the car as a point mass and expanded
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(a) Calibration tasks 1-4 (b) Calibration tasks 5-8.

(c) Calibration tasks 9-12. (d) Calibration tasks 13-16.

Figure A.1: This figure shows a graphical representation of the calibration tasks. The orange
circle is the goal and the black squares are the obstacles in the environment. Each set of
obstacles had four tasks with varying degrees of success. Calibration tasks 1-4 are not used
to train MIND MELD and are used as practice to reduce novelty effects.

the obstacles accordingly, so that the RRT* path would not hit obstacles. We then employed

an MPC controller [106], using an approximate dynamical model of the car to find the best

steering angle to follow the RRT* path to the goal.
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(a) This participant tended to over-
correct by 34 degrees on average and
provide delayed feedback by .86 seconds
on average.

(b) This participant tended to under-
correct by 32 degrees on average and
provide delayed feedback by 1.7 seconds
on average.

(c) This participant tended to over-
correct by 127.2 degrees on average and
provide anticipatory feedback by 1.0 sec-
onds on average.

(d) This participant tended to neither
over-correct nor under-correct and pro-
vided slightly anticipatory feedback by
.14 seconds on average.

Figure A.2: This figure shows examples of suboptimal participant feedback and the correc-
tions made by MIND MELD.

A.2 Additional Results

A.2.1 Path Efficiency

Although we do not explicitly tell participants to take the shortest path to the goal, we predict

that participants typically attempt to optimize for path length to reduce the time required

of them. However, participants tend to over-correct when providing feedback, resulting in

DAgger taking a longer route to the goal. Because MIND MELD corrects for suboptimality

and produces feedback more aligned with the intentions of the participant, we hypothesize

that MIND MELD will achieve a shorter path to the goal compared to DAgger. To test
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this hypothesis, we conduct a Kruskal-Wallis test comparing the path efficiency of MIND

MELD and DAgger. We find that MIND MELD achieves a statistically significantly more

efficient path to the goal (H(1) = 14.33, p < .001) compared to DAgger. We note that,

because we do not explicitly ask participants to demonstrate the shortest path to the goal,

our results are only speculative and require further investigation in future work.

A.2.2 Wheel Rate of Change

In this section, we investigate if the rate of change of the steering wheel during the calibration

tasks correlates with the learned embeddings. We hypothesize that this relationship might

exist because the rate at which the participants turn the wheel may be related to their

suboptimal tendencies. If the rate of change differs greatly from the rate of change of the

ground truths, then one might infer that participants are behaving in a suboptimal manner,

which we would expect to be captured by the learned embeddings.

To investigate this hypothesis, we conduct a correlation analysis between the learned

embeddings and the average rate of change of the wheel. We find that the rate of change

significantly correlates with the learned embeddings (r(116) = −.42, p < .001), suggesting

that our learned embeddings do capture information about the participants’ rate of change

of the wheel.

A.2.3 Examples of MIND MELD’s ability to map suboptimal feedback

In Figure A.2, we show several examples of MIND MELD’s ability to correct for het-

erogeneous and suboptimal feedback. Figure A.2(a) shows a participant who tended to

provide over-corrected and delayed feedback. MIND MELD reduces the magnitude of the

participant’s actions and shifts the signal backward in time. In Figure A.2(b), the participant

under-corrects and provides delayed feedback. As a result, MIND MELD increases the

magnitude of the participant’s feedback and shifts the feedback backwards in time. Fig

Figure A.2(c) illustrates a participant who provides both anticipatory and over-corrected
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feedback. MIND MELD shifts the feedback forward in time and reduces the magnitude of

the feedback. Fig Figure A.2(d) shows a participant who neither over-corrected or under-

corrected and provided only slightly anticipatory feedback. Due to the participant’s feedback

being near optimal, MIND MELD changes the feedback very little and instead reproduces

the participant’s original feedback.

A.2.4 Trust Results

The participants filled out a trust survey [115] after witnessing the agents’ performance

for each trial. We sought to compare the results from the trust surveys and the agent’s

performance to determine if there was a correlation between trust and performance. However,

a repeated measures linear model for trust and distance to the goal did not pass Shapiro-

Wilk’s normality test. As such, we decided to use only the final trust survey in our analysis

because it captured the participants’ overall trust in the agent.

A.2.5 Workload Results

The NASA TLX [116] measures workload along six dimensions: Mental Demand, Physical

Demand, Temporal Demand, Performance, Effort, and Frustration. After finding that

participants rated MIND MELD as significantly lower workload than DAgger (p = .005)

and BC (p < .001), we investigated whether the dimension of performance in the NASA

TLX was causing the difference in workload scores. We removed the performance dimension

from the calculation for workload and reanalyzed workload sans performance. The linear

mixed-effects model with “workload sans performance” as the dependent variable and

agent as the independent variable passed Shapiro-Wilk’s test for normality (p = .061) and

Levene’s test for homoscedasticity (p = .37). An ANOVA with a Tukey post hoc found that

“workload without performance” was still significantly lower for MIND MELD compared to

DAgger (p = .005) and BC (p < .001) (Omnibus statistic: F (2, 82) = 8.6, p < .001).
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Then we hypothesized that, since MIND MELD performed better and reached the goal

more often, participants might have found MIND MELD less frustrating than DAgger and

BC. To test this hypothesis, we removed the frustration dimension in addition to perfor-

mance from the workload calculation. The linear mixed-effects model with “workload sans

performance and frustration” as the dependent variable and agent as the independent variable

passed Shapiro-Wilk’s test for normality (p = .21) and Levene’s test for homoscedasticity

(p = .45). Surprisingly, an ANOVA with a Tukey post hoc found that “workload sans

performance and frustration” was also significantly lower for MIND MELD than DAgger

(p = .006) and BC (p < .001) (Omnibus statistic: F (2, 82) = 8.1, p < .001).

Therefore, we conclude that MIND MELD’s lower workload ratings were not solely

based on the agent’s performance or frustration. Participants found teaching MIND MELD

to be less mentally, physically, and temporally demanding and less effort than DAgger and

BC.

A.3 Parametric Test Assumptions and Omnibus Results

To determine the proper statistical test to apply to our data, we first determine whether the

residuals are normally distributed and homoscedastic. To do so, we apply Shapiro-Wilk’s

test for normality and Levene’s test for homoscedasticity. In Table A.1, we report the results

from Shapiro-Wilk’s and Levene’s test for our data and, based on the results, we applied a

parametric or non-parametric test.

In Table A.2 we report the omnibus results for our subjective metrics and distance metric,

the test employed, and the test statistics. If our data met parametric test assumptions, we

applied an ANOVA, otherwise we applied Friedman’s test.

