
INTERPRETABLE ARTIFICIAL INTELLIGENCE FOR PERSONALIZED
HUMAN-ROBOT COLLABORATION

A Dissertation
Presented to

The Academic Faculty

By

Rohan Paleja

In Partial Fulfillment
of the Requirements for the Degree

Doctor of Philosophy in the
School of Mechanical Engineering

Institute for Robotics & Intelligent Machines

Georgia Institute of Technology

December 2023

© Rohan Paleja 2023

INTERPRETABLE ARTIFICIAL INTELLIGENCE FOR PERSONALIZED
HUMAN-ROBOT COLLABORATION

Thesis committee:

Dr. Matthew Gombolay
School of Interactive Computing
Georgia Institute of Technology

Dr. Harish Ravichandar
School of Interactive Computing
Georgia Institute of Technology

Dr. Seth Hutchinson
School of Interactive Computing
Georgia Institute of Technology

Dr. Dorsa Sadigh
Computer Science Department
Stanford University

Dr. Peter Stone
Computer Science Department
The University of Texas at Austin

Date approved: August 16, 2020

It’s the questions we can’t answer that teach us the most. They teach us how to

think. If you give a man an answer, all he gains is a little fact. But give him a

question and he’ll look for his own answers.

Patrick Rothfuss, The Wise Man’s Fear

ACKNOWLEDGMENTS

I am incredibly grateful for the support and mentorship from my advisor,

Dr. Matthew Gombolay. His endless support, continual guidance, and amazing

mentorship have been absolutely essential in the preparation and completion of

this work. Moreover, he has helped me grow as an academic and a person. Thank

you!

I would like to thank the members of my thesis committee for their help in

preparation of this work – Harish Ravichandar, whose mentorship, advice, and

discussion have been incredibly beneficial in growing this work to what it is, Dorsa

Sadigh, who helped to broaden my view through her questions during my thesis

proposal and related work, Peter Stone, who always has great advice, and Seth

Hutchinson, who inspires me to be better and challenges me through his difficult

line of questioning.

To the family, Roshni, Rahul, Mom, Dad, without your support, I would not

have made it this far. To all my amazing friends in the CORE Robotics Lab, Esi,

Zac, Andrew, Mariah, Erin, Prad, Manisha, and everyone else I’ve interacted with,

thank you for all the fruitful discussion, fun parties, and amazing experiences. To

all my co-authors, thank you for all your support, discussion, and contribution.

The author gratefully acknowledges the support for this work offered by MIT

Lincoln Laboratory, Sandia National Laboratories, the Office of Naval Research,

Lockheed Martin, and Konica Minolta. Any views and conclusions contained

herein are those of the author, and do not necessarily represent the official positions,

express or implied, of the funders.

iv

TABLE OF CONTENTS

Acknowledgments . iv

List of Tables . xiii

List of Figures . xv

Summary . xxi

Chapter 1: Introduction . 1

1.1 Thesis Statement . 6

1.2 The Importance of Communication in Multi-Agent Systems 7

1.2.1 Goal . 8

1.2.2 Approach . 9

1.2.3 Results . 9

1.3 Accounting for Heterogeneity in Multi-Agent Systems 11

1.3.1 Goal . 12

1.3.2 Approach . 12

1.3.3 Results . 13

1.4 Inferring Behavioral Policies of Heterogeneous Human Decision-
Makers . 14

1.4.1 Goal . 15

v

1.4.2 Approach . 16

1.4.3 Results . 17

1.5 Generating Interpretable Robot Policies 18

1.5.1 Goal . 19

1.5.2 Approach . 20

1.5.3 Results . 21

1.6 The Utility of Explainable AI in Human-Robot Collaboration 22

1.6.1 Approach . 22

1.6.2 Results . 23

1.7 Reducing Rigidity in Human-Robot Collaboration 24

1.7.1 Approach . 25

1.7.2 Results . 26

Chapter 2: Related Work . 28

2.1 Multi-Agent Coordination . 28

2.2 Inferring a Model of Human Behavior 31

2.3 Interpretable Policy Representations 32

2.3.1 Explainable AI . 32

2.3.2 Human-Machine Teaming . 35

Chapter 3: Preliminaries . 37

3.1 Markov Decision Process . 37

3.2 Partially Observable Markov Game . 37

3.3 Reinforcement Learning: Policy Gradients 38

vi

3.4 Actor-Critic (AC) Methods . 38

3.5 Graph Neural Networks . 38

3.6 Differentiable Decision Trees (DDTs) 39

Chapter 4: The Importance of Communication in Multi-Agent Coordination 41

4.1 Introduction . 41

4.2 Method . 43

4.2.1 Overview . 44

4.2.2 The Scheduler . 46

4.2.3 The Message Processor . 48

4.2.4 Training . 49

4.3 Evaluation Environments . 51

4.3.1 Predator-Prey . 51

4.3.2 Traffic Junction . 52

4.3.3 Google Research Football . 54

4.4 Results and Discussion . 56

4.4.1 Predator-Prey . 56

4.4.2 Traffic Junction . 58

4.4.3 Google Research Football . 59

4.4.4 Communication Efficiency . 61

4.4.5 Discussion . 62

4.5 Physical Robot Demonstration . 63

4.6 Conclusion . 63

vii

Chapter 5: Multi-Agent Coordination for Heterogeneous Agents 66

5.1 Introduction . 66

5.2 Problem Formulation . 69

5.3 Method . 70

5.3.1 Communication Problem Overview 71

5.3.2 Heterogeneous Communication Model 72

5.3.3 Binarized Communication Channels 73

5.3.4 Heterogeneous Policy Network (HetNet) 76

5.4 Training and Execution . 76

5.4.1 Multi-agent Heterogeneous Actor-Critic 76

5.4.2 Critic Architecture Design for HetNet 77

5.5 Empirical Evaluation . 78

5.5.1 Evaluation Environments . 78

5.5.2 Baselines . 81

5.5.3 Results, Ablation Studies, and Discussion 82

5.6 Conclusion . 87

Chapter 6: Inferring Decision-Making Behavior Across Heterogeneous Users 89

6.1 Introduction . 89

6.2 Personalized and Interpretable Neural Trees 91

6.2.1 Algorithm Overview . 91

6.2.2 Personalized Neural Tree . 93

6.2.3 Interpretability via Discretization 97

viii

6.2.4 Training and Runtime Procedure 98

6.3 Evaluation Environments . 100

6.4 Results and Discussion . 102

6.5 Hyperparameters and Architecture Details 104

6.5.1 Synthetic Low-Dimensional Environment 104

6.5.2 Synthetic Scheduling Environment 106

6.5.3 Taxi Domain . 108

6.6 Interpretable Models . 110

6.7 Interpretability User Study . 110

6.7.1 User Study Results and Discussion 111

6.8 Sensitivity Analysis of PNTs . 112

6.9 Conclusion . 113

6.10 Broader Impact . 114

Chapter 7: Generating Cobot Policies via Interpretable Reinforcement Learn-
ing . 116

7.1 Introduction . 116

7.2 Weaknesses of Prior Work with Differentiable Decision Trees 120

7.2.1 Conversion of a DDT to a DT 120

7.3 Method . 122

7.3.1 ICCT Architecture . 122

7.3.2 ICCT Key Elements . 124

7.4 Universal Function Approximation . 133

7.5 Model Robustness Verification . 135

ix

7.6 Environments . 138

7.7 Results . 140

7.7.1 Baselines . 141

7.7.2 Discussion . 143

7.8 Qualitative Exposition of ICCT Interpretability 145

7.9 Ablation: Interpretability-Performance Tradeoff 147

7.10 Ablation: Differentiable Argument Max and Gumbel-Softmax 148

7.11 Physical Robot Demonstration . 150

7.12 Case Studies on Complex Driving Domain Grounded in Realistic
Lane Geometries . 150

7.12.1 The I-94 Domain . 150

7.12.2 I-94 Results . 152

7.12.3 The I-280 Domain . 153

7.12.4 I-280 Results . 154

7.13 Interpretability User Study . 154

7.13.1 User Study Results . 157

7.14 Conclusion . 158

7.15 Limitations and Future Work: . 159

Chapter 8: The Utility of Explainable AI in Ad Hoc Human-Machine Teaming164

8.1 Introduction . 164

8.2 Human-Machine Teaming Domain . 167

8.2.1 Human-Machine Collaborative Task 169

x

8.3 Study 1: Relationship Between Explanations and Situational Aware-
ness . 171

8.3.1 Situational Awareness . 171

8.3.2 Experiment Conditions and Procedures 173

8.3.3 Results . 174

8.4 Study 2: Situational Awareness in Ad Hoc Human-Machine Teaming 175

8.4.1 Experiment Conditions . 175

8.4.2 Procedure . 177

8.4.3 Results . 178

8.5 Discussion . 181

8.6 Conclusion . 183

Chapter 9: Team Development in Human-Machine Teaming 185

9.1 Introduction . 185

9.2 Preliminaries . 187

9.3 Teaming with Real Humans . 190

9.4 Methodology . 192

9.4.1 Interpretable Discrete Control Trees 192

9.4.2 Teammate Policy Modification 196

9.5 Human-Subjects Study . 197

9.5.1 Results . 201

9.6 Call-to-Action . 205

9.7 Conclusion . 206

xi

Chapter 10:Limitations and Future Work . 210

10.1 Limitations . 210

10.1.1 Multi-Agent Reinforcement Learning 210

10.1.2 Interpretability of Tree-Based Models 211

10.1.3 Evaluating the Utility of Our Systems 212

10.2 Future Work . 212

10.2.1 Communicating with Humans 212

10.2.2 Interacting with Interpretable Models 213

Chapter 11:Conclusion . 215

11.1 The Importance of Communication in Multi-Agent Systems 215

11.2 Modeling Heterogeneity in Multi-Agent Systems 216

11.3 Inferring Personalized Behavioral Policies of Heterogeneous Human
Decision-Makers . 217

11.4 Generating Interpretable Robot Policies 217

11.5 The Utility of Explainable AI in Human-Robot Collaboration 218

11.6 Team Development in Human-Robot Collaboration 219

References . 220

xii

LIST OF TABLES

4.1 This table presents the number of steps taken to complete an episode
at convergence in Predator-Prey. 56

4.2 This table presents the success rate at convergence in Traffic Junction. 58

4.3 This table displays the success rate and average steps taken to finish
an episode in GRF. 59

4.4 Communication efficiency measured as the performance improve-
ment with communication divided by graph density. 62

5.1 Reported results are Mean (± Standard Error (SE)) from 50 evaluation
trials. For all tests, the final training policy at convergence is used
for each method. As shown, HetNet outperforms all baselines in all
three domains. 81

6.1 A comparison of heterogeneous LfD approaches. Our method achieves
superior performance. Interpretable approaches are shown in the
right-hand table. 102

7.1 In this table, we display the results of our evaluation. For each eval-
uation, we report the mean (± standard error) and the complexity
of the model required to generate such a result. Our table is broken
into three segments, the first containing equally interpretable ap-
proaches that utilize static distributions at their leaves. The second
segment contains interpretable approaches that maintain linear con-
trollers at their leaves. The ordering of methods denotes the relative
interpretability. The third segments displays black-box approaches.
We bold the highest-performing method in each segment, and break
ties in performance by model complexity. We color table elements in
association with the number of parameters and performance. Red-
dish colors relate to a larger number of policy parameters and lower
average reward. 139

xiii

7.2 This table shows a performance comparison between ICCTs utilizing
our proposed differentiable argument max function (diff argmax(·)
in Algorithm Algorithm 8), and a variant of ICCTs utilizing the
Gumbel-Softmax function (fuzzy and crisp). Across each approach,
we present our findings across Lunar Lander and Lane-Keeping
and include ICCTs with fully parameterized sub-controllers (ICCT-
complete) and sparse sub-controllers. 149

7.3 This table shows our findings within the I-94 domain. Environment
returns are the average of ten evaluation episodes after training has
been completed. The remaining metrics are computed through a
summation over occurrences of the respective phenomena across
the ten evaluation episodes. 151

9.1 An overview of the characteristics across different IV1 factors. 199

9.2 Sentiment Analysis over User-Specified AI Characteristics, present-
ing positive, neutral, and negative sentiment. We see a positive
correlation between sentiment and performance. 206

xiv

LIST OF FIGURES

1.1 This figure shows an overview of my thesis. In chapter 4 and chap-
ter 5, I utilize graph-based architectures to effectively model and
facilitate communication in multi-agent systems. In chapter 6 and
chapter 9, I allow for greater personalization in robotic counterparts.
In chapter 7 and chapter 8, we facilitate directional communica-
tion between robots and humans through the use of Explainable AI
techniques. These components together help to facilitate the de-
velopment of shared mental models within a team and result in
high-quality human-robot collaboration. 7

1.2 The use of personalized embeddings to help to capture the homo-
and heterogeneity across human demonstrations. 16

4.1 This figure displays the framework of our multi-agent graph-attention
communication protocol. 44

4.2 This figure displays the details and components of the Scheduler. . . 46

4.3 This figure displays the average steps taken to finish an episode
as training proceeds in each level of the Predator-Prey environment.
The shaded regions represent standard error. A lower value for steps
taken on the vertical axis is better. 50

4.4 The visualization of the 10-agent Predator-Prey task. The preda-
tors (in red) with limited visions (light red region) of size one are
searching for a randomly initialized fixed prey (in blue). 52