A.4 Covariate Analysis

Each participant filled out surveys prior to starting the experiment to mitigate confounds

related to demographics and prior experience. Through surveys, we collected information

153



Table A.1: We report our test results to determine if our data meets parametric test assump-
tions for each of our metrics. Based on the results, we specify the statistical test we applied.

Metric Normality Homoscedasticity Test

Workload p = .03 p = .76 Friedman

Likeability p = .03 p = .54 Friedman

Intelligence p = .18 p = .82 ANOVA

Trust p = .81 p = .09 ANOVA

Distance p = .26 p = .31 ANOVA

Video Game p = .17 p = .002 Spearman

Experience

Over-/Under- p = .24 p = .17 Pearson

Correcting

Anticipatory/ p = .57 p = .71 Pearson

Delayed

Wheel Rate p = .52 p = .71 Pearson

Path Efficiency p < .001 p = .71 Kruskal-Wallis

Table A.2: This table shows the omnibus test results.

Metric Test Statistics

Likeability Friedman χ2(2) = 14.3, p < .001

Intelligence ANOVA F (2, 82) = 10.1, p < .001

Trust ANOVA F (2, 82) = 19.7, p < .001

Workload Friedman χ2(2) = 12.2, p = .002

Distance ANOVA F (2, 82) = 24.57, p < .001

about participants’ age, gender, personality traits, trust in automation, experience driving a

car, experience playing video games, and experience driving a virtual car (surveys detailed

in Appendix Subsection A.6.1). We ran a linear mixed-effects model for each dependent

variable (workload, likeability, perceived intelligence, trust, and average distance) with the

agent as the independent variable. For each linear model, we tested whether any of these

covariates were significant or confounding factors using an ANOVA. We systematically

added each covariate to the model based on whether it was significant or lowered the model’s

AIC. Overall, we did not find any covariates to be confounding factors in our analysis.

For the linear model with trust as the dependent variable, none of the covariates lowered
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the AIC and the ANOVA did not show significance for any covariate. Adding gender

lowered the AIC for the linear model with distance as the dependent variable; however, an

ANOVA found gender to be insignificant. For the linear model with perceived intelligence as

the dependent variable, no covariates lowered the AIC, but the ANOVA found that age was

a significant covariate (F (1, 82) = 4.5, p = .035) with an effect in the negative direction.

Adding age to the model did not decrease the significance of the independent variable.

Additionally, we tested whether there was an ordering effect for any of our significant

dependent variables. We treated the agent’s order as a categorical variable and added it as a

covariate in each linear model. We did not find agent’s order to be significant for any of the

ANOVAs.

Note: Because the linear models for workload and likeability did not pass the normality

test, we employed a Friedman’s test to assess workload and likeability. A Friedman’s

test does not allow for covariates, so we could not conduct this analysis for workload and

likeability.

A.5 Factor Analysis

We did not find any verified scales in prior work that measured prior experience in driving

virtual or physical cars or playing video games, so we developed our own prior experience

scales for driving a car, video games, and driving a virtual car. Based on guidance in

[207], we generated an analogous set of eight items to measure each construct with minor

differences based on the construct (items shown in Appendix Section Subsection A.6.1).

We conducted a factor analysis [207] and found that the items loaded on two factors for

experience with driving and experience with video games. Based on this factor analysis, we

define two subscales which comprise experience with driving and experience with video

games: confidence and familiarity. We sum both of these subscales to form one scale for

experience. The factor analysis for experience driving a virtual car did not show that two

factors were sufficient, so we did not use this scale in our results, as breaking the scale
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into more than two factors would results in an inadequate number of items per subscale

[113]. Additionally, we tested for internal consistency and we report Cronbach’s alpha for

each scale Subsection A.6.1. The subscales are shown below; we replaced the activity with

driving a car or playing video games as appropriate.

Confidence Subscale

• I am comfortable with the activity.

• I do not feel comfortable with the activity.

• I think I am competent at the activity.

• I do not perform well at the activity.

Familiarity Subscale

• I do the activity on a regular basis.

• I am more experienced at the activity than the average person.

• I am not very experienced with the activity.

• I have not spent a lot of time doing the activity.

A.6 Surveys

A.6.1 Pre-Surveys

Big Five Personality Survey - Although we did not find significant results related to this

survey, we collect information about the participants’ personality via the Mini-IPIP question-

naire [134] to determine if personality correlates with the individual’s learned embedding.

Agreeableness (α = .68): Please rate the level of agreement you feel towards each of

the given items on the scale from 1 (strongly disagree) to 5 (strongly agree).

• I sympathize with others’ feelings.
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• I feel others’ emotions.

• I am not really interested in others.

• I am not interested in other people’s problems.

Neuroticism (α = .67) [134]: Please rate the level of agreement you feel towards each

of the given items on the scale from 1 (strongly disagree) to 5 (strongly agree).

• I have frequent mood swings.

• I get upset easily.

• I am relaxed most of the time.

• I seldom feel blue.

Conscientiousness (α = .75) [134]: Please rate the level of agreement you feel towards

each of the given items on the scale from 1 (strongly disagree) to 5 (strongly agree).

• I get chores done right away.

• I like order.

• I often forget to put things back in their proper place.

• I make a mess of things.

Openness (α = .70) [134]: Please rate the level of agreement you feel towards each of

the given items on the scale from 1 (strongly disagree) to 5 (strongly agree).

• I have a vivid imagination.

• I have difficulty understanding abstract ideas.

• I am not interested in abstract ideas.
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• I do not have a good imagination.

Extraversion (α = .82) [134]: Please rate the level of agreement you feel towards each

of the given items on the scale from 1 (strongly disagree) to 5 (strongly agree).

• I am the life of the party.

• I talk to a lot of different people at parties.

• I don’t talk a lot.

• I keep in the background.

Experience Survey - We measured participants’ prior experience with driving cars,

playing video games, and driving virtual cars to determine if their prior experience correlated

with an individual’s learned embedding or the agent’s performance.

Experience Driving Car (α = .93): Please rate the level of agreement you feel towards

each of the given items on the scale from 1 (strongly disagree) to 5 (strongly agree).

• I am comfortable driving a car.

• I drive a car on a daily basis.

• I am more experienced driving a car than the average person.

• I am not very experienced driving a car.

• I do not feel comfortable driving a car.

• I think I am competent at driving a car.

• I have not spent a lot of time driving cars.

• I do not perform well at driving cars.
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Experience Playing Videos Games (α = .93): Please rate the level of agreement you

feel towards each of the given items on the scale from 1 (strongly disagree) to 5 (strongly

agree).

• I am comfortable playing video games.

• I play video games on a regular basis.

• I am more experienced playing video games than the average person.

• I am not very experienced with playing video games.

• I do not feel comfortable playing video games.

• I think I am competent at playing video games.

• I have not spent a lot of time playing playing video games.

• I do not perform well at video games.

Experience Driving a Virtual Car (α = .86): Please rate the level of agreement you

feel towards each of the given items on the scale from 1 (strongly disagree) to 5 (strongly

agree).

• I am comfortable driving a virtual car.

• I play racing games on a regular basis.

• I am more experienced driving virtual cars than the average person.

• I am not very experienced with driving a virtual car.

• I do not feel comfortable driving a virtual car.

• I think I am competent at driving a virtual car.

• I am not very experienced with playing video games that involve race cars.
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• I do not perform well at video games involving race cars.

Pre-Trust Survey - We measure the participants’ trust in automation via the survey

presented in [137] to measure the participants’ dispositional trust and determine if trust in

automation impacted how a participant rated the agent.

Trust in Automation (α = .71) [137]: Please rate the level of agreement you feel

towards each of the given items on the scale from 1 (strongly disagree) to 5 (strongly agree).

• I think that automated devices used in medicine, such as CT scans and ultrasound,

provide very reliable medical diagnosis.

• Automated devices in medicine save time and money in the diagnosis and treatment

of disease.

• If I need to have a tumor in my body removed, I would choose to undergo computer-

aided surgery using laser technology because it is more reliable and safer then manual

surgery.

• Automated systems used in modern aircraft, such as automatic landing systems, have

made air journeys safer.

• ATMs provide a safeguard against the inappropriate use of an individual’s bank

account by dishonest people.

• Automated devices used in aviation and banking have made work easier for both

employees and customers.

• Even though the automatic cruise control in my car is set at a speed below the speed

limit, I worry when I pass a police radar speed trap in case the automatic control is

not working properly.

• Manually sorting through card catalogues is more reliable than computer-aided

searches for finding items in a library.
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• I would rather purchase an item using a computer than have to deal with a sales

representative on the phone because my order is more likely to be correct using the

computer.

• Bank transactions have become safer with the introduction of computer technology

for the transfer of funds.

• I feel safer depositing my money at an ATM than with a human teller.

• I have to tape an important TV program for a class assignment. To ensure that the

correct program is recorded, I would use the automatic programming facility on my

VCR rather than manual taping.

A.6.2 Post-Surveys

Trust (α = .96) [115]: Please rate the level of agreement you feel towards each of the given

items on the scale from 1 (strongly disagree) to 5 (strongly agree).

• The system is deceptive .

• The system behaves in an underhanded manner.

• I am suspicious of the system’s intent, action, or outputs.

• I am wary of the system.

• The system’s actions will have a harmful or injurious outcome.

• I am confident in the system.

• The system provides security.

• The system has integrity.

• The system is dependable.
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• The system is reliable.

• I can trust the system.

• I am familiar with the system.

Likeability (α = .95) [117]: Please choose the point which best describes your feeling

or your impression of the agent on the scale from 1 to 9.

• Awful - Nice

• Unfriendly - Friendly

• Unkind - Kind

• Unpleasant - Pleasant

Perceived Intelligence (α = .95) [117]: Please choose the point which best describes

your feeling or your impression of the agent on the scale from 1 to 9.

• Incompetent - Competent

• Ignorant - Knowledgeable

• Irresponsible - Responsible

• Unintelligent - Intelligent

• Foolish - Sensible

Workload [116] Please rate the task based on the following factors on a scale from

0-100.

• Mental Demand - How much mental activity was required to complete the task?

• Physical Demand - How much physical activity was required to complete the task?
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• Temporal Demand - How much time pressure did you feel while completing the task?

• Performance - How well did you think you completed the task?

• Effort - How hard did you have to work to complete the task?

• Frustration - How did you feel during the task?

The subject is then presented with pairwise comparisons for each measure and told to: Please

choose the scale title that represents the most important contributor to workload for the

specific task(s) you performed in this experiment.
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APPENDIX B

PERSONALIZED TEACHING VIA RECIPROCAL MUTUAL INFORMATION

DRIVEN META-LEARNING FROM DEMONSTRATION

B.1 Reciprocal MIND MELD Architecture

Figure B.1 shows the steps in the Reciprocal MIND MELD framework. To determine the

robotic feedback that should be provided to the demonstrator, we first learn a semantically

meaningful embedding space. The robot then provides feedback to the demonstrator based

upon the distance from the perfect embedding in each semantically meaningful dimension.

For example, the robot provides feedback in the over-/under-correcting dimension based on

the distance, ϵo/u. We then re-estimate the embedding after robotic feedback. In Study 1

and Study 2, participants experience four and five rounds of robotic feedback respectively.

Between rounds, if the participant improves their feedback but is still not within the first

quartile, the robot says, “That is better but...” followed by the appropriate feedback as shown

in Table B.1.

Table B.1 shows the feedback provided to the demonstrator in Study 1 for the over-

/under-correcting dimension. If a demonstrator is in a quartile that is farther from the

perfect demonstrator, the feedback is intended to shift their embedding by a larger amount

than demonstrators in quartiles closer to the perfect demonstrator. Analogous feedback is

provided for the anticipatory/delayed dimension in Study 2 and Study 3. In all conditions,

regardless of whether feedback is provided, the robot interacts with the participant and says

“Please provide me with a demonstration” before each round.

Figure B.2 illustrates the embedding space in which the size of the points represents

the magnitude by which a participant is anticipatory/delayed. Q1-Q4 indicate the quartiles

for anticipatory/delayed. Points that are farther from the decision boundaries represent
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Figure B.1: This figure shows our
Reciprocal MIND MELD framework.
ϵo/u is the distance between the partic-
ipant’s current embedding, w(p), and
the perfect embedding, w∗, along the
over-/under-correcting dimension.

Figure B.2: This figure depicts the learned embed-
ding space and decision boundaries. Each point
represents the embedding of a demonstrator, and
the diameter represents the magnitude by which
participants are anticipatory/delayed. Q1-Q4 in-
dicate quartiles one through four for the anticipa-
tory/delayed dimension.

participants who are more suboptimal in their demonstrations. The objective is to provide

robotic feedback to shift a participants embedding into Q1.

Table B.1: This table shows the feedback a participant receives based on their quartile and
study condition for Study 1. Analogous feedback for the Cooperative condition is provided
in Study 2 for the anticipatory/delayed dimension in addition to the over-/under-correcting
dimension.

Cooperative
Quartile

Adversarial
Quartile Robotic Feedback

First Fourth
“Your feedback is good! Keep it

up.”

Second Third
“You are slightly

over-/under-correcting. Please turn
the wheel a bit more/less.”

Third Second
“You are over-/under-correcting.
Please turn the wheel more/less.”