4.5 The visualization of the hard level Traffic Junction task. This task
consists of four, two-way roads on a 18 × 18 grid with eight arrival
points, each with seven different routes. Each agent is with a limited
vision of size 1. 53

xv

4.6 The visualization of 3 vs. 2 in Google Research Football. The five
people shown in this figure are three offending players, one defend-
ing player and the goalie (left to right). 54

4.7 This figure displays the average steps taken to finish an episode
as training proceeds in each level of the Predator-Prey environment.
The shaded regions represent standard error. A lower value for steps
taken on the vertical axis is better. 57

4.8 This figure displays the average number of epochs for convergence
in Traffic Junction with standard error bars. 58

4.9 This figure displays the success rate in GRF as training proceeds.
As shown, our method achieves the highest performance, acheiving
near-perfect success at scoring. 59

4.10 This figure displays a demonstration of our algorithm on physical
robots on the Robotarium platform. The display shows a 3 vs. 2
soccer scenario, with blue agents as the attackers, and red agents as
defenders. 63

5.1 Overview of our multi-agent heterogeneous attentional communica-
tion architecture in a CTDE paradigm. At each time point t = t0, each
agent j of class i generates a local embedding from its own inputs,
by passing its input data through class-specific preprocessing units
(i.e., a CNN or a fully-connected NN) and an LSTM cell. Each agent
then sends the embedding to a class-specific encoder-decoder net-
works to generate a binarized message, m jk

t , from its local neighbor k.
The message information is decoded and leveraged by the receiving
agent to compute the action probabilities as its policy output. 70

5.2 The sender and receiver phases of the feature update process in a
HetGAT layer for one agent, j, of class i. 74

5.3 Average steps taken (± SE) by each method across episodes and three
different random seeds as training proceeds. HetNet outperforms
all baselines in both domains. 83

5.4 Communicated bits per round of communication vs. performance
in PCP for different methods. HetNet facilitates binarized messages
among agents which requires significantly less CB as compared to
real-valued baselines. 84

xvi

5.5 Analyzing HetNet’s performance with and without communication
(Figure 5.5a) and across different binary message dimensions (Fig-
ure 5.5b) in the PCP domain. Communication policy learned by Het-
Net improves the cooperativity among agents and the performance
improves with larger message sizes. Figure 5.5c depicts results for
analyzing HetNet’s ability to scale to different number of agents. As
shown, HetNet-Binary can successfully scale to different sizes of the
composite team. 85

5.6 Learning curves during training as well as the test results (average
number of steps taken) for final policies learned by centralized, per-
class and per-agent critic architectures in the PCP domain. 87

6.1 The PNT architecture (left) displaying decision nodes, yi, with evalu-
ation equations, leaf nodes, k, with respective weights pk, and output
equation describing the calculation of the action probability mass
function. An overview of our training algorithm (right) displaying
the input/output flow of the policy and the posterior alongside their
respective update equations. 92

6.2 The findings of our user study. We find significance for hypotheses
H1, H2, and H3. 109

6.3 This figure depicts the learned PNT model after translation to an
interpretable form. 110

6.4 Sensitivity analysis in the synthethic scheduling environment. 113

7.1 The ICCT framework (left) displays decision nodes, both in their
fuzzy form (orange blocks) and crisp form (blue blocks1), and sparse
linear leaf controllers with pointers to sections discussing our contri-
butions. A learned representation of a high-performing ICCT policy
in Lunar Lander (right) displays the interpretability of our ICCTs.
Each decision node is conditioned upon only a single feature and
the sparse linear controllers (to control the main engine throttle and
left/right thrusters) are set to have only one active feature. 120

xvii

7.2 This figure displays the process of differentiable crispification, in-
cluding node crispification (Algorithm Algorithm 6) and outcome
crispification (Algorithm Algorithm 7). The node crispification spar-
sifies the weight vector, w⃗i, and chooses the most impactful feature.
The outcome crispification enforces a “hard” decision at the node
rather than a “soft” decision, so the computation proceeds along one
branch. Both operations are differentiable through the use of the
straight-through trick. 128

7.3 This figure displays the process of decision node crispification and
decision outcome crispification across the Examples within subsub-
section 7.3.2 and subsubsection 7.3.2. 130

7.4 A Learned ICCT in Lunar Lander . 145

7.5 In this figure, we display the interpretability-performance tradeoff
of our ICCTs with respect to the number of active features within
our linear sub-controllers (Figure 7.5a) and the number of tree leaves
(Figure 7.5b) in Lunar Lander. Within each figure, we display the ap-
proximate Pareto-Efficiency Curve and denote the reward required
for a successful lunar landing as defined by [69]. 146

7.6 This figure displays the average running rollout rewards of six meth-
ods for the ablation study during training. The results are averaged
over 5 seeds, and the shadow region represents the standard error. . 148

7.7 In this figure, we display our ICCTs controlling a vehicle in a 14-
car physical robot demonstration within a Figure-8 traffic scenario.
Active nodes and edges are highlighted by the right online visualiza-
tion, where si represents the speed of vehicle i, and pi represents the
position of vehicle i. We include a full video, including an enlarged
display of our ICCT at https://sites.google.com/view/icctree 149

7.8 This figure illustrates the I-94 domain. The red arrows denote the
traffic flow directions. There are four traffic inflows: one highway
inflow (leftmost) and three ramp inflows. There are also four traffic
outflows: highway outflow (rightmost) and three ramp outflows. . . 151

7.9 Figure 7.9a presents the overview of the I-280 domain. The ego
vehicle is tasked to join the highway from the ramp and then exit
the environment at the end of the highway. The ego vehicle’s en-
trance ramp and exit is zoomed in and presented in Figure 7.9b and
Figure 7.9c, respectively. 160

xviii

https://sites.google.com/view/icctree

7.10 This figure compares the performance of ICCT agents and MLP
agents in the I-280 domain. The environment returns for each model
are displayed through a mean and standard deviation across ten
evaluation episodes. 161

7.11 This figure shows the comparisons of accuracy score (left), time spent
(middle), and subjective interpretability rated (right) across the three
models in the I-94 user study. ∗ denotes a significant difference of
p < .05. ∗∗∗ denotes a significant difference of p < .001. 161

7.12 This figure shows the accuracy score (left) and time spent (right)
changes in three repeats trials across the three models in the user
study. 161

7.13 This figure shows the comparisons of accuracy score (left), time spent
(middle), and interpretability rated (right) with or without context
across the three models in the user study. 162

7.14 This figure shows the comparison of results between the Multi-Lane
Ring domain and the I-94 domain across the three models in the
user study. ∗ denotes a significant difference of p < .05. ∗∗∗ denotes a
significant difference of p < .001. 163

8.1 This figure displays an overview of our experimentation in relation
to the Observe-Orient-Decide-Act (OODA) loop. On the left, we
display the human-machine teaming interaction with both agents
taking actions and the cobot outputting a policy explanation to the
human teammate. On the right-hand side, we display the two ques-
tions assessed by our human-subjects experiments. 166

8.2 This figure displays a sample gameplay image where the cobot is
augmented with the decision-tree explanation. Note this shows
IV1:SA1-2-3 condition and IV2:Display Cobot Inference of Human
Policy and Cobot Policy in section 8.4. 169

8.3 This figure represents the findings of Study 1 (a) and Study 2 (b-
c). Figure 8.3a displays the SAGAT scores across SA levels and xAI
abstractions. Figure 8.3b and Figure 8.3c display the performance
residuals (inverse scale: lower is better) with xAI-based support
across policy information levels with respect to the no-explanation
condition for novices (Figure 8.3b) and experts (Figure 8.3c). 176

xix

8.4 This figure represents the normalized subjective findings of Study
2. We see that all users find cobots with decision-tree xAI-based
support to maintain more positive teammate traits, maintain a better
working alliance, and are perceived as more intelligent than cobots
without xAI-based support. Users also perceive both cobots with
status xAI-based support and those with decision-tree xAI-based
support as more close than cobots without xAI-based support. 180

9.1 Case Study in Human-Machine Teaming with Gameplay Images
with Different Teaming Strategies. It is clear that the models pro-
duced are not robust to multiple strategies of play and can result in
agents performing nonsensical behavior (stuck in place). 191

9.2 In this figure, we provide a high-level overview of the steps to pro-
duce a collaborative AI teammate with an interpretable policy rep-
resentation and the proposed policy modification scheme evaluated
in our user study. 195

9.3 General Overview of the Human-Led Policy Modification GUI 196

9.4 This figure depicts each domain that we will be using in our experiment.200

9.5 This figure displays gameplay scores from participants over different
iterations (Left) and aggregate findings (Right). 209

xx

SUMMARY

Collaborative robots (i.e., “cobots”) and machine learning-based virtual agents

are increasingly entering the human workspace with the aim of increasing pro-

ductivity, enhancing safety, and improving the quality of our lives [1, 2]. These

agents will dynamically interact with a wide variety of people in dynamic and

novel contexts, increasing the prevalence of human-machine teams in healthcare

[3], manufacturing [4], and search-and-rescue [5]. Within these domains, collab-

orators must have aligned objectives and maintain awareness over other agents’

behaviors to avoid potential accidents. It is critical that AI agents are able to

understand the similarities and differences across users and provide users with

information to support mental model alignment.

In my thesis, I first study the nature of collaboration in simulated, large-scale

multi-agent systems. Specifically, I explored techniques that utilize context-based

communication among decentralized robots in partially observable settings and

found that utilizing targeted communication (chapter 4) and accounting for team-

mate heterogeneity (chapter 5) is beneficial in generating effective coordination

policies [6, 7]. Next, I transition to human-machine systems and develop a

data-efficient, person-specific, and interpretable tree-based apprenticeship learning

framework (chapter 6) to enable cobots to infer and understand decision-making

behavior across heterogeneous users [8, 9]. Building on this foundation, I extend

neural tree-based architectures to support learning interpretable control policies

for robots via reinforcement learning [10]. This advancement not only allows end-

users to inspect learned behavior models but also provides developers with the

means to verify control policies for safety guarantees (chapter 7). Subsequently, I

characterize the utility of Explainable AI (xAI) techniques, which offer the promise

of enhancing team situational awareness and shared mental model development

xxi

[11] in human-machine teaming (chapter 8). Lastly, I enable end-users to interac-

tively modify interpretable learned policies via a graphical user interface to sup-

port team development within a repeated human-machine collaboration paradigm

(chapter 9).

The contributions of this thesis are as follows:

• Creation of a novel communication-based multi-agent reinforcement learn-

ing (MARL) architecture: I develop Multi-agent Graph Attention Communi-

cation (MAGIC) [6], a MARL architecture that utilizes targeted communica-

tion (agents actively determine “when” and “whom” with to communicate)

in learning high-performance team coordination strategies among decentral-

ized agents within partially observable settings. Team members develop an

implicit shared mental model via information sharing and simulated experi-

ence with collaborators.

• Creation of a MARL architecture to support heterogeneous robot teams: I

develop Heterogeneous Policy Networks (HetNet) [7], a MARL architecture

that effectively models heterogeneous robot teams (i.e., composed of agents

with different state, action, and observation spaces). Through HetNet, we

facilitate communication across agents, utilizing a differentiable encoder-

decoder channel to account for the heterogeneity of inter-class messages,

“translating” the encoded messages into a shared, intermediate language

among agents of a heterogeneous robot team.

• Development of an interpretable, person-specific Learning from Hetero-

geneous Demonstration (LfHD) framework: I propose a personalized and

interpretable apprenticeship scheduling algorithm that infers an interpretable

representation of all human task demonstrators by extracting decision-making

criteria via an inferred, personalized embedding non-parametric in the num-

xxii

ber of demonstrator types [8, 9]. Through this technique, cobots can au-

tonomously gain a personalized, implicit understanding of their human

teammate’s decision-making behavior, allowing for greater personalization

in robotic counterparts.

• Development of a tree-based model that can be optimized via modern,

gradient-based, reinforcement learning approaches to produce high-performing,

interpretable policies: I introduce Interpretable Continuous Control Trees

(ICCTs), an interpretable reinforcement learning architecture that allows for

direct optimization in a sparse decision-tree-like representation [10]. Our

novel architecture is a strong step forward in producing safe and verifiable

machine-learning-based autonomous systems that are ready for real-world

deployment and interaction with humans.

• Characterization of the utility of Explainable AI (xAI) in human-machine

teaming: I conduct two novel human-subject experiments quantifying the

benefits of deploying xAI techniques within a human-machine teaming sce-

nario. I assessed the ability for human teammates to gain improved situa-

tional awareness through the augmentation of xAI techniques and quantified

the subjective and objective impact of xAI-supported SA on human-machine

team fluency [11]. Importantly, these findings emphasize the importance of

developing the “right” xAI models for human-machine collaboration and the

optimization methods to support learning these xAI models.

• Identify a gap in the quality of collaborative agents produced via learning-

based techniques and explore xAI-based techniques as a potential solu-

tion to improving human-machine collaboration performance. We display

that state-of-the-art collaborative agents within the field of human-machine

teaming are rigid and focus on enhancing individualized contribution of the

xxiii

machine agent rather than effective collaboration across the human-machine

team. To absolve the gap in performance between individualized coordina-

tion and successful human-machine collaboration, we explore utilizing inter-

pretable models alongside a Graphical User Interface that allows end-users to

interact with interpretable robot policies trained via reinforcement learning.

This GUI allows end-users to “go under-the-hood” of machine learning mod-

els and tune affordances or interactively and iteratively reprogram behavior.