Fourth First
“You are over-/under-correcting a

lot. Please turn the wheel a lot
more/less.”
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B.2 MIND MELD Architecture

Below we describe the MIND MELD architecture and discuss the alterations to learn a

semantically meaningful embedding space.

B.2.1 Network Architecture

Figure B.3 shows the MIND MELD architecture. The three main components of the

architecture are: 1) the bi-directional long short-term memory (LSTM) encoder, Eϕ′ : A→

Z, 2) the prediction subnetwork, fθ : Z×W → R, and 3) the mutual information subnetwork,

qϕ : Z × R → NW . Our goal is to improve upon the corrective feedback, a(p)t , from a

demonstrator, p. The corrective feedback from the human demonstrator from t − ∆t :

t + ∆t is fed into the bi-directional LSTM, Eϕ′ , to extract an encoding, z(p)t−∆t:t+∆t. The

fθ subnetwork takes in the encoding, z(p)t−∆t:t+∆t, and the personalized embedding, w(p),

and learns the predicted difference, d̂(p)t , between the optimal label, ot, and the human’s

corrective label, a(p)t . The qϕ subnetwork learns to map the difference, d̂(p)t , and the encoding,

z
(p)
t−∆t:t+∆t, to a posterior distribution over the person’s embedding, w(p). We estimate an

individual’s learned embedding, ŵ(p), by sampling from the approximate posterior [104].

w(p) is initialized based upon the prior, ŵ(p) ∼ N (0, 1).

B.2.2 Loss Function for Semantic Meaning

To learn a semantically meaningful embedding space, we add an additional network head,

pψ, to the MIND MELD architecture to aid in learning the embedding space. pψ is a linear

layer to encourage the embedding space to be linearly separable. We utilize a mean squared

error (MSE) loss, l = 1
N

∑
i

(
pψ(w

(i)) − m
(i)
o/u,a/d

)2, to train the network to predict the

suboptimal tendencies, mo/u and ma/d, (i.e., the magnitude by which a demonstrator over-

/under-corrects and is delayed/anticipatory) given the personalized embedding. We calculate

mo/u and ma/d via dynamic time warping (DTW) [114] between the demonstrations and
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Figure B.3: This figure shows the MIND MELD network architecture. The inputs to the
architecture are a demonstrator, p’s, corrective labels, a(p)(t−∆t:t+∆t), from time t − ∆t to
t+∆t and the personalized embedding, w(p). The bi-directional LSTM extracts sequential
information about the demonstrator’s feedback. The fθ subnetwork learns the predicted
difference, d̂(p)t , by minimizing the mean squared error (MSE) between d̂(p)t and the true
difference, d(p)t = a

(p)
t − ot , between the demonstrator’s corrective feedback, a(p)t , and the

optimal label, ot. The re-creation subnetwork qϕ maximizes mutual information between
the personalized embedding, w(p), the encoding z(p)(t−∆t:t+∆t), and the learned difference, d̂(p)t
to estimate the learned embedding, ŵ(p) [1, 2]. We add the additional network head, pψ, to
learn a semantically meaningful embedding space. The outputs m̂o/u and m̂a/d are estimates
for how much a demonstrator is over-/under-correcting and anticipatory/delayed.

the optimal labels in the calibration tasks. This loss helps to ensure that our embedding

space can be translated into actionable robotic feedback, (i.e., the magnitude by which

a demonstrator over-/under-corrects and is delayed/anticipatory) given the personalized

embedding.

B.2.3 Variational Inference

We assume that humans provide heterogeneous and distinct styles when providing corrective

feedback to the robot. A person’s corrective style is encapsulated in the embedding, w(p), for

person, p. To learn w(p), we maximize the lower bound on the mutual information between

the learned embedding, w(p), and the predicted difference between the human feedback

and the optimal feedback, d̂(p)t (Equation B.1). Intuitively, maximizing mutual information
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means that observing the difference, d̂(p)t , will reduce uncertainty about the personalized

embedding.

In Equation B.1, the mutual information between z(p), d̂(p)t , and personalized embedding,

w(p), is denoted as I(w(p); z(p), d̂
(p)
t ). However, maximizing the mutual information requires

access to an intractable posterior distribution, P (w(p)|z(p), d̂(p)t ); therefore, we employ

variational inference and a lower bound on mutual information to estimate the distribution

using qϕ [108]. The variational lower bound is LI(fθ|w, qϕ|θ).

I(w(p); z(p), d̂
(p)
t ) = H(w(p))−H(w(p)|z(p), d̂(p)t ) ≥ (B.1)

E[log(qϕ(w
(p)|z(p), d̂(p)t ))] +H(w(p)) = LI(fθ|w, qϕ|θ)

The MIND MELD architecture utilizes two loss functions, one to learn the personalized

embedding, w(p), and another to learn the amount by which a person’s feedback is subopti-

mal, d̂(p)t , as shown in Figure B.3. For the qϕ subnetwork, we minimize the mean squared

error between the sampled approximation of the embedding, ŵ(p), and the personalized

embedding, w(p), which is equivalent to maximizing the log-likelihood of the posterior.

The loss function for the fθ subnetwork is the mean squared error between the predicted

difference, d̂(p)t , and the difference between the human feedback and the optimal labels,

d
(p)
t = a

(p)
t − ot. These two losses are summed ( Equation B.2) and backpropagated through

the layers and the input embedding, w(p), so that the embedding converges to reflect a

person’s feedback style. At test time, the MIND MELD network parameters θ, ϕ, and ϕ′ are

frozen. We then backpropagate only through w(p), to learn an embedding that encapsulates

a participant’s suboptimal style.
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L(θ,ϕ,ϕ′,w) = L1(θ,ϕ,ϕ′)
+ λL2(θ,ϕ′)

(B.2)

L1(θ,ϕ,ϕ′)
=

1

K + 1

K∑
k=0

||ŵ(p)
k − w

(p)
k || (B.3)

L2(θ,ϕ′)
= ||d(p)k − d̂

(p)
k || (B.4)

B.3 Calibration and Novel Tasks

Figure B.6 a-d shows the calibration tasks employed in the study. These tasks of pre-recorded

policy rollouts and are consistent for all participants. Figure B.6 e-g shows the novel tasks

in which participants provide demonstrations to teach the car to get from the start location

to the goal.

B.4 Additional Results from Study 1

Table B.2: This table shows the mean, (standard deviation), and test statistics of the subjec-
tive metrics and ∆ϵo/u for Study 1. ∆ Trust and ∆ Fluency describe the change in Trust and
Fluency respectively between rounds one and four.

Cooperative Adversarial None Test Statistic p-value

∆ϵo/u 0.33 (0.2) -0.30 (0.2) 0.01 (0.2) F (2, 24) = 20.2 p < .001

Workload 37.5 (16.4) 46.1 (19.5) 53.5 (11.6) F (2, 24) = 2.21 p = .132

Likeability 6.69 (2.0) 6.81 (1.5) 6.86 (1.4) F (2, 24) = .024 p = .978

Intelligence 6.31 (1.6) 5.57 (1.1) 6.24 (1.4) F (2, 24) = 1.03 p = .372

∆ Trust 0.56 (0.4) -0.01 (0.4) 0.05 (0.2) F (2, 24) = 5.15 p = .014

∆
Fluency 0.34 (0.4) -0.13 (0.3) -0.04 (0.4) F (2, 24) = 5.10 p = .014

Figure B.4(a) shows the change in the distance (ϵ(4)o/u− ϵ
(1)
o/u) in the over-/under-correcting

dimension between round one and rounds one through four. Figure B.4(b) shows the change

between rounds one and four in the amount by which the participant over-/under-corrects as

calculated via dynamic time warping (DTW) between the participant demonstrations and the
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(a) Difference between the embedding distance
at each round, ϵo/u, and the embedding distance

at round one, ϵ(1)o/u.

(b) Amount by which participants over-/under-
correct at each round minus the amount by which
a participant over-/under-corrects in round one
as calculated by dynamic time warping.

(c) Difference between the embedding distance
at each round, ϵa/d, and the embedding distance

at round one, ϵ(1)a/d.

(d) Amount by which participants are anticipa-
tory/delayed at each round minus the amount
by which a participant is anticipatory/delayed in
round one as calculated by dynamic time warp-
ing.

Figure B.4: This figure shows the average distance of the embedding and the dynamic
time warping results for the over-/under-correcting dimension and anticipatory/delayed
dimension for Study 1.

optimal labels. The similarity in trends between Figure B.4(a) and Figure B.4(b) suggests

that robotic feedback is not only able to shift a participant’s embedding but robotic feedback

is also able to alter the amount by which a participant over-/under-corrects. This finding

lends support to the idea that the distance from the embedding to the decision boundary is a

good measure of how much a participant over-/under-corrects.

Because data does not meet parametric assumptions, we apply Friedman’s test to deter-

mine if there is a statistically significant difference in how much an individual over-/under-

corrects in round one versus round four as determined via DTW. We find that participants
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over-/under-correct significantly less in round four compared to round one in the Cooperative

condition (χ2(1) = 9.00, p = .003). We find that the opposite is true in the Adversarial

condition, with participants over-/under-correcting more in round four versus round one

(χ2(1) = 5.44, p = .020). We do not find a significant difference for the None condition

(χ2(1) = .111, p = .740).

We additionally compare the DTW results in round four between conditions. We find

significance in an omnibus ANOVA test (F (2, 24) = 8.99, p = .001). We applied Tukey

post-hoc test and find that the Cooperative agent results in the participant significantly

over-/under-correcting less compared to the Adversarial condition (p < .001). These results

suggest that a participant provides demonstrations closer to the optimal by the fourth round

in the Cooperative agent condition.

Figure B.4(c) and Figure B.4(d) show the change in the amount by which a partici-

pant provides anticipatory/delayed feedback as calculated by the distance from the perfect

demonstrator in embedding space and DTW respectively. We show in Figure B.4(c) that as

participants improve in the over-/under-correcting dimension, they tend to become worse

in the anticipatory/delayed dimension when no feedback is provided. This suggests that

the task of improving participants demonstration quality in both the over-/under-correcting

dimension and the anticipatory/delayed dimension may be particularly difficult since im-

proving in the over-/under-correcting dimension tends to produce greater suboptimality in

the anticipatory/delayed dimension.

Table B.2 shows the results of the subjective metrics. After each round, participants

completed surveys measuring trust [115] and team fluency [122]. At the end of the study,

participants completed surveys measuring workload [116] and likeability and perceived

intelligence [117]. By applying a one-way ANOVA with Tukey post-hoc, we find that

participants’ trust increased significantly more (F (2, 24) = 5.15, p = .014) in Cooperative

compared to Adversarial (p = .020) and None (p = .038). We do not find significance

between Adversarial and None. Similar trends emerge for change in team fluency. We
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find that participants report statistically significantly greater positive change in fluency

(F (2, 24) = 5.10, p = .014) in Cooperative compared to Adversarial (p = .017) and close

to significant change compared to None (p = .052). Again, we do not find significant

difference between Adversarial and None.

While we do not find significance between conditions with regards to the other subjective

metrics, we do note some trends that merit discussion. Surprisingly, we find that Cooperative

is rated as requiring lower workload compared to Adversarial and None, despite participants

likely having to exert similar or additional mental effort to comply with the demands of the

robot. We also find that the Cooperative robot is rated as more intelligent compared to both

the Adversarial and None teachers.

B.5 Additional Results from Study 2

Figure B.5 shows the embedding distance in the over-/under-correcting dimension ( Fig-

ure B.5(a)) and the anticipatory/delayed dimension (Figure B.5(c)). We additionally show

the results of DTW for over-/under-correcting (Figure B.5(b)) and anticipatory/delayed (Fig-

ure B.5(d)). We find that the embedding distance in the over-/under-correcting dimension as

well as the amount that a participant over-/under-corrects as determined via DTW both de-

crease the most in the Simultaneous condition. We also find that participants improve in the

anticipatory/delayed dimension the most in the Simultaneous condition compared to Greedy

and None. Although the difference between Simultaneous and None is small, this finding

is noteworthy because we found in Study 1 that participants tend to become considerably

worse in the anticipatory/delayed dimension as they improve in the over-/under-correcting

dimension. In this study, we show that with Simultaneous feedback, participants improve in

both dimensions.

Table B.3 shows the mean and standard deviations of the change in the embedding

distance as well as subjective metrics for each condition. Study 2 uses the same subjective

metrics as Study 1: trust and team fluency after each round and workload, likeability, and
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Table B.3: This table shows the mean, (standard deviation), and test statistics of the sub-
jective metrics, ∆ϵo/u+a/d, ∆ϵo/u, and ∆ϵa/d for Study 2. ∆ Trust, ∆ Fluency, and ∆
Understanding describe the change in Trust, Fluency, and Understanding respectively be-
tween rounds one and five.