Importantly, we find evidence that users teaming with white-box agents sup-

ported by interactive modification can outperform teaming with white-box

agents alone.

xxiv

CHAPTER 1

INTRODUCTION

Robotics research has made incredible strides in recent years, providing benefits

across a wide variety of applications, such as manufacturing [12], search-and-rescue

[13], and healthcare. The creation of these intelligent machines in recent years has

enabled the possibility of human-robot collaboration, moving towards the promise

of combining the high-accuracy sensors and large computational capability of a

machine with the dexterity and creativity of humans. The vision for robots to

augment humans as collaborators has long been desired, tracing back to science

fiction decades ago, with robots such as R2-D2 or C-3PO working with Luke in Star

Wars or Rosey helping her family in the Jetsons. Human-Robot collaboration can

broadly be defined as any interaction where a human and robot must collaborate

to effectively achieve shared and/or individual objectives. Researchers in this

field are concerned understanding, designing, and evaluating robotic systems that

can collaborate well with humans [14]. This can range from proximate human-

robot collaboration [15], where we have robots and humans working in tandem to

assemble objects, to autonomous vehicles coordinating with human drivers [16] so

that all vehicles can safely reach their destination. This collaboration will be crucial

in increasing efficiency in production lines [17], reducing workload for healthcare

professionals by creating healthcare robot aides, and saving lives through rapid

and coordinated disaster response.

While collaborative robots (i.e., “cobots”) have appeared in real-world manu-

facturing [18, 19, 20], healthcare [21, 22], search-and-rescue [5], and military [23]

applications in the past, the “collaboration” has been highly predefined and con-

strained (e.g., robots will stop or slow down when humans are in the vicinity),

1

limiting the impact of such technologies. Effective collaboration has been very sig-

nificant in human history, allowing humans to build at incredible speed and scale,

and ultimately spearheading technological development and cultural growth. In

this thesis, we present and address several challenges to create effective collabora-

tion between humans and robots.

Human-robot collaboration can be conceptualized as a multi-agent system

where multiple agents must work together to achieve objectives. In this system,

there are several sources of partial observability that limit effective collaboration.

These can include sensory limitations, where a human is limited to their biological

senses, and a robot is limited to sensors that it is equipped with (where differ-

ent sensors may have associated strengths and weaknesses), and the inability to

understand a collaborator’s intent and/or world model (both a human’s mental

model and robot’s programming are black-box). In these cases, communication

is essential for successful coordination and resolving partial observability [24, 25].

Furthermore, high-performing human-human teams exhibit targeted communica-

tion, where human experts judiciously choose when to communicate and whom

to communicate with, communicating only when beneficial [26, 27, 28]. However,

as machines receive abundant information, it is unclear how these agents can de-

termine what to communicate, when to communicate, and whom to communicate

with. In other words, the process of generating a cohesive message that will benefit

the message receiver can be challenging. In the past, researchers have designed

hand-designed communication protocols, which are time-consuming, not scalable,

and leave much to be desired. In chapter 4, we propose a novel algorithm, Multi-

Agent Graph-attentIon Communication (MAGIC), with a graph-attention commu-

nication protocol in which we autonomously learn 1) a Scheduler to help with the

problems of when to communicate and whom to address messages to, and 2) a

Message Processor using Graph Attention Networks (GATs) with dynamic graphs

2

to aggregate communication signals.

While targeted communication is a step in the right direction, the ubiquity of

robotics will depend upon robots being able to team with and understand a diverse

set of users. This requires not only targeted, contextual communication messages

but also stylized communication. In Human-Human teams, typical communication

patterns widely differ based on the task or role the human assumes [29]. Similarly,

robots must be able to maintain effective modeling frameworks over heterogeneous

team compositions to support the generation of stylized messages. As such, in

chapter 5, we propose Heterogeneous Policy Networks (HetNet) to learn efficient

and diverse communication models for coordinating cooperative heterogeneous

teams, utilizing a heterogeneous graph-attention architecture that is able to support

learning specialized sender-receiver-specific communication channels.

Active communication is beneficial in resolving partial observability, but can

be cumbersome for agents. Agents can also passively observe their collaborator’s

behavior and develop a model of their teammate, generating an understanding over

their teammate’s behavior. This ability to decipher another person’s mental state is

known as the Theory of Mind (ToM) capability [30]. Augmenting machines with a

model of human behavior has been shown to be beneficial and positively correlate

with team performance [4, 31], ultimately allowing agents to generate longer-term

collaboration plans. However, generating a model poses a significant challenge

due to the complex nature of human behaviors. Due to the growth of Internet

of Things (IoT) and the ability to effectively model data, data-driven techniques

have become an effective paradigm for modeling human behavior [32]. However,

often, a one-size-fits-all approach is used to model all human behavior, lacking

the ability to capture person-specific tendencies. Different users may have certain

eccentricities or person-specific qualities represented within their data, and this

information must be understood by a robot attempting to effectively collaborate

3

with a specific user. For example, while attempting to infer a decision-making

model of users in the face of unlabeled heterogeneity, we found that when trying to

infer expert perfusionists’ decision-making models during critical intraoperative

situations, capturing interoperator disagreement (i.e., heterogeneity) presented in

the curated dataset can lead to an improvement of ≈ 10%, a substantial gain in

performance while predicting decision-making in the operating room [33]. As such,

in chapter 6, we create personalized models of user behavior directly from a dataset

of heterogeneous users. Our technique enables robots to gain an understanding of

their human teammate’s decision-making behavior via an inferred, person-specific

embedding, non-parametric in the number of demonstrator types.

While in chapters 4 and 5, we enable robots to facilitate successful commu-

nication strategies emulating human-human teams, the communication modality

utilized (real-valued vectors of information) may be unclear for humans if not

correlated to something semantically meaningful. Furthermore, the approaches

presented utilize black-box models (e.g., deep neural networks), which can be

difficult to interpret, and thus limits their ability to be deployed in safety-critical

and legally-regulated domains with humans [34, 35, 36, 37]. An alternative ap-

proach that facilitates humans to gain insight into a robot’s policy is to utilize

white-box approaches, as opposed to typical black-box models, to model deci-

sion processes in an interpretable human-readable representation. In a field such

as autonomous driving, such models would provide insurance companies, law

enforcement, developers, and passengers with insight into how an autonomous

vehicle (AV) reasons about state features and makes decisions. Furthermore, in-

terpretable policies can provide a human teammate insight into the AI’s rationale,

strengths and weaknesses, and expected behavior as well as help in assessing a sys-

tem’s flaws, verifying its correctness, and promoting its trustworthiness. However,

prior interpretable models [38] utilized in representing a robot’s behavioral policy

4

are not amenable to gradient-based learning techniques nor suitable for represent-

ing continuous control policies required in robotics. To address these drawbacks,

in chapter 7, we design an interpretable yet differentiable tree-based framework

for continuous control, allowing for direct synthesization of robot behavior within

an interpretable representation. Specifically, we utilize a minimalistic tree-based

architecture augmented with low-fidelity linear controllers, creating a novel in-

terpretable reinforcement learning architecture, Interpretable Continuous Control

Trees (ICCTs).

During human-robot collaboration, a human teammate can maintain situational

awareness and effectively make decisions through the maintenance of an internal

mental model of the robot’s behavior. However, to develop such an understanding

of the robot, the human may have to constantly observe or monitor the robot’s be-

havior, a costly and tedious process. Utilizing transparent representations, such as

decision trees, can provide global explanations of a decision-making policy that are

valid throughout the input space [39]. As such, these models have the potential to

provide users with a long-term understanding of a robot’s decision-making behav-

ior. This understanding can help facilitate team situational awareness and shared

mental model development, ultimately improving the human teammate’s ability

to predict future behavior of the robot and develop a collaboration plan. Thus, in

chapter 8, I assess the ability for human teammates to gain improved situational

awareness (SA) through the augmentation of Explainable AI techniques (i.e., utiliz-

ing transparent policy visualizations) and quantified the subjective and objective

impact of xAI-supported SA on human-machine team fluency. Importantly, this

work assesses the preoccupation cost of online explanations in human-machine

teaming.

Lastly, teamwork between humans and robots will not complete within a single

moment but rather develop over time [40, 41, 42]. A challenge is that once robot

5

policies have been created, these machines lack the ability to effectively learn with

and adapt to human teammates in real-time [43]. In ad hoc human-human teams

(i.e., those without prior training), effective teaming is often developed through an

iterative process, going through several stages before the team arrives at a fluent

collaboration [44]. Similarly, we require robots that can dynamically learn new

concepts and adapt learned behaviors to accomplish objectives and collaborate

with a human that may exhibit changes. In chapter 9, we build towards adaptive,

effective human-robot collaboration by creating a pathway of bi-directional com-

munication, utilizing interpretable policy representations as a mechanism to allow

users to understand their machine teammates and allowing for explicit teammate

policy modification through an interface (users can modify the machine collabora-

tor’s policy via a Graphical User Interface).

1.1 Thesis Statement

In my thesis, I present six different works that push the frontier of real-world

robotics systems towards those that understand human behavior, maintain inter-

pretability, and can communicate efficiently and coordinate with high-performance.

The central claim underlying my works is:

Thesis Statement: By providing robots with effective communication abilities, we can

produce higher-quality human-robot collaboration.

The key challenges that are addressed in building up to this thesis statement

are:

1. Building decentralized multi-agent coordination protocols that can support

efficient, targeted communication for heterogeneous teams.

2. Creating neural tree-based architectures that can represent a robot’s policy or

6

Figure 1.1: This figure shows an overview of my thesis. In chapter 4 and chapter 5,
I utilize graph-based architectures to effectively model and facilitate communi-
cation in multi-agent systems. In chapter 6 and chapter 9, I allow for greater
personalization in robotic counterparts. In chapter 7 and chapter 8, we facilitate
directional communication between robots and humans through the use of Explain-
able AI techniques. These components together help to facilitate the development
of shared mental models within a team and result in high-quality human-robot
collaboration.

model of a human teammate’s behavior that afford interpretability, allowing

human teammates direct insight into the model.

3. Evaluating how communication afforded via policy interpretability can ben-

efit a human teammate.

Below, I present an abbreviated discussion over the contributions and key find-

ings of my thesis. I display a figure that ties each of the chapters together in

Figure 1.1

1.2 The Importance of Communication in Multi-Agent Systems

In this first chapter, we study the nature of collaboration by developing a multi-

agent reinforcement learning framework that focuses on the importance of targeted

communication, building toward enabling robots to be able to selectively and effi-

7

ciently share information with humans. Following effective human-human teams,

where experts judiciously choose when to communicate and whom to communicate

with, communicating only when beneficial [26, 27, 28], we propose Multi-Agent

Graph-attentIon Communication (MAGIC), a novel graph communication proto-

col that determines “when” and “whom” with to communicate via an end-to-end

framework. We set a new state-of-the-art in communication-based multi-agent

reinforcement learning (MARL) by modeling the topology of interactions among

agents (the local and global characterization of connections between agents [45])

as a dynamic directed graph that accommodates time-varying communication

needs and accurately captures the relations between agents. Our proposed frame-

work emulates the features of an effective human-human team through its key

components, 1) the Scheduler, which helps each agent to decide when it should

communicate and whom it should communicate with, and 2) the Message Proces-

sor, which integrates and processes received messages in preparation for decision

making. We evaluate our method and baselines in several environments, including

Predator-Prey, Traffic Junction, and the more complex Google Research Football,

achieving state-of-the-art performance.

1.2.1 Goal

Effectively coordinating decentralized agents under partial observability is a chal-

lenging computational problem [46, 47, 48, 49, 50]. Recent work has been able to

generate high-performance solutions through multi-agent reinforcement learning

(MARL), utilizing simulated experience with teammates as a mechanism to learn

coordination strategies. Our aim is to augment these techniques in cases where

agents are able to communicate and exchange messages, specifically focusing on

creating targeted, sparse communication. The ability to communicate and process

information can allow for much-increased performance.

8

1.2.2 Approach

We emulate the features of a human-human team by developing a novel graph-

attention communication protocol for MARL that utilizes 1) a Scheduler to solve

the problems of when to communicate and whom to address messages to and 2)

a Message Processor using GATs with dynamic directed graphs to integrate and

process messages.

At each time step, the observation for each agent is encoded utilizing several

different processing modules (LSTM, Fully-Connected layers) to produce a mes-

sage. Encoded agent messages are aggregated and passed into the Scheduler, which

consists of a Graph Attention Network (GAT) encoder and a hard attention mech-

anism that uses a multi-layer perceptron (MLP) and a Gumbel Softmax function.

The Scheduler will output an adjacency matrix, which is a directed graph that indi-

cates the targeted receivers for each agent at each time step. This adjacency matrix

is then passed and utilized by the Message Processor to produce a set of integrated

messages for each agent at the current timestep. The Message Processor includes

a GAT layer receiving messages from all agents, effectively utilizing attention to

weight information from agents. The integrated messages for each agent are then

incorporated into each agent’s policy.

As this system supports end-to-end training, we employ a multi-threaded syn-

chronous multi-agent policy gradient to train our model to generate multi-agent

coordination policies with targeted communication.

1.2.3 Results

We evaluate the performance of our proposed method on three environments,

including Predator-Prey [51], Traffic Junction [52], and Google Research Football

(GRF) [53]. Each domain represents a different challenging multi-agent coordina-

tion problem, including search-and-rescue (discover a prey as quickly as possible),

9

navigation (travel through a noisy intersection without collision), and sports (coor-

dinating against an adversarial team). We note that the last domain, GRF presents

a challenging, high-dimensional, mixed cooperative-competitive, multi-agent sce-

nario with high stochasticity and sparse rewards. Further, we benchmark our ap-

proach against a variety of state-of-the-art communication-based MARL baselines,

including CommNet [52], IC3Net [51], GA-Comm [54], and TarMAC-IC3Net [55].