Simultaneous Greedy None F(2,36) p-value

∆ϵo/u+a/d 0.33 (0.25) 0.11 (0.31) 0.04 (0.28) 3.77 p = .033

∆ϵo/u 0.267 (0.30) 0.09 (0.44)
-0.02
(0.27)

2.19 p = .126

∆ϵa/d 0.07 (0.19) 0.06 (0.23) 0.02 (0.22) .192 p = .826

Workload 50.9 (12.7) 51.3 (13.7) 43.9 (17.5) 1.05 p = .360

Likeability 6.88 (2.16) 7.5 (1.87) 6.58 (1.66) .790 p = .462

Intelligence 7.34 (2.03) 6.75 (1.72) 5.71 (1.22) 3.10 p = .057

∆ Trust 0.54 (0.60) 0.37 (0.68)
-0.77
(0.46)

3.81 p = .032

∆ Fluency 0.78 (0.90) 0.25 (0.58)
-0.23
(0.47)

7.23 p = .002

∆
Understanding 0.61 (0.62) 0.15 (0.58) 0.14 (0.69) 2.33 p = .112

perceived intelligence at the end of the study. In Study 2, we also utilize the Robot Self-

Efficacy Scale to measure a participant’s level of understanding [240] after each round.

For each metric, we employ an ANOVA comparing the three conditions: Simultaneous,

Greedy, and None. If there is a significant main effect, then we conduct a Tukey post-hoc

test. As stated in the main paper, we find that Simultaneous results in significantly increased

trust (p = .032) and team fluency (p = .002) ratings. Although not significant, we find

that participant’s understanding of the robot increased more in the Simultaneous condition

compared to None and Greedy. Also, participants perceived the Simultaneous feedback as

more intelligent than Greedy or None.

B.6 Additional Results from Study 3

Table B.4 lists the mean and standard deviations of the change in the embedding distance

and the subjective metrics between the Feedback and No Feedback conditions. Study
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3 employed the same subjective metrics as Study 2: trust, team fluency, understanding,

workload, likeability, and perceived intelligence. To compare between conditions, we

utilized either a one-tailed t-test, if the model passed normality and homoscedasticity

assumptions or a one-tailed Wilcoxon Signed Rank test, a non-parametric test. We employed

one-tailed tests because we hypothesized that the Feedback condition would be better on all

metrics (higher for change in embeddings, likeability, perceived intelligence, trust, fluency,

and understanding and lower for workload) than No Feedback.

The amount that a person’s embedding improved in the over-/under-correcting dimension,

∆ϵo/u, was significantly higher in the Feedback condition compared to No Feedback (p =

.006). Although not significant, the amount that a person’s embedding changed in the

anticipatory/delayed, ∆ϵa/d, dimension was an improvement in the Feedback condition

and got worse in the No Feedback condition. Additionally, the sum of these dimensions,

∆ϵo/u+a/d, was significantly improved in the Feedback condition compared to No Feedback

(p = .009).

In terms of subjective metrics, we find the Feedback condition to be significantly lower

in terms of workload compared the No Feedback condition (p = .039). Also, we find that

participant’s trust increased significantly more in the Feedback condition compared to No

Feedback (p = .019). We additionally find that participants’ perceived intelligence of the

robot is trending towards being significantly higher for the Feedback condition compared to

No Feedback (p = .081). Lastly, while not significant, participants’ perceived team fluency

and understanding increased more in the Feedback condition versus the No Feedback

condition.
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Table B.4: This table shows the mean, (standard deviation), and test statistics of the sub-
jective metrics, ∆ϵo/u+a/d, ∆ϵo/u, and ∆ϵa/d for Study 3. ∆ Trust, ∆ Fluency, and ∆
Understanding describe the change in Trust, Fluency, and Understanding respectively be-
tween the first and last round.

Feedback No
Feedback Test Statistic p-value

∆ϵo/u+a/d 0.17 (0.35) -0.05 (0.37) t(57.8) = 2.45 p = .009

∆ϵo/u 0.16 (0.28)
0.004
(0.19)

t(52.0) = 2.62 p = .006

∆ϵa/d 0.01 (0.36) -0.05 (0.33) t(57.3) = .724 p = .236

Workload 44.3 (15.5) 51.4 (15.3) t(58.0) = −1.79 p = .039

Likeability 7.14 (1.67) 7.24 (1.65) t(58.0) = −.233 p = .592

Intelligence 7.09 (1.14) 6.62 (1.40) t(55.7) = 1.42 p = .081

∆ Trust 0.79 (0.75) 0.39 (0.51) Z = −2.07 p = .019

∆ Fluency 0.49 (0.56) 0.31 (0.54) t(57.9) = 1.25 p = .108

∆
Understanding 0.49 (0.53) 0.42 (0.86) Z = −.790 p = .430
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(a) Difference between the embedding distance
at each round, ϵo/u, and the embedding distance

at round one, ϵ(1)o/u.

(b) Amount by which participants over-/under-
correct at each round minus the amount by which
a participant over-/under corrects in round one
as calculated by dynamic time warping.

(c) Difference between the embedding distance
at each round, ϵa/d, and the embedding distance

at round one, ϵ(1)a/d.

(d) Amount by which participants are anticipa-
tory/delayed at each round minus the amount
by which a participant is anticipatory/delayed in
round one as calculated by dynamic time warp-
ing.

Figure B.5: This figure shows the average distance of the embedding and the dynamic
time warping results for the over-/under-correcting dimension and anticipatory/delayed
dimension for Study 2.

176



(a) Calibration tasks 1-4 (b) Calibration Tasks 5-8 (c) Calibration Tasks 9-12

(d) Calibration Tasks 13-16 (e) Novel Task (f) Novel Task

(g) Novel Task

Figure B.6: This figure depicts the calibration tasks and novel tasks in the study. Fig-
ure B.6(a)-Figure B.6(d) show the calibration tasks. The car is the starting location and the
orange ball is the goal location. The rest of the objects in the scene are obstacles. Each line
represents one of the pre-recorded rollouts, which are a mix of successful and unsuccessful
trajectories. Figure B.6(e)-Figure B.6(g) show the environment for the novel tasks. There are
no rollout lines because the trajectories were dependent on participant input. The calibration
tasks are simpler, have less obstacles, and less turns than the novel tasks.
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B.7 Model Assumptions (Table B.5)
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Table B.5: This table lists the statistical models and tests utilized in our analysis. The
dependent variable (DV) and independent variable (IV) are specified for each model. We
tested for normality using the Shapiro-Wilk test. When the IV is categorical, we employed
Levene’s test for homoscedasticity, otherwise, we employed the Breusch-Pagan test. If the
model did not pass normality or homoscedasticity, then we used a non-parametric version of
the statistical test.

Study 1
DV IV Test Normality Homoscedasticity

ϵ
(i)
o/u

Cooperative, i = 1, 4 Friedman’s N/A N/A

ϵ
(i)
o/u

Adversarial, i = 1, 4 rANOVA p = .424 p = .149

ϵ
(i)
o/u

None, i = 1, 4 rANOVA p = .706 p = .856

DTW Round i Cooperative, i = 1, 4 Friedman’s N/A N/A

DTW Round i Adversarial, i = 1, 4 Friedman’s N/A N/A

DTW Round i None, i = 1, 4 Friedman’s N/A N/A

∆ϵo/u Condition ANOVA p = .547 p = .931

DTW Last Round Condition ANOVA p = .179 p = .855

Workload Condition ANOVA p = .598 p = .454

Likeability Condition ANOVA p = .770 p = .459

Intelligence Condition ANOVA p = .571 p = .632

∆Trust Condition ANOVA p = .907 p = .925

∆Team Fluency Condition ANOVA p = .457 p = .558

Study 2
DV IV Test Normality Homoscedasticity

ϵ
(i)
o/u+a/d

Simultaneous, i = 1, 5 rANOVA p = .092 p = .826

ϵ
(i)
o/u+a/d

Greedy, i = 1, 5 rANOVA p = .167 p = .723

ϵ
(i)
o/u+a/d

None, i = 1, 5 rANOVA p = .081 p = .194

∆ϵo/u+a/d Condition ANOVA p = .708 p = .614

∆ϵo/u Condition ANOVA p = .100 p = .448

∆ϵa/d Condition ANOVA p = .565 p = .589

Workload Condition ANOVA p = .573 p = .373

Likeability Condition ANOVA p = .752 p = .587

Intelligence Condition ANOVA p = .238 p = .453

∆Trust Condition ANOVA p = .290 p = .368

∆Team Fluency Condition ANOVA p = .091 p = .201

∆Understanding Condition ANOVA p = .782 p = .883

Study 3
DV IV Test Normality Homoscedasticity

Final Distance Condition Wilcoxon* N/A N/A

Average ϵo/u+a/d Spearman’s N/A N/A

Distance Correlation

∆ϵo/u+a/d Condition t-test* p = .578 p = .848

∆ϵo/u Condition t-test* p = .402 p = .058

∆ϵa/d Condition t-test* p = .193 p = .540

Workload Condition t-test* p = .814 p = .951

Likeability Condition t-test* p = .057 p = .557

Intelligence Condition t-test* p = .697 p = .416

∆ Trust Condition Wilcoxon* N/A N/A

∆ Team Fluency Condition t-test* p = .732 p = .293

∆ Understanding Condition Wilcoxon* N/A N/A

*Test is one-tailed.
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APPENDIX C

SAFE META ACTIVE LEARNING FOR DEEP BRAIN STIMULATION

C.0.1 DBS Domain

The input parameter space is one-dimensional and consists of the voltage amplitude (va).

The output space is a score quantifying memory, referred to as the discrimination score

(ds). The objective of this domain is to maximize discrimination area, which is defined as

da := ds ∗ va. More detail on this domain and the data on which the simulation is based can

be found at [18].

C.0.2 Definition of Information Gain

We define information gain, I , at time step t as the percent decrease in the error of the

objective as described in Equation C.1. e(t) is the error of the objective at time step t.

In the high-dimensional domain, e(t) is defined as the mean squared error of the model,

e(t) = 1
N

∑N
i−1(x

(i) − x̂(i))2. x is the ground truth state and x̂ is the state predicted by the

model. In the DBS domain e(t) is defined as the L1 norm of the predicted optimal parameter

and the ground truth optimal parameter (e(t) = ||da − d̂a||1). During offline training, the

ground truth can be obtained from the known model.

I(t+1) =
e(t) − e(t+1)

e(t)
(C.1)

C.0.3 Baseline Acquisition Functions

Maximizing Diversity

We compare our method to the acquisition function, maximizing diversity, presented by [33].

Here, u(i) and x(i) are states and actions that the robot has previously experienced, and f is
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the current dynamics model.

u∗ =u∈U

N∑
i=1

u− u(i)1 + βT̂ψ (x, u)− x(i)1 (C.2)

Maximizing Uncertainty

This active learning metric described by [32] quantifies the uncertainty in the output of

the model for each training example as described in Equation C.3. Here, T̂z(u)) is the zth

dynamics model and T̄ is the average across models z.

u∗ =u∈U
1

Z

Z∑
z=1

T̄ − T̂z(u))1 (C.3)

C.0.4 Additional Details on Mixed-Integer Linear Program Formulation

In this section we provide additional details on the linearization of our probability constraints

and objective function for integration into a linear programming formulation.

Dynamics Model Representation

In practice, in the high-dimensional domain we find that T̂ψ can be represented as a single-

layer perceptron (i.e. linear regression) which advantageously is computationally efficient in

domains that require fast computation times. We adopt a multi-layer perceptron with ReLU

activations in the DBS domain. Our inferred dynamics therefore evolve according Γ. A

describes the evolution of a state with no input, B the change in the state due to an action at

time t, u⃗(t), and I is the identity matrix.
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X⃗(t+1:t+T ) = βx⃗(t) + ΓU⃗ (t:t+T ) (C.4)

β =

[
A2 A3 . . . AT

]
(C.5)

Γ =



AB B 0 0 . . . 0

A2B AB B 0 . . . 0

...
. . .

AT−1B AT−2B AT−3 . . . . . . B


(C.6)

Linearization of Probability Constraints

To include our safety constraints in a mixed-integer linear programming formulation, we

remove the non-linearities via conservative assumptions and other techniques. Our safety

constraints are defined in Equation C.7 and the dynamics evolve according to equations

Equation C.4-Equation C.6. d represents the dth row and j represents the columns.

∥∥∥Φ−1(1− ϵd)
√∑

j

σ2
d,jx

(t)2

j +
∑
j

σ
2

d,jU
(t:t+T )2

j + ΓU⃗ (t:t+T )2 −∆
(t:t+T )
d

∥∥∥
1
< rd (C.7)

The following conservative assumption is made to linearize the sum of squares in

Equation C.7.

0 ≤
√∑

j

σ2
d,jx

2
j ≤

∑
j

σd,j|xj| (C.8)

We utilize the binary decision variable, δϵ ∈ {0, 1} as a probability selector variable

to linearize the absolute value in Equation C.7. M represents a large positive number and
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Γ̄ is the point estimate of the dynamics. This linearization technique combined with the

conservative assumption in Equation C.8 results in the following linear equations (Equa-

tion C.9-Equation C.11) which can be integrated into a mixed-integer linear programming

formulation. E is the set of “probability levels”, e.g., E = {0.75, 0.8, ...} where minE

defines the minimum enforced probability of safety.