In Predator-Prey, we see that in both the five- and ten-agent coordination prob-

lems, our method converges faster and can achieve better performance than the

baselines. Our method converges 52% faster than the next-quickest baseline while

still achieving the highest performance. Further, while approaches such as GA-

Comm and TarMAC learn competitive policies for the five-agent case, these bench-

marks perform much worse than our algorithm in the ten-agent case, suggesting

a lack of scalability. In Traffic Junction, our algorithm achieves near-perfect per-

formance after convergence, widely outperforming all benchmarks in its ability

to coordinate vehicles without collision. Finally, in GRF, our method converges

to a higher-performing policy than all the baselines, achieving the highest scor-

ing success rate in a 2v2 soccer scenario. Across multiple test domains, we set

a new state-of-the-art in MARL performance, outperforming baselines, including

[52, 51, 54, 55]. Across our domains, we achieve an average 5.8% improvement in

steps taken (Predator-Prey), 1.9% improvement in success rate (Traffic Junction),

10.5% improvement in success rate (GRF), and 13.8% improvement in steps taken

compared to the closest benchmark which varies across each domain. Further,

we conduct an ablation to understand the benefit of targeted communication (i.e.,

utilizing the Scheduler), and find that the Scheduler provides a performance im-

provement. This last result signifies the importance of determining “when” and

“whom” to communicate with.

Through MAGIC, we are able to develop effective coordination policies for

10

agents under partial observability, utilizing targeted, sparse communication to

facilitate high-performance. While this chapter focuses on agent-agent communi-

cation, the ideologies are critical in the development of this thesis and progression

toward effective human-robot collaboration.

1.3 Accounting for Heterogeneity in Multi-Agent Systems

Next, we develop a multi-agent reinforcement learning framework that focuses on

capturing heterogeneity within a multi-agent system. Heterogeneity often appears

in multi-agent systems and can be caused due to the diversity in capabilities across

agents (including sensing and actuating). As humans can be incredibly diverse, a

robot within a human-machine team must be able to account for such heterogeneity

in the way that it coordinates and communicates. A simplified example motivating

the importance of capturing heterogeneity would be of a robot collaborating with

multiple humans, some with poor vision (e.g., has astigmatism) and others with bet-

ter vision. The robot should be able to prioritize communication across teammates

with better sensing capability, even though both senders are humans. Follow-

ing human-human teaming literature, where communication patterns stylistically

differ based on the task or role the human assumes, we develop Heterogeneous

Policy Networks (HetNet), a novel, end-to-end heterogeneous graph-attention ar-

chitecture for MARL that facilitates learning efficient, heterogeneous communica-

tion protocols among robot teams. Within our model, we design a differentiable

encoder-decoder communication channel to facilitate learning efficient binary rep-

resentations of states as an intermediate language among agents of different types

to improve their cooperativity. We evaluate our method and baselines in several

environments, setting a new SOTA in learning emergent cooperative policies by

achieving at least an 8.1% to 434.7% performance improvement over baselines and

across domains.

11

1.3.1 Goal

Heterogeneity in multi-agent systems can appear due to diverse robots (i.e., robots

with different sensor and/or actuator capabilities) or humans. Allowing and sup-

porting such heterogeneity across teammates can facilitate higher-performance co-

ordination, allow for lightweight robots specialized to certain tasks, and allow for

adaptability to a wider variety of situations. However, while MARL researchers

have increasingly focused on developing computational models of team coordi-

nation and communication, these prior frameworks fail to explicitly model the

heterogeneity within teams. Our aim is to enable MARL frameworks to effectively

model heterogeneous teams and support stylized communication (i.e., by allowing

for selective attention while communicating with certain types of agents).

1.3.2 Approach

Emulating high-performing teams that implicitly understand the different roles of

heterogeneous team members and adapt their communication protocols accord-

ingly, we formulate a MARL framework that supports heterogeneous teams with

different state, action, and observation spaces. Specifically, we propose Hetero-

geneous Policy Networks (HetNet) to learn efficient and diverse communication

models for coordinating cooperative heterogeneous teams.

In HetNet, we cast the cooperative MARL problem into a heterogeneous graph

structure, and propose a novel heterogeneous graph-attention network capable of

learning diverse communication strategies based on agent classes. Here, agents of

different classes are defined as those with different action and observation spaces.

We directly model each agent class with a unique node type. This allows agents

to have different types of state-space content as input features according to their

classes, as well as enabling different types of action spaces. Communication chan-

nels between agents are modeled as directed edges connecting the corresponding

12

agent nodes. When two agents move to a close proximity of each other, such

that those agents fall within communication range, we add bidirectional edges to

allow message passing between them. We use different edge types to model dif-

ferent class combinations of the sender and receiver agents to allow for learning

heterogeneous communication protocols and intermediate representations.

At each timestep, our multi-agent heterogeneous attentional communication

architecture generates agent-specific messages through a class-specific feature pre-

processor. These messages are passed into a HetGAT communication channel that

includes a class-specific encoder-decoder network, allowing heterogeneous agents

to decode information in different ways. While decoding, the HetGAT layer uti-

lizes attention for message aggregation, weighing received messages from different

classes of agents. Upon completion, agents utilize the resultant embedding (rep-

resenting communicated information as well as the agent’s own observation) to

determine an action.

To support training HetNet, we develop a modified Multi-Agent Heterogeneous

Actor-Critic (MAHAC) framework for learning class-wise coordination policies.

1.3.3 Results

We evaluate the utility of HetNet against several baselines in three coopera-

tive MARL domains that require learning collaborative behaviors. The first is

a homogeneous-robot search-and-rescue domain, Predator-Prey. The second do-

main is a heterogeneous variant of Predator-Prey, Predator-Capture-Prey, where

we create two classes of agents, predator and capture agents. Agents of the predator

class have the goal of finding the prey with limited vision (similar to agents in

PP). Agents of the capture class, have the goal of locating the prey and capturing it

with an additional capture-prey action in their action-space, while not having any

observation inputs (e.g., lack of scanning sensors). The third domain is a heteroge-

13

neous domain, FireCommander, that explores two classes of perception and action

agents must collaborate as a composite team to extinguish a propagating firespot.

Similar to the previous domain, the latter class of agents, action agents, do not

have access to any observation input but have increased capability (e.g., put out

fires). This challenging domain includes a realistic fire propagation module with

high stochasticity. We benchmark against four end-to-end communicative MARL

baselines: (1) CommNet [52], (2) IC3Net [51], (3) TarMAC [55] and, (4) MAGIC [6].

We find that through modeling heterogeneity, HetNet outperforms all baselines

in all three domains, further outperforming baselines in domains with increasing

complexity and heterogeneity. Specifically, in our most challenging domain, we see

we are able to outperform baselines by an average of 434.7%. Further, we conduct

ablations and show HetNet is robust to varying team compositions, setting a new

state-of-the-art in learning emergent cooperative policies for heterogeneous robot

teams.

Through HetNet, we see the importance of effective modeling of heterogeneity

within a multi-agent system. Accounting for heterogeneity is essential within

collaboration, and we bring this value into human-robot collaboration within the

next chapter.

1.4 Inferring Behavioral Policies of Heterogeneous Human Decision-Makers

While supporting heterogeneous communication can facilitate understanding dur-

ing collaboration, robots can also utilize a model of the human teammate’s behavior to

inform the generation of a collaboration plan. Prior works in human-robot collabo-

ration have shown that maintaining and utilizing such models positively correlate

with team performance [4, 31]. We specifically focus on a subset of approaches that

utilize data-based techniques for modeling human behavior [32], directly learning

a supervised policy mapping states to actions. However, when varying human

14

experts address complex problems (e.g., resource coordination), they utilize het-

erogeneous rules-of-thumb and strategies honed over decades of apprenticeship,

creating unique heuristics depending on experts’ varied experiences and personal

preferences [56, 57]. However, such heterogeneity is not readily handled by tradi-

tional apprenticeship learning approaches that assume demonstrator homogeneity.

A canonical example of this limitation is of human drivers teaching an autonomous

car to pass a slower-moving car, where some drivers prefer to pass on the left and

others on the right. Apprenticeship learning approaches assuming homogeneous

demonstrations either fit the mean (i.e., driving straight into the car ahead of you)

or fit a single mode (i.e., only pass to the left), producing a poor representation of a

human’s decision-making behavior. In chapter 6, we formulate a personalized and

interpretable apprenticeship scheduling framework for heterogeneous Learning

from Demonstration (LfD) that outperforms prior state-of-the-art approaches on

both synthetic and real-world data across several domains through the use of per-

sonalized embeddings. The key to our approach is the utilization of a variational

inference mechanism to maximize the mutual information between the personal-

ized embedding and the modeled decision-maker, allowing us to simultaneously

infer preferences in the face of unlabeled heterogeneity as well as decision-maker

policies. I display a comparison between our approach and those previous in

Figure 1.2.

1.4.1 Goal

Accurate mental models of teammates play a crucial role in effective collaboration.

Human experts often employ diverse decision-making strategies based on their

individual qualities and preferences. Therefore, accounting for personalization

becomes essential in human-robot collaboration to avoid erroneous inferences by

robots, which could result in poor teaming performance. Our aim is to infer

15

Figure 1.2: The use of personalized embeddings to help to capture the homo- and
heterogeneity across human demonstrations.

accurate personalized decision-making models of user behavior directly from a

dataset of unlabeled heterogeneous users and create a mechanism to support fast,

online inference of personal characteristics to support the prediction of future

behavior.

1.4.2 Approach

We propose a personalized and interpretable apprenticeship scheduling algorithm

that infers an interpretable representation of all human task demonstrators by

extracting decision-making criteria via an inferred, personalized embedding non-

parametric in the number of demonstrator types. To create a model that is both

interpretable and can effectively capture the heterogeneity across demonstrators,

I proposed Personalized Neural Trees (PNTs) [9], by extending a tree-like neural

network architecture termed Differentiable Decision Trees. A key component of my

architecture is the addition of personalized embeddings as a latent variable, repre-

senting latent patterns of thinking for decision-makers. At each timestep, the cur-

rent state and a decision-maker’s personalized embedding are passed into the PNT

to predict that decision-maker’s action. As both the decision-making policy and la-

tent space must be inferred simultaneously, we introduce an information-theoretic

16

regularization model and utilize a variational inference mechanism to maximize

the mutual information between the embedding and the modeled decision-maker

(i.e., to incentivize mode discovery within the latent space). The combination of

this training mechanism with our novel architecture allows us to learn a general be-

havior model accompanied by personalized embeddings that fit distinct behavior

modalities. To increase data-efficiency in an offline-training paradigm, we enforce

the use of counterfactual reasoning that leverages person-specific embeddings as

pointwise terms. Finally, our architecture supports a post-hoc transformation pro-

cedure to translate the differentiable tree model into an interpretable decision tree.

Such an interpretable model of human behavior in resource allocation or plan-

ning tasks would be useful for a variety of reasons, from decision explanations to

training purposes.

1.4.3 Results

We utilize resource scheduling and coordination as a testbed for evaluating our

approach. We utilize three environments. The first is a synthetic low-dimensional

environment where an expert will choose an action based on the state and one of

two hidden heuristics. The second is a jobshop scheduling environment built on the

XD[ST-SR-TA] scheduling domain defined by [58], representing one of the hardest

scheduling problems, and where two agents must work together to complete a set

of 20 tasks that have upper- and lower-bound temporal constraints (i.e., deadline

and wait constraints), proximity constraints, and travel-time constraints. The last

domain utilizes real-world data from users routing Taxis in a variant of the Taxi

Domain in [59]. We benchmark our approach against a variety of baselines [60, 61,

62, 63, 64, 65].

In the low-dimensional environment, our method for learning a continuous,

personalized embedding sets the state-of-the-art (95.30%±0.3% in human decision

17

prediction) for solving this latent-variable classification problem. Furthermore, we

are able to infer the true number of latent preferences using our mutual informa-

tion maximization formulation. In the jobshop scheduling domain, our personal-

ized apprenticeship learning framework widely outperforms all other approaches,

achieving 96.13%± 2.3% accuracy in predicting demonstrator actions. Lastly, with

real-world data, our personalized apprenticeship learning framework outperforms

all other benchmarks and is the only method to achieve a prediction accuracy over

80%.

With this new architecture, machines can better learn from heterogeneous users

and detect person-specific behaviors, allowing for greater personalization in robotic

counterparts.

1.5 Generating Interpretable Robot Policies

While robots maintaining a mental model over human behavior is beneficial, it is

also important for humans to develop a model over a robot’s behavior, shifting

towards a “mutual understanding.” One approach for providing humans with an

understanding of a robot’s policy is to utilize human-readable, interpretable policies.

Importantly, interpretable policies provide a human teammate insight into the AI’s

rationale, strengths and weaknesses, and expected behavior, and offer the promise

of enhancing team situational awareness, shared mental model development, and

human-robot teaming performance. Such insight is necessary for large-scale cobot

adoption in safety-critical and legally-regulated domains [34] as these models allow

for the ability to assess a system’s flaws, verify its correctness, and promote its

trustworthiness. However, such models have often underperformed black-box

models in many domains, are not amenable to gradient-based learning techniques,

nor suitable for continuous control problems in robotics.

In chapter 7, we design an interpretable yet differentiable tree-based frame-

18

work for continuous control, allowing for direct synthesization of robot behavior

via reinforcement learning within an interpretable representation. Specifically, we

utilize a minimalistic tree-based architecture augmented with low-fidelity linear

controllers, creating a novel interpretable RL architecture, Interpretable Contin-

uous Control Trees (ICCTs). Our novel architecture and training procedure provide

a strong step towards solutions for two grand challenges in interpretableML announced

in 2021 [66]: (1) Optimizing sparse logical models such as decision trees and (2) Inter-

pretable Reinforcement Learning. I provide several extensions to prior differentiable

decision tree frameworks within the ICCT architecture to support interpretable

reinforcement learning: 1) a differentiable crispification procedure allowing for

optimization in a sparse decision-tree like representation, and 2) the addition of

sparse linear leaf controllers to increase expressivity while maintaining legibility.

We evaluate our model in its ability to learn high-performance control behaviors

across several continuous control problems, including four autonomous driving

scenarios. We find that ICCTs are able to learn policy representations that par-

ity or outperform baselines by up to 33% in autonomous driving scenarios while

achieving a 300x-600x reduction in the number of policy parameters against deep

learning baselines.

1.5.1 Goal

Reinforcement learning (RL) with deep function approximators has enabled the

generation of high-performance continuous control policies across a variety of

complex domains, from robotics and autonomous driving to protein folding and

traffic regulation. However, while the performance of these controllers opens up

the possibility of real-world adoption, the conventional deep-RL policies used in

prior work lack interpretability, limiting deployability in safety-critical and legally-

regulated domains [34, 35, 36, 37]. We aim to enable interpretable models, specifi-

19

cally tree-based models, to support gradient-based learning.

1.5.2 Approach

We present a novel tree-based architecture, Interpretable Continuous Control Trees

(ICCT), that affords gradient-based optimization with modern reinforcement learn-

ing techniques to produce high-performance, interpretable policies for continuous

control applications. Specifically, we utilize 1) a differentiable crispification proce-

dure allowing for optimization in a sparse decision-tree-like representation and 2)

the addition of sparse linear leaf controllers to increase expressivity while main-

taining legibility.

We start with the base differentiable decision tree (DDT) architecture [67]. Sim-

ilar to a Decision Tree, DDTs contain decision nodes and leaf nodes; however, each

decision node within the DDT utilizes a sigmoid activation function (i.e., a “soft”

decision), outputting the probability that the node evaluates to TRUE, instead of a

Boolean decision (i.e., a “hard” decision). Furthermore, each decision node is not

a function of one input variable as in a decision tree and rather is computed by

weighting state features through decision-node-specific weights and subtracting a

bias term (similar to a linear layer within a multi-layer perceptron).

To create an architecture that supports both an interpretable forward propaga-

tion through the model that traces down a single branch of a tree as well as gradi-

ent flow to update parameters of the neural tree model, we propose differentiable

crispification. This consists of two components: 1) Decision node crispification,

which recasts each decision node to split upon a single dimension of our input

feature, and 2) Decision outcome crispification, which translates the outcome of a

decision node so that the outcome is a Boolean decision rather than a set of probabil-

ities. Both operations utilize the straight-through trick [68] to maintain gradients,

allowing the possibility of utilizing gradient-based techniques (e.g., reinforcement

20

learning) to train the model. At the model leaf nodes, we replace the standard

Gaussian distributions typically employed in continuous control domains with a

sparse, linear controller. These sparse, linear controllers allow us a tradeoff be-

tween tree depth and leaf controller sparsity, allowing engineers to balance model

depth, complexity, and performance.

1.5.3 Results

We evaluate the utility of ICCTs across 6 domains, including two common continu-

ous control problems, Inverted Pendulum and Lunar Lander provided by OpenAI

Gym [69], and four autonomous driving scenarios: Lane-Keeping provided by

[70] and Single-Lane Ring Network, Multi-Lane Ring Network, and Figure-8 Net-

work all provided by the Flow deep reinforcement learning framework for mixed

autonomy traffic scenarios [71]. We compare against several baselines, includ-

ing black-box methods (traditional DDTs and neural networks) alongside several

interpretable models (Decision Trees and post-hoc translations of DDTs).

Comparing our ICCTs to black-box models, we see that in all domains, we parity

or outperform deep highly-parameterized models in performance while reducing

the number of parameters required by orders of magnitude. In the difficult Multi-

Lane Ring scenario, we see that we can outperform MLPs by 33% on average while

achieving a 300x-600x reduction in the number of policy parameters required.

Comparing our ICCTs to white-box models, we see that across four of the six

control domains, our ICCT is able to widely outperform both the DT and discretized

continuous DDT model. In complex autonomous driving domains such as Lane

Keeping, we are able to widely outperform prior work and outperform DT w\

DAGGER by 42.11% while maintaining fewer parameters.

Overall, we find extremely positive support for our Interpretable Continuous

Control Trees, displaying the ability to at least parity black-box approaches while

21

maintaining high interpretability. Our novel architecture is a strong step forward

in producing safe and verifiable machine-learning-based autonomous systems that

are ready for real-world deployment and interaction with humans.

1.6 The Utility of Explainable AI in Human-Robot Collaboration

Recent advances in machine learning have led to growing interest in xAI to en-

able humans to gain insight into the decision-making of machine learning models.

Despite this, the utility of xAI techniques has not yet been characterized in human-

machine teaming. Importantly, xAI offers the promise of enhancing team situa-

tional awareness (SA) and shared mental model development, which are the key

characteristics of effective human-machine teams. Rapidly developing such mental

models is especially critical in ad hoc human-machine teaming, where agents do

not have a priori knowledge of others’ decision-making strategies.

In chapter 8, we present two novel human-subject experiments quantifying the

benefits of deploying xAI techniques within a human-machine teaming scenario.

We assess the ability for human teammates to gain improved situational aware-

ness through the augmentation of xAI techniques and quantify the subjective and

objective impact of xAI-supported SA on human-machine team fluency.

1.6.1 Approach

First, We design a complex HMT scenario within the Malmo Minecraft AI Project

[72], where a human and AI must work together to build a multi-level house. Dur-

ing the interaction, we utilize one of the following explanations for the robot policy:

a decision tree (describing a transparent representation of the robot’s behavioral

policy), a text-based explanation (describing the robot’s current intent), or no ex-

planation. The robot policy is “human-aware” in that there is a tree-based policy

that infers the human’s current action (in the same sense as the PNT) and a second

22

tree-based behavioral policy that determines a complementary action conditioned

on the human teammate’s current behavior (in the same sense as the ICCT).

We conduct and design two human-subject studies; first, we investigate how

different abstractions of the robot’s policy can influence a human’s situational

awareness (SA), i.e., by helping a human perceive the current environment (Level

1), comprehend the AI’s decision-making model (Level 2), and project into the fu-

ture to develop a collaboration plan (Level 3). This study is offline (i.e., the user is

not actively collaborating with the robot but viewing gameplay from a third-person

point of view). We utilize the Situational Awareness Global Assessment Technique

in gauging the different levels. Second, we conduct a study on ad hoc HMT in-

vestigating how online xAI-based support, generated via robot policy abstractions,

and the human teammate’s ability to process higher levels of information affect

teaming performance. This study is online, where users must collaborate with an

unfamiliar robot in an ad hoc setting while paying attention to explanations that

may help users develop a collaboration plan. Importantly (and uniquely), this

study assesses the preoccupation cost of online explanations in human-machine

teaming.

1.6.2 Results

First, we find that using interpretable models that can support information shar-

ing with humans lead to increased SA (p < 0.05). Specifically, full transparency

(i.e., providing the user a decision-tree representation of the teammate’s behavior)

performs best in increasing the user’s SA, allowing them to better comprehend

the robot’s decision-making and predict into the future. Second, we examine how

different SA levels induced via a collaborative AI policy abstraction affect ad hoc

human-machine teaming performance. Importantly, we find that the benefits of

xAI are not universal, as there is a strong dependence on the composition of the

23

human-machine team. Novices benefit from xAI providing increased SA (p < 0.05)

but are susceptible to cognitive overhead (p < 0.05). On the other hand, expert per-

formance degrades with the addition of xAI-based support (p < 0.05), indicating

that the cost of paying attention to the xAI outweighs the benefits obtained from

being provided additional information to enhance SA.

Our results demonstrate that researchers must deliberately design and deploy

the right xAI techniques in the right scenario by carefully considering human-

machine team composition and how the xAI method augments SA.

1.7 Reducing Rigidity in Human-Robot Collaboration

Interpretability is effective in providing users with awareness over teammate be-

havior, exhibiting a sense of directional communication from the robot to the hu-

man. However, this falls short of bidirectional communication, where a human

would also be able to “tell” a machine online to perform a desired collaborative be-

havior. While many techniques can generate collaborative robot policies, the result

may not actually be helpful or what the human wants. In these scenarios, bidirec-

tional communication is essential. Humans, when teaming with machines, should be

able to intuitively update what the robot has learned or change it based upon preferences

that may evolve over time.

In chapter 9, we first characterize prior work in HMT [73, 74], finding that

machine behavior is unable to adapt to human-preferred strategies, and that high

performance is typically driven by independent machine actions rather than col-

laboration, which can ultimately result in a higher team score. The inability to

adapt inhibits team development. Team development often consists of several stages

[44], including “Forming”, “Storming”, “Norming” and “Performing.” The Form-

ing stage is associated with a drop in performance as team members are unfamiliar

with each other and how to collaborate. In the Storming stage, team members

24

continue to understand each other and begin to establish roles and strategies. In

the Norming stage, the team performance begins to improve as agents learn to

collaborate harmoniously. Finally, in the Performing stage, the team is achieving

its full potential, exhibiting the highest level of cooperation and score. Such devel-

opment is critical in developing coordination strategies [44], and is associated with

the calibration of trust, assignment of roles, and development of a shared mental

model.

Building on prior chapters, we facilitate a sense of bi-directional communi-

cation by creating a Graphical User Interface (GUI) to allow users to modify an

interpretable AI teammate’s behavior to their specifications. This capability is in-

credibly promising, enabling end-users to “go under-the-hood” of interpretable

machine learning models and tune affordances or interactively and iteratively re-

program behavior.

1.7.1 Approach

This work contains three key contributions to improve the field of human-machine

teaming. First, we identify a gap in human-machine teaming approaches by eval-

uating published agents. We find that while recent approaches have improved

the quality of human-machine teaming (HMT), the learned strategies are rigid

and focus on enhancing individualized contribution of the machine agent rather

than effective collaboration across the human-machine team. As these behaviors

are rigid, humans are unable to explore strategies that may improve performance

beyond the AI’s training. Next, we create an interpretable machine learning ar-

chitecture, Interpretable Discrete Control Trees (IDCTs), that can be used directly

with reinforcement learning to produce interpretable teammate policies. While

this architecture is a straightforward adaptation of the previously presented ICCTs

to discrete action-spaces, we provide a contextual pruning algorithm to improve

25

ease-of-training and interpretability of neural-tree based models. Furthermore, we

build towards adaptive, effective HMT by creating a pathway of bi-directional com-

munication, utilizing interpretable policy representations as a mechanism to allow

users to understand their machine teammates and allowing for explicit teammate

policy modification through an interface (users can modify the machine’s policy

via a GUI). Finally, we conduct a 50-participant between-subjects user study as-

sessing the effects of interpretability and policy modification across four repeated

interactions with an AI. Specifically, we are interested in understanding which

mechanisms promote high-performance teaming (i.e., how well can the human

and AI team work together?) and teaming development (i.e., how does the perfor-

mance of teaming change over time, and relate to Tuckman’s stages of teaming?).

1.7.2 Results

In understanding the quality of the current state-of-the-art in human-machine team-

ing, we evaluate publicly available agents in simple domains, exploring whether

AIs can support near-optimal human-preferred strategies. We find that agents

from [73] are unable to coordinate with humans well under the human-preferred

strategy. The AI teammate freezes in place as it likely did not encounter such

a teaming strategy in its training, receiving a very low score. Furthermore, in a

second domain, we find that trained policies from prior work [74] converge to

individualized strategies, even though effective collaborative behavior will result

in a higher team score. As this domain is also used within our between-subjects

experiment, we see that rigid AIs that converged to individualized behaviors are

not able to exhibit much higher team scores than those training.

In our experiment, we find several interesting results. Objectively, we find

that white-box models underperformed black-box models from prior work in

teaming with humans. This is confounded by black-box models being easier

26

to train, and thus producing higher-performance agents. Furthermore, we find

that 1) users found low-performance black-box models incredibly frustrating, 2)

white-box teaming supported with interactive modification outperforms white-

box approaches alone, and 3) users that were extroverted, had familiarity with

decision trees, and were experienced in gaming were better able to create high-

performing personalized AI teammates. Given these findings, in the future, to ab-

solve the gap in performance between individualized coordination and successful

human-machine collaboration, researchers must focus on developing better inter-

pretableML approaches to support the generation of high-performance white-box

teammates, the modality of communication between agents and humans (tree poli-

cies may be difficult to understand for some users), and effective mixed-initiative

interfaces that allow users, who may vary in ability and experience, to interact and

improve team behavior.

27

CHAPTER 2

RELATED WORK

In this chapter, I introduce related work across several disciplines, including multi-

agent coordination, modeling human behavior, and interpretable policy represen-

tations.

2.1 Multi-Agent Coordination

Coordinating multi-agent teams is a challenging computational problem [75, 47,

48, 49, 50, 76]. In multi-agent settings, each agent observes other agents as part of

the environment, causing the environment to appear dynamic and non-stationary.

Further difficulty arises due to the issue of credit assignment, where it is difficult for

each agent to deduce its own contribution to the team’s success (especially when

there are only global rewards). To solve these multi-agent challenges, many re-

searchers in multi-agent reinforcement learning (MARL) [77] have pursued central-

ized training and decentralized execution. Further extensions allow agents to ex-

change messages during execution, allowing for increased performance. Here, we

present recent work in MARL, focusing on MARL with a centralized critic, MARL

frameworks augmented with agent-agent communication, and MARL frameworks

utilizing graph modeling.

MARL with Centralized Critic – Some works extend variants of actor-critic algo-

rithms to multi-agent settings and learn decentralized policy through centralized

critics without explicit communication channels [78, 79, 80]. MADDPG [78] is a

MARL framework based on Deep Deterministic Policy Gradient, and can be ap-

plied in both cooperative and competitive scenarios. COMA [79] extends on-policy

actor-critic and proposes a counterfactual baseline to address the credit assignment

28

problem. MAAC [80] is developed from Soft-Actor-Critic [81] and takes advantage

of the idea of the counterfactual baseline from COMA. The authors propose a spe-

cialized attention mechanism over agents when training the critic, which allows for

better scalability as its input space increases linearly, instead of exponentially, with

respect to the number of agents. While these works present critical improvements

in the field of MARL, the ability to communicate and process information allows

for much-increased performance.

MARL with Communication – Recently, the use of communication (enabling

agents to communicate and exchange messages during execution) in MARL has

been shown to enhance the collective performance of learning agents in cooperative

MARL problems [51, 82, 55, 52, 54, 83, 84, 85]. Differentiable Inter-Agent Learning

(DIAL) [86] builds up limited-bandwidth differentiable discrete communication

channels among agents. CommNet [52] extends to a continuous communication

protocol designed for fully cooperative tasks. Agents receive averaged encoded

hidden states from other agents and use the messages to make decisions. IC3Net

[51] uses a gating mechanism to enable the agents to decide when to communicate,

and thus is amenable to competitive scenarios, utilizing a similar message aggrega-

tion scheme. However, both IC3Net and CommNet process messages with a simple

average. The proper integration of these messages is critically important for com-

munication. TarMAC [55] achieves targeted communication through an attention

mechanism that improves performance compared to prior work. Nevertheless,

TarMAC requires high-bandwidth message-passing channels, and its architecture

is reported to perform poorly in capturing the topology of interaction [54]. ATOC

[87], employs an attention mechanism to decide if an agent should communicate

in its observable field. SchedNet [88] proposes a weight-based scheduler to pick

agents who should broadcast their messages. However, both ATOC and SchedNet

have to manually configure their communication groups. Furthermore, across the

29

several MARL works discussed in this section, including [52, 55, 51], a key limita-

tion is that these frameworks required an individualized reward scheme to scale

to larger task configurations. Individualized reward schemes, while assisting with

the credit assignment problem in MARL [79], can learn suboptimal coordination

strategies in heterogeneous teaming configurations. A more effective, albeit more

difficult-to-learn strategy is to use a shared team reward scheme, enabling agents to

learn cohesive policies that achieve the composite team’s goal, rather than learning

policies that benefit the skill of a particular class of agent.

MARL with Graph Neural Networks (GNN) – Graph Neural Networks (GNNs)

are powerful tools for learning from data with graph structures [89, 90]. To model

the interactions between agents, MARL has utilized GNNs to allow for a graph-

based representation [91, 92, 93, 94]. Deep Graph Network (DGN) [95] represents

dynamic multi-agent interaction as a graph convolution to learn cooperative behav-

iors. This seminal work in MARL demonstrates that a graph-based representation

substantially improves performance. In [91], an effective communication topology

is proposed by using hierarchical GNNs to propagate messages among groups and

agents. G2ANet [54] proposed a game abstraction method combining a hard and

a soft-attention mechanism to dynamically learn interactions between agents.

Heterogeneity in Multi-agent Systems – In [96], several types of heterogene-

ity induced by agents of different capabilities are discussed. As opposed to ho-

mogeneous teams, the diversity among agents in heterogeneous teams makes it

challenging to hand-design intelligent communication protocols. In [97], a control

scheme is hand-designed for a heterogeneous multi-agent system by modeling

the interaction as a leader-follower system. More recently, HMAGQ-Net [98] uti-

lized GNNs and Deep Deterministic Q-network (DDQN) to facilitate coordination

among heterogeneous agents (i.e., those with different state and action spaces).

30

2.2 Inferring a Model of Human Behavior

Accurately modeling and understanding human behavior has been a long-standing

challenge in the fields of Psychology [99], Behavioral Science, Cognitive Science,

and more recently, Human-Robot/Human-Computer Interaction [100, 101]. While

scientists have developed heuristic models of human behavior or attempted to

manually solicit and encode “tribal knowledge” into a rule-based computational

framework [102], these approaches are prone to error and not scalable. As such,

we instead utilize data-based techniques seek to enable robots to autonomously

extract a human’s decision-making model through observation to scale the power

of the domain expert and remove the need for a programmer.

Recently, the field of learning from demonstration (LfD) has had substantial

success in capturing domain-expert knowledge directly from demonstration [32,

103, 104, 105, 106]. The process of inferring a mental model of human behavior

offline (i.e., without the need to simulate a policy) can be accomplished through

Behavioral Cloning, an LfD technique [107]. LfD mechanisms are often based on

a Markov Decision Process (MDP), defined in Chapter 3. The goal in LfD is to

receive both a set of trajectories provided by a human demonstrator {⟨st, at⟩ ,∀t ∈

{1, 2, . . . T}} as well as an MDP\R, and then to recover a policy that can predict the

correct state-action sequence a human would take in a novel situation.

As humans are diverse and can be influenced by a number of internal and

external factors, including trust in robots [108], stress levels [109], physical capabil-

ity [11], engagement [110], sleep deprivation and caffeine or alcohol intake [111],

a one-size-fits-all model representing behavior will be insufficient. It is important

to relax the assumption of homogeneous demonstrations by explicitly capturing

modes in human behavior across users (i.e., capturing heterogeneity within the

data). There has been growing interest in understanding decision-maker hetero-

31

geneity [61, 64, 62, 63, 8, 112, 113]. Nikolaidis et al. [61] first used an expectation-

maximization formulation to cluster decision-maker behavior before applying in-

verse reinforcement learning (IRL) for each cluster k. Negatively, this approach

requires interaction with an environment model, and the IRL algorithm only has

access to ∼1/kth of the data to learn from. More recently, Li et al. [62] presented Info-

GAIL, which used mutual information maximization to learn discrete, latent codes;

however, InfoGAIL requires access to an environment simulator and a ground-truth

reward signal. While InfoGAIL argues its latent codes afford interpretability, but its

model structure is still a black-box neural network [114]. Hsiao et al. [64] presented

an approach to discover latent factors within demonstrations using a categorical

latent variable with limited expressivity. Finally, Tamar et al. [63] used a sampling-

based approach to learn the modalities within the data, but the approach requires

voluminous data due to the algorithm’s high-variance estimation framework.

Capturing Domain-Expert Behavior in Resource Coordination - Researchers

have also sought to learn scheduling policies from demonstration [65, 48, 115,

46]. Gombolay et al. [65] consider learning scheduling policies but does not

consider heterogeneity. [115] proposed PTIME to learn to schedule calendar ap-

pointments; however, this approach requires manually soliciting user ranking data

and computationally-intensive nonlinear optimization.

2.3 Interpretable Policy Representations

2.3.1 Explainable AI

Due to recent accidents with autonomous vehicles (cf. [116]), there has been grow-

ing interest in developing Explainable AI (xAI) approaches to understand an AV’s

decision-making and ensure robust and safe operation. xAI is concerned with

understanding and interpreting the behavior of AI systems [117]. In recent years,

the necessity for human-understandable models has increased greatly for safety-

32

critical and legally-regulated domains, many of which involve continuous control

(e.g., specifying joint torques for a robot arm or the steering angle for an au-

tonomous vehicle) [118, 34]. In such domains, prior work [119, 120, 121, 81] has

typically used highly-parameterized deep neural networks in order to learn high-

performance policies, completely lacking in model transparency.

Interpretable machine learning approaches refers to a subset of xAI techniques

that produce globally transparent policies (i.e., humans can inspect the entire

model, as in a decision tree [38, 122, 123] or rule list [124, 125, 35, 126]). In particular,

tree-based frameworks could represent complex decision-making processes while

maintaining interpretability. Decision trees [38] represent a hierarchical structure

where an input decision can be traced to an output via evaluation of decision nodes

(i.e., “test” on an attribute) until arrival at a leaf node. Decision nodes within the

tree are able to split the problem space into meaningful subspaces, simplifying

the problem as the tree gets deeper [127, 128, 129]. Decision trees provide global

explanations of a decision-making policy that are valid throughout the input space [39], as

opposed to local explanations typically provided via “post-hoc” explainability techniques

[130, 131, 9]. Several approaches have attempted to distill trained neural network

models into decision trees [132, 133]. While these approaches produce interpretable

models, the resulting model is an approximation of the neural network rather than

a true representation of the underlying model. Our work, in chapter 7, instead,

directly learns an interpretable tree-based policy via reinforcement learning, pro-

ducing a model that can be directly verified without utilizing error-prone post-hoc

explainability techniques. We emphasize that explainability stands in contrast to

interpretability, as explanations may fail to capture the true decision-making pro-

cess of a model or may apply only to a local region of the decision-space, thereby

preventing a human from building a clear or accurate mental model of the entire

policy [114, 134, 135, 11].

33

To clarify our definitions of interpretability and explainability in relation to

the models generated via machine learning techniques, we define them below

following [114].

1. Interpretability: While a domain-specific notion, we define interpretability

as a model that can be directly understood by inspection (i.e., a human can

easily trace decisions from input to output). By utilizing an interpretable

model, users have transparent insight into the underlying factors driving

model predictions.

2. Explainability: We define explainability as works that utilize a second post-

hoc model to explain a black-box, typically a neural network model. Utilizing

a second post-hoc approximation to generate an understanding of a black-

box model can lead to unreliable explanations that are not faithful to the

true model. As we focus on generating models that work with humans (i.e.,

high-stakes scenarios), explainable models can result in harmful downstream

effects and should be avoided.

Neurosymbolic AI

Interpretable models reason over semantically meaningful features to produce a

desired output. While these models can be directly understood by humans and

can be produced given a set of pre-processed data and an objective function, these

models do not necessarily learn generalizable representations from data. Emulat-

ing the following capabilities, 1) making sense of large amounts of raw data and

converting this information into succinct representations (commonly referred to as

“System 1” within a human’s cognitive processes [136]) and 2) reasoning over said

representations to perform a desired objective (“System 2”), within a model results

in a neurosymbolic model [137]. Neurosymbolic models utilize a combination of

neural-network-based techniques and symbolic approaches to allow for enhanced

34

model generalization (i.e., robustness to outliers) alongside the production of an

interpretable model that can enhance trust and be inspected for safety guarantees.

Within the subfield of AI that aims to create neurosymbolic models, there are nu-

merous methods, ranging from learning signal temporal logic robot control policies

directly from raw human demonstrations [138] to multi-stage approaches where

abstract representations are first inferred and then utilized in creating a down-

stream high-level policy [139]. In several of the presented contributions in this

thesis, we utilize neural-tree-based models, which can be classified as a neurosym-

bolic model. These models, further discussed in chapter 6 and chapter 7, have the

benefits of neural networks in that they support gradient-based learning, can learn

from raw data, and support online learning, as well as symbolic approaches that

are able to represent model behavior in the form of a hierarchical tree-based struc-

ture and support human readability. Importantly, our proposed neural-tree-based

models can support data-efficient learning, infer structured rules relating symbolic

representations directly from raw data, and support manipulation from end-users

(i.e., human intervention). While our neurosymbolic tree-based model has several

benefits that allow it to effectively learn interpretable, high-performance models

directly from demonstration (chapter 6) or via reinforcement learning (chapter 7),

it is important to note that our model may not be able to incorporate higher-order

logical relationships (e.g., second-order logic) as well as other neurosymbolic mod-

els.

2.3.2 Human-Machine Teaming

The field of human-machine teaming is concerned with understanding, designing,

and evaluating machines for use by or with humans [140]. This growing field

has recently attracted much attention from researchers, exploring how to facilitate

better collaborative performance between humans and machines [141, 142, 143]. A

35

common technique that has been used to produce AI agents is Deep Reinforcement

Learning, where researchers have concentrated on approaches to reduce the dis-

similarity between training data and testing with end-users. Common approaches

that have achieved success in the past include utilizing human gameplay data to

finetune simulated training partners to behave more human-like [73], which can

be costly, and training with a diverse-skilled population of synthetic partners to

create an agent that can better generalize to non-expert end-users [74].

xAI in Human-Machine Teaming – Explainable AI in human-machine teaming

is a promising direction as automation with the ability to explain will allow users

to better understand the behavior of their AI teammates. Prior work attempts to

induce transparency in a human-robot team by the explanation of failure modes

[144, 145], synthesis of policy descriptions [146, 147], and the verbalization of ex-

periences [148, 149]. While these approaches are successful are instilling a sense of

understanding of robot behavior within the human teammate, the level of collab-

oration is limited, and these works do not assess the preoccupation cost of online

explanations in human-machine teaming. More recently, [150, 151, 152, 153, 154],

and [155] investigate the type and accuracy of an xAI explanation to a human’s

trust and reliance on the setting of human-AI teaming. However, while this prior

work deploys xAI-based support in classification problems (utilizing the AI as a

recommender system), our task and scenario are widely different in that we con-

sider a complex sequential decision-making and planning problem where the AI

is a collaborative agent that actively shapes the world. [156] provides insight into

how different xAI explanations relate to a human player’s mental model generation

in a simple real-time strategy (RTS) game.

36

CHAPTER 3

PRELIMINARIES

3.1 Markov Decision Process

A Markov Decision Process (MDP), a five-tuple M = ⟨S,A,T, γ,R⟩ where S is a set

of states, A is a set of actions, T : S×A×S→ [0, 1] is a transition function, in which

T(s, a, s′) is the probability of being in state s′ after executing action a in state s, R:

S → R (or R : S × A → R) is the reward function, and γ ∈ [0, 1] is the discount

factor.

3.2 Partially Observable Markov Game

A Markov Game [157] is the multi-agent version of Markov Decision Process

(MDP). We are primarily concerned with a partially observable Markov game.

A partially observable Markov game (POMG) for N agents can be defined by a

set of global states, S, a set of private observations for each agent, O1,O2, . . . ,ON,

a set of actions for each agent, A1,A2, . . . ,AN, and the transition function, T :

S × A1 × . . . × AN 7→ S. In each time step, agent i chooses action, ai ∈ Ai, obtains

reward as a function of state, S, and its action ri : S × Ai 7→ R, and receives a local

observation oi : S 7→ Oi. The initial state is defined by a initial state distribution

ρ. Agent i aims to maximize its discounted reward Ri =
∑T

t=0 γ
trt

i , where γ ∈ [0, 1]

is a discounted factor. Our work is based on the framework of POMG augmented

with communication.

37

3.3 Reinforcement Learning: Policy Gradients

The Policy Gradient method (Equation Equation 3.1) is widely used in reinforce-

ment learning (RL) tasks to perform gradient ascent on the agent policy parameters,

θ, to optimize the total discounted reward, J(θ) = Es∼pπ,a∼πθ[R]. ρπ is the state dis-

tribution, πθ is the policy distribution, and Rt =
∑T

t′=t γ
t′−tr(st′ , at′).

∇θJ(θ) = Es∼ρπ,a∼πθ

[T∑
t=1

∇θ logπθ(at|st)Rt

]
(3.1)

In lieu of Rt, often an advantage function is used, Aπ(st, at) = Rt −V(st), to decrease

the variance of the estimated policy gradient, where V(st) is the value function.

3.4 Actor-Critic (AC) Methods

Actor-Critic (AC) methods [158, 159] are an approach to RL that utilize function

approximation, in which each agent j has a policy, π j
θ(a|s), parameterized by θ, that

specifies which action, a, to take in each state, s, to maximize the expected future

discounted reward. AC methods apply gradient ascent to the actor’s parameters, θ,

based upon a critic, Qϕ(s, a), action-value function [160], parameterized byϕ, where

Qϕ(s, a) approximately solves the credit-assignment problem [161]. By the policy

gradient theorem [162], the expected reward maximization (i.e., the AC objective),

J(θ), is maximized via ∇θJ(θ) = E
π

j
θ

[
∇θ logπ j

θ(a j
t |o

j
t)Q

ϕ(o j
t, a

j
t)
]
, where a j

t and o j
t are

the action and observation of agent j, respectively.

3.5 Graph Neural Networks

Graph Neural Networks (GNNs) are a class of deep neural networks that capture

the structural dependency among nodes of a graph via message-passing between

the nodes, where each node aggregates feature vectors of its neighbors to com-

38

pute a new feature vector [163, 95]. The canonical feature update procedure via

graph convolution operator can be shown as h̄′j = σ
(∑

k∈N(j)
1

c jk
ωh̄k

)
, where h̄′j is the

updated feature vector for node j, σ(.) is the activation function and, ω represents

the learnable weights. k ∈ N(j) includes the immediate neighbors of node j where

k is the index of neighbor, and c jk is the normalization term which depends on

the graph structure. A common choice of c jk is
√
|N(j)N(k)|. In an L-layer aggre-

gation, a node j’s representation captures the structural information within the

nodes that are reachable from j in L hops or fewer. However, the fact that c jk is

structure-dependent can impair generalizability of GNNs when scaling the graph’s

size. Thus, a direct improvement is to replace c jk with attention coefficients, α jk,

computed via Eq. Equation 3.2. In Eq. Equation 3.2, W̄att is the learnable weight,

∥ represents concatenation, and σ′(.) is the LeakyReLU nonlinearity. The Softmax

function is used to normalize the coefficients across all neighbors k, enabling feature

dependent and structure free normalization [164, 90].

α jk = softmaxk

(
σ′
(
W̄T

att

[
ωh̄ j ∥ ωh̄k

]))
(3.2)

3.6 Differentiable Decision Trees (DDTs)

Prior work has proposed differentiable decision trees (DDTs) [67, 131, 165] – a

neural network architecture that takes the topology of a decision tree (DT). Similar

to a decision tree, DDTs contain decision nodes and leaf nodes; however, each

decision node within the DDT utilizes a sigmoid activation function (i.e., a “soft”

decision) instead of a Boolean decision (i.e., a “hard” decision). Each decision node,

i, is represented by a sigmoid function, displayed in Equation Equation 3.3.

yi =
1

1 + exp(−α(w⃗T
i x⃗ − bi))

(3.3)

39

Here, the features vector describing the current state, x⃗, are weighted by w⃗i, and a

splitting criterion, bi, is subtracted to form the splitting rule. yi is the probability

of decision node i evaluating to True, and α governs the steepness of the sigmoid

activation, where α→∞ results in a step function. Prior work with discrete-action

DDTs modeled each leaf node with a probability distribution over possible output

classes [131]. Leaf node distributions, L⃗, are then weighted by the probability of

reaching the respective leaf and summed to produce a final action distribution

over possible outputs. For a simple 4-leaf tree, this results in an fuzzy output

distribution with a complex interplay of node and leaf probabilities, displayed in

Equation Equation 3.4.

P(a|x) = L⃗1(y1 ∗ y2) + L⃗2(y1 ∗ (1 − y1)) + L⃗3((1 − y1) ∗ y3) + L⃗4((1 − y1)(1 − y3)) (3.4)

0For figure simplicity, when displaying the crisp node (blue block), we assume α > 0 in the fuzzy
node (orange block). If α < 0, the sign of the inequality would be flipped (i.e., wki

i xki < b).

40

CHAPTER 4

THE IMPORTANCE OF COMMUNICATION IN MULTI-AGENT

COORDINATION

In this chapter, we design a multi-agent coordination algorithm, Multi-Agent Graph

AttentIon Communication (MAGIC) [6], that allows agents to determines “when”

and “whom” with to communicate via an end-to-end framework. Utilizing our

novel formulation with multi-agent reinforcement learning, we see that we can

utilize simulation to produce high-performance collaborative policies and find

benefits in the quality of coordination by utilizing precise, targeted communication.

4.1 Introduction

Communication is a key component of successful coordination, enabling the agents

to convey information and cooperate to collectively achieve shared goals [166, 24].

In high-performing human teams, human experts judiciously choose when to com-

municate and whom to communicate with, communicating only when beneficial

[26, 27, 28]. Each team member exhibits the role of a communicator and message

receiver, relaying valuable information to the right teammates and incorporating

received information effectively. Communicators typically hold minimal interac-

tions, spending their energy and resources to communicate with only those that

require information. On the side of message receivers, redundant information can

disturb decision making and lower working efficiency, while timely and targeted

information is beneficial. What is more, knowing how to use and interpret the

messages from others is also a crucial step.

In this chapter, we propose Multi-Agent Graph-attentIon Communication (MAGIC),

a novel graph communication protocol that determines “when” and “whom” with

41

to communicate via an end-to-end framework. We set a new state-of-the-art in

communication-based multi-agent reinforcement learning (MARL) by modeling

the topology of interactions among agents (the local and global characterization of

connections between agents [45]) as a dynamic directed graph that accommodates

time-varying communication needs and accurately captures the relations between

agents. Our proposed framework emulates the features of an effective human-

human team through its key components, 1) the Scheduler, which helps each agent

to decide when it should communicate and whom it should communicate with,

and 2) the Message Processor, which integrates and processes received messages

in preparation for decision making. We find MAGIC produces high-performance,

cooperative behavior through its efficient communication protocol.

There has been recent success in MARL for Multiplayer Online Battle Arena

(MOBA) games such as StarCraft II and Dota II [167, 168, 169]. MARL seeks to

enable agents to share information to improve team performance [51, 52, 86, 55, 170,

171]. However, most prior work in MARL fails to capture the complex relations

among agents, leading to low-performance and inefficient communication. While

[51] and [88] are able to efficiently decide when to broadcast messages, agents will

broadcast these messages to all other agents without targets, resulting in wasteful

communication. Even with targeted communication [55], failure to assess when to

communicate results in poor performance, as we display in section 4.4. However,

determining when to communicate and whom to communicate with is not enough.

Selectively utilizing received messages can significantly improve performance. Yet,

none of these methods simultaneously address “when” and with “whom”, and

“how” to communicate while modeling agent interaction topology.

Our communication protocol, MAGIC, utilizes a Scheduler consisting of a graph

attention encoder and a differentiable hard attention mechanism to decide when

to communicate and whom to communicate with. This information is encoded

42

within a directed graph, allowing us to represent the interaction among agents

precisely. The Message Processor consisting of a Graph Attention Network (GAT),

utilizes received messages and the directed graph to intelligently and efficiently

process messages. The encoded messages are then used in each agent’s policy,

leading to high-performance cooperation and efficient communication, as shown

in section 4.4. We provide the following contributions:

1. Develop a novel graph-attention communication protocol for MARL that

utilizes 1) a Scheduler to solve the problems of when to communicate and

whom to address messages to, and 2) a Message Processor using GATs with

dynamic directed graphs to integrate and process messages.

2. Enable GATs in the Message Processor to deal with differentiable graphs,

which is not supported by standard GATs. In this way, the framework is

completely differentiable and can be trained in an end-to-end manner.

3. Outperform prior methods across three domains, including the Google Re-

search Football environment, achieving a 10.5% increase in reward. Further,

MAGIC learns to communicate 27.4% more efficiently than the average base-

line. These results set a new state-of-the-art in MARL.

4. Demonstrate our algorithm on physical robots in a 3-vs.-2 soccer scenario on

a physical, multi-robot testbed.

4.2 Method

In this section, we introduce our proposed Multi-Agent Graph-attentIon Commu-

nication protocol, MAGIC. We consider a partially observable setting of N agents,

where agent i receives local observation, ot
i , at time, t, containing local information

from the global state, S. The agent, i, learns a communication-based policy, πi, to

43

Figure 4.1: This figure displays the framework of our multi-agent graph-attention
communication protocol.

output a distribution over actions, a(t)
i ∼ πi, at each time step, t. Here, we present

an overview of our framework, the description of our protocol’s key components

(i.e., the Scheduler and Message Processor), and our training procedure.

4.2.1 Overview

Our proposed graph-attention communication protocol is displayed in Figure 4.1.

At each time step, t, the observation for each agent, ot
i , is first encoded using an

agent-specific fully-connected layer (FC). The encoded observation is passed into

an agent-specific LSTM cell to generate a hidden state, ht
i , as shown in Equation 4.1.

44

ht
i , c

t
i = LSTM(e(ot

i), h
t−1
i , ct−1

i) (4.1)

In this equation, ct
i is the cell state for agent, i, at time step, t, and e(·) is a fully-

connected layer acting as an encoder for the observation. The hidden state, ht
i ,

is then encoded as a message, mt(0)
i = em(ht

i), through the encoder, em(·) (a fully-

connected layer). Here, the exponent notation for the message, mt(0)
i , denotes that

message is for agent i, and is prior to any message aggregation or processing. We

refer to this stage, where the message has not been processed, as round 0, giving

the exponent notation, t(0).

As shown in Figure 4.1, we define the function module to help agents de-

cide whom to send messages at each time step as the “Scheduler” and define the

function module to process messages as “Message Processor.” The Scheduler and

the Message Processor may include multiple sub-schedulers and sub-processors,

respectively. Prior work has termed the procedure of processing messages for

multiple iterations as multi-round communication [55]. As multi-round commu-

nication has been shown to improve performance, our protocol supports L rounds

of communication, where L ∈ N. A round of communication, l, is defined as a

forward pass through a sub-scheduler and sub-processor. As shown in Figure 4.1,

the encoded messages, mt(0)
i are passed into Sub-Scheduler 1 and Sub-Processor 1

(i.e., the sub-scheduler and sub-processor at round 1).

The Sub-Scheduler l (at round, l ∈ L) will output an adjacency matrix, Gt(l). Gt(l)

is a directed graph that indicates the targeted receivers for each agent at time step,

t. Gt(l) is utilized by the Sub-Processor, l, to produce a set of integrated messages,

{mt(l)
i }

N
1 , where mt(l)

i is the integrated message for agent, i, at time step, t. The

integrated messages for each agent, i, can be incorporated into agent i’s policy (in

the case where we are on the last round of communication, l = L) or be further

processed by more rounds of communication (l < L). If the messages are to be

45

Figure 4.2: This figure displays the details and components of the Scheduler.

further processed, the set of messages outputted from round l, {mt(l)
i }

N
1 , are passed

into the Sub-Scheduler l+1 and the Sub-Processor l+1, producing adjacency matrix

Gt(l+1) and messages {mt(l+1)
i }

N
1 respectively.

The message outputted from the Message Processor, mt(L)
i , for agent, i, is en-

coded through a fully-connected layer, e′m(·), to produce an intelligently integrated

message, mt
i = e′m(mt(L)

i). mt
i is concatenated with the hidden state, ht

i , to produce

the input feature to the policy head and the value head. The policy head is a

fully-connected layer followed by a softmax function. We sample the action for

the i-th agent at time step, t, from the policy output distribution: at
i ∼ πi(at

i |o
t
i). The

value head is a single fully-connected layer and serves as a baseline function for

our MARL algorithm.

4.2.2 The Scheduler

The Scheduler decides when each agent should send messages and whom each

agent should address messages to, as shown in Figure 4.2. As a black-box, the

Scheduler takes as input the encoded messages, {mt(0)
i }

N
1 , and outputs the directed

graphs, {Gt(l)
}
L
1 , as represented in fSched(·) shown in Equation 4.2.

{Gt(l)
}
L
1 = fSched

(
mt(0)

1 , · · · ,mt(0)
N

)
(4.2)

46

As noted in subsection 4.2.1, the Scheduler consists of L Sub-Schedulers, each

producing an adjacency matrix Gt(l). A Sub-Scheduler consists of a GAT encoder

and a hard attention mechanism that uses a multi-layer perceptron (MLP) and

a Gumbel Softmax function [172]. The GAT encoder helps encode local or global

information for an agent efficiently, and it is only used in the first Sub-Scheduler. We

adopt the same form of GATs as proposed in [164], where the attention mechanism

is expressed in Equation 4.3.

αS
ij =

exp
(
LReL

(
aT

S[WSmt(0)
i ||WSmt(0)

j]
))

∑
k∈Nt

i∪i exp
(
LReL

(
aT

S[WSmt(0)
i ||WSmt(0)

k]
)) (4.3)

Here, LReL(·) is the LeakyReLU [173], aS ∈ RD′ is a weighting vector, Nt
i ∪ i is the

set of neighboring agents for the i-th agent, including agent i, at time step, t, and

WS ∈ RD′×D is a weighting matrix, where D′ and D refer to the output feature

cardinality and message cardinality, respectively. The node features of each agent

are obtained through Equation 4.4.

et
i = ELU

 ∑
j∈Nt

i∪i

αS
ijWSmt(0)

j

 (4.4)

Here, ELU(·) is the Exponential Linear Unit (ELU) function. After concatenating

the node feature vectors pairwise, supposing Et
i, j = (et

i ||e
t
j), we obtain a matrix

Et
∈ RN×N×2D, where Et

i, j represents a high-level representation of relational features

between the i-th and j-th agent. Setting Et as the input to an MLP followed by a

Gumbel Softmax function, we can get an adjacency matrix Gt(l), consisting of binary

values, representing a directed graph. If the element gt(l)
i j in Gt(l) is 1, the j-th agent

will send a message to i-th agent. Otherwise (gt(l)
i j = 0), the j-th agent will not send

any message to i-th agent. As the “Straight-Through” trick is used in the Gumbel

Softmax [172], sampling discrete values maintain the gradients, and the adjacency

47

matrix Gt(l) is differentiable.

4.2.3 The Message Processor

The Message Processor helps agents integrate messages for intelligent decision

making. As a black-box, it takes in the encoded messages, {mt(0)
i }

N
1 , and the graphs

generated by the Scheduler, Gt(1)
· · · ,Gt(L), and outputs the processed messages,

{mt(L)
i }

N
1 . We represent the Message Processor in Equation 4.5.

{mt(L)
i }

N
1 = fMP

(
mt(0)

1 , · · · ,mt(0)
N ,Gt(1), · · · ,Gt(L)

)
(4.5)

As stated in subsection 4.2.1, the Message Processor consists of L Sub-Processors,

each producing a set of encoded messages, {mt(l)
i }

N
1 . A Sub-Processor, for a single

round of communication, includes a GAT layer receiving messages, {mt(l−1)
i }

N
1 , from

all agents and the adjacency matrix, Gt(l), as input. The Sub-Processor helps agents

process received messages. The calculation of the attention coefficient in the GAT

layer is shown in Equation 4.6.

αP
ij =

gt(l)
i j exp

(
LReL

(
(a(l)

P)⊤[W(l)
P mt(l−1)

i ||W(l)
P mt(l−1)

j]
))

∑N
k=1 gt(l)

ik exp
(
LReL

(
(a(l)

P)⊤[W(l)
P mt(l−1)

i ||W(l)
P mt(l−1)

k]
)) (4.6)

Here, l is the round of communication, gt(l)
i j ∈ {0, 1} is a binary value in the adjacency

matrix, Gt(l), W(l)
P ∈ RD′′×D is a weighting matrix, and a(l)

P ∈ RD′′ is a weighting vector.

It should be noted that our graphs are capable of a self-loop, where an agent will

“send” a message to itself, and use its own message in the integration of received

messages. While the calculation of the coefficient for a standard GAT layer is a

non-differential operation for the graph, using Equation 4.6 allows us to retain the

gradient of gt(l)
i j . Thus, the Scheduler can preserve the gradient flow for end-to-end

training, avoiding the need to design an extra loss function to train the Scheduler.

In practice, we find using multi-head attention [164] and adding a bias to the output

48

message to be beneficial. The output message of sub-processor l can be obtained

via Equation 4.7.

mt(l)
i = ELU

 N∑
j=1

αP
ijW

t(l)
P mt(l−1)

j

 (4.7)

4.2.4 Training

In our experiments, the parameters of the fully-connected layers and LSTM in

the policy network are shared across homogeneous agents to improve training

efficiency. We employ a multi-threaded synchronous multi-agent policy gradient

[51] and utilize an extra value head in the policy network to estimate the value

function, Vϕ(ot
i), at observation ot

i , which will serve as a state-independent baseline.

In addition to optimizing the discounted total reward with policy gradient, the

model also minimizes the squared error between the estimated value and the

Monte-Carlo estimate. The two loss functions are balanced by a coefficient, β. We

define the overall loss function as L(·) and the policy function denoted as πθ(at
i |o

t
i).

Parameters, θ, of the policy and, ϕ, of the value function, share most of their

parameters except the parameters in the policy and value heads. Our model is

updated via minimizing the loss function displayed in Equation 3.1.

∇θ,ϕL(θ, ϕ) =
1

tmax

N∑
i=1

tmax∑
t=1

[−∇θ logπθ(at
i |o

t
i)(R

t
i − Vϕ(ot

i))

+β∇ϕ(Rt
i − Vϕ(ot

i))
2]

(4.8)

Here, Rt
i is the discounted total reward for agent i in an episode, and tmax is the

number of steps taken within a batch. Different threads in training share the

parameters,θ, andϕ, and calculate their own gradients. The threads synchronously

accumulate gradients and update θ and ϕ within each batch. A summary of

the training procedure of our multi-agent graph-attention communication model

is described in Algorithm Algorithm 1. In Algorithm Algorithm 1, we start by

initializing the number of agents alongside several training parameters, including

49

(a) Low difficulty Predator-Prey Environ-
ment with size 10 × 10 and 5 agents

(b) High difficulty Predator-Prey Environ-
ment with size 20 × 20, 10 agents

Figure 4.3: This figure displays the average steps taken to finish an episode as
training proceeds in each level of the Predator-Prey environment. The shaded
regions represent standard error. A lower value for steps taken on the vertical axis
is better.

threads, batch size, maximum steps in an episode, and maximum steps in a batch,

shown in Step 1. For each update per thread, we start by initializing a set of thread

parameters and a replay buffer, D, as displayed in Step 4. After receiving the initial

hidden state and observation for each agent (shown in Steps 7 and 8), we can

utilize the Scheduler (containing L sub-schedulers) to output adjacency graphs,

determining the communication pattern. The Message Processor (containing L

sub-processors) can use these graphs and the encoded messages from round zero

to produce messages for each agent, as shown in Steps 13 and 14. Once each agent

has its selected message inputs, we can determine an action probability distribution

from the policy and perform the action sampled from this distribution, shown in

Steps 15 and 16. Storing this information in our replay buffer, we can then complete

the episode and proceed to compute gradients with Equation 3.1, as shown in Step

26. Accumulating gradients across threads, we can update our policy and value

function, as shown in Steps 29 and 31.

50

4.3 Evaluation Environments

We utilize three domains, including the Predator-Prey [51], Traffic Junction [52]

and complex Google Research Football environment [53], to evaluate the utility

of the proposed communication protocol. Predator-Prey and Traffic Junction are

common MARL benchmarks [52, 55]. Google Research Football (GRF) presents a

difficult challenge, as it has sparse rewards, stochasticity, and adversarial agents.

4.3.1 Predator-Prey

We utilize the predator-prey environment from [51]. Here, there are N predators

with limited visions searching for a stationary prey. A predator or a prey occupies a

single cell within the grid world at any time, and its location is initialized randomly

at the start of each episode. The state at each point in the grid is the concatenation

of a one-hot vector that represents its own location and binary values indicating

the presence of predator and prey at this location. The observation of each agent

is a concatenated array of the states of all points within the agent’s vision. The

predators can take actions up, down, le f t, right or stay. We utilize the “mixed” mode

of Predator-Prey in which the predator incurs a reward −0.05 for each time step

until the prey is found. An episode is defined as successful if all the predators

find the prey before a predefined maximum time limit. We create two levels

of difficulty in this environment. The difficulty varies as the grid size, and the

number of predators increase, as more coordination is required to achieve success.

The corresponding grid sizes and the number of predators are set to 10 × 10 with

5 predators and 20 × 20 with 10 predators. We set the maximum steps for an

episode (i.e., termination condition) to be 40 and 80, respectively. The vision is set

to a unit length. We define a higher-performing algorithm in this domain as one

that minimizes the average steps to complete an episode. A depiction of the more

51

challenging variant of Predator-Prey (10-agent) is displayed in Figure 4.4.

Figure 4.4: The visualization of the 10-agent Predator-Prey task. The predators (in
red) with limited visions (light red region) of size one are searching for a randomly
initialized fixed prey (in blue).

4.3.2 Traffic Junction

The second domain we utilize is the Traffic Junction environment. This envi-

ronment, composed of intersecting routes and cars (agents) with limited vision,

requires communication to avoid collisions. Cars enter the traffic junction from all

entry points at each time step with a probability parrive, and are randomly assigned

a route at the start. The maximum number of cars in the environment at a specific

time is denoted as Nmax, which varies across difficulty levels. A car occupies one

cell at a time step and can take action “gas” or “brake” on its route. The state

of each cell is the concatenation of a one-hot vector representing its location, and

a value indicating the number of cars in this cell. The observation of each car is

the concatenation of its previous action, route identifier, and all states of the cells

within its vision. Two cars collide if they are in the same location, resulting in a

reward of −10 for each car. The simulation terminates once all agents reach the end

of its route or if the time surpasses the predefined timeout parameter. Collisions

52

Figure 4.5: The visualization of the hard level Traffic Junction task. This task
consists of four, two-way roads on a 18 × 18 grid with eight arrival points, each
with seven different routes. Each agent is with a limited vision of size 1.

will not incur “death” of agents or terminate the simulation. The agents will only

be “dead” when it reaches the end of its route. There is a time penalty −0.01τ at

each time step, where τ is the number of time steps that have passed since the

agent’s entry. An episode is considered successful if there are no collisions within

the episode.

We validate our algorithm on three difficulty levels. The easy level consists of

two, one-way roads on a 7 × 7 grid with at most five agents (Nmax = 5, parrive = 0.3).

For the medium level, the junction consists of two, two-way roads on a 14×14 grid

with at most ten agents in the domain (Nmax = 10, parrive = 0.2). Hard consists of four,

two-way roads on a 18×18 grid with at most twenty agents in the domain (Nmax = 20,

parrive = 0.05). The goal is to maximize the success rate (i.e., no collisions within

an episode). We display the hard level in Figure 4.5, where the domain consists of

four two-way roads on an 18 × 18 grid with eight arrival points, each with seven

different routes, and there are at most twenty agents (Nmax = 20, parrive = 0.05).

53

Figure 4.6: The visualization of 3 vs. 2 in Google Research Football. The five
people shown in this figure are three offending players, one defending player and
the goalie (left to right).

4.3.3 Google Research Football

Our final domain of Google Research Football [53] presents a challenging, mixed

cooperative-competitive, multi-agent scenario with high stochasticity and sparse

rewards. Google Research Football (GRF) is a physics-based 3D soccer simulator

for reinforcement learning. This last domain presents an additional challenge as

there are opponent artificial agents (AIs), significantly increasing the complexity

of the state-action space. We present a depiction of this environment in Figure 4.6.

To align with the partially observable setting, we extract the local observations

from the provided global observations. The local observations include the relative

positions of the players on both teams, the relative position of the ball, and one-

hot encoding vectors which represent the ball-owned team and the game mode.

GRF provides 19 actions, including moving actions, kicking actions, and other

actions such as dribbling, sliding, and sprint. GRF provides several pre-defined

reward signals, consisting of a scoring and a penalty box proximity reward. The

penalty box proximity reward is shaped to push attackers to move forward towards

certain locations. Many MARL frameworks have required these highly shaped

rewards functions