−Mδϵ − Φ−1(1− ϵp)
∑
j

σd,jŨ (t:t+T )
j − Γ̄U⃗ (t:t+T ) < r⃗d +∆

(t:t+T )
d +

∑
j

σd,j|x(t)j |

(C.9)

−Mδϵ + Φ−1(1− ϵp)
∑
j

σd,jŨ (t:t+T )
j + Γ̄U⃗ (t:t+T ) < rd −∆

(t:t+T )
d −

∑
j

σd,j|x(t)j |

(C.10)∑
p∈E

δϵp,d = |E| − 1,∀d ∈ D (C.11)

Variance Estimation

We compute uncertainty of our network via bootstrapping. We follow the method proposed

in [241] and randomly redraw bootstrap training samples with replacement from our set

of training data. This technique has been verified by [242] to be an effective method for

approximating the uncertainty of neural networks. The components of σ are calculated

according to Equation C.12. Here x̄ is the average of the bootstrapped networks and x(b)d,j a

single bootstrapped network. B is the number of bootstrapped networks.

σd,j =

√∑B
b=1(x̄d,j − x

(b)
d,j)

2

B − 1
(C.12)
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Linearization of Q-Function

Our Q-function includes a non-linear relu activation function which is linearized to be

included in the mixed-integer linear programming formulation. Equations Equation C.13-

Equation C.15 define the equations for a neural network with relu activation. ξ =
[[
U (t:T )

], [
Z⃗
]]

is the input to the Q-function and ω
(l)

j,i is the connection between neurons j and i between

layers l and l + 1.

Q(U⃗ (t:T ), Z⃗) =
∑
j

ω
(2)

j,d o
(2)

j,∀d ∈ D (C.13)

o
(2)

i =
∑
j

ω
(1)

j,i o
(1)

j1
(

o
(1)

j≥0
),∀i (C.14)

o
(1)

i =
∑
j

ω
(0)

j,iξ
(t)
j (C.15)

This formulation is linearized in Equation C.16-Equation C.18. ki ∈ {0, 1} is a binary

indicator variable and M represents a large positive number.

Mki −M +
∑
j

ω
(0)

j,iξ
(t)
j ≤ 0 ≤Mki +

∑
j

ω
(0)

j,iξ
(t)
j (C.16)

∑
j

ω
(0)

j,iξ
(t)
j −M ≤ o

(1)
i ≤

∑
j

ω
(0)

j,iξ
(t)
j +Mki (C.17)

M −Mki ≥ o
(1)

i ≥ 0,∀i (C.18)

Linearization of “resetting” term

In practice, we find that taking a final, “resetting” action at time t + T by adding z3 =

x⃗(T ) − x⃗r to minimize the distance between the aircraft’s state and x⃗r helps to ensure

the aircraft does not loiter along the boundary of safe operation until where a random

perturbation could result in failure the aircraft. We linearize the resetting term in our

objective function, i.e. the difference between our designated safe state, x⃗r and the final
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state xT by maximizing −(z+ + z−) subject to the constraint in Equation C.19. z+ and z−

are both positive continuous variables.

x⃗T − x⃗r = z+ − z− (C.19)

z+, z− > 0 (C.20)

Linearized Objective

The resultant linearized objective is defined in Equation C.21. In the DBS domain λ3 is set

to 0.

U⃗ (t:T )∗ =
U⃗(t:T )∈U⃗(t:T )

(
λ1

H∑
j

( ω
(2)

j,d ∗ o
(2)

j − Q̄θ(·, Z⃗))

+ λ2
∑
p∈E

(1− δϵp,d)ϵp,d − λ3(z−d + z+d )
)

(C.21)

C.1 Safety

The baselines used in the DBS domain did not have built in safety guarantees. Therefore,

when comparing against these baselines, we removed the safety constraints in our algorithm

to make the comparison fair.

LAL [94], however, is not an inherently safe method of active learning. To fairly compare

this baseline to our method in the high-dimensional domain, we simulate the possible actions

that can be selected by LAL and discard those that are not safe (i.e., the actions that take the

aircraft out of the cylinder of safety). Therefore, LAL can only select an action considered

safe by our definition of safety.
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C.1.1 Sensitivity Analysis

Our Diversity Uncertainty

Approach [33] [32]

Parameter Setting 5 30 1 2 3 4 5 2 3 4
Average Information

Gain (SD)
.196
(.37)

.39
(.23)

.29
(.44)

.30
(.30)

.31
(.30)

.26
(.22)

.26
(.22)

.22
(.45)

.25
(.17)

.33
(.17)

Average Computation
Time (s) (SD)

.12
(.03)

.146
(.01)

.17
(.03)

.18
(.04)

.19
(.04)

.21
(.04)

0.22
(.03)

.16
(.04)

.21
(.05)

.26
(.05)

Table C.1: Average information gain for our approach compared to that by [33] and [32].
We vary the number of previous samples in the diversity maximization problem from one to
five and the number of bootstrapped models from two to four in maximizing uncertainty
heuristic. We vary the number of hidden neurons in our meta-learned Q-function. We bold
the setting of our algorithm that outperforms our baselines across all hyperparameter settings
tested.

To robustly evaluate our method compared to the baselines, we vary the hyperparameters

of the approach by [33] for maximizing diversity and our meta-learned function to show that

our function is robust and is still superior despite changes in hyperparameters. The results

of this hyperparameter sweep are shown in Table C.1. The hyper-parameter we vary for

maximizing diversity is the number of previous training samples that we compare to. The

information gain increases as the number of samples increases up to a point at which the

selected sample tends to converge to the mean of the previously collected samples, causing

the information gain to fall. We vary the number of hidden neurons in our Q-function as

the hyper-parameter of interest as it governs the trade-off between computational speed and

function approximation power.

In our approach, the addition of a hidden neuron adds an additional integer variable,

resulting in an increase in computation time as demonstrated in Table C.1. However, an

addition of 25 neurons only increase the computation time by 3.7% and provides a 50% in-

crease in information gain. In comparison, [33]’s approach results in increase in information

gain 4% while trading off a 6% loss in computation time. Likewise, increasing the number

of bootstrapped models in [32]’s approach results in a 35% increase in information gain and
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a 37.5% increase in computation time. Therefore, in our approach we are able to gain more

information without large increases in computation time.

C.1.2 Additional Results

We present results for each damage condition in the high-dimensional domain comparing

our approach to the baseline acquisition functions diversity [33] and epistemic uncertainty

[32]. Our approach outperforms the baselines for each damage condition.

C.1.3 Hyperparameters

The hyperparameters employed for each domain are listed in the Table C.2. We show the

learning rates for each domain which were determined via experimentation to be effective

values. The size of the LSTM hidden layer and each of the two layers of the Q-function is

also presented. τ is the soft update coefficient for updating the target network.

DBS

Learning Rate 1e-4

LSTM Hidden Layer Size 20

Q function Layer 1 Size 64

Q function Layer 2 Size 16

Soft Update (τ ) .001

Exploration noise Gaussian

Table C.2: Hyperparameters for the DBS and high-dimensional domains.
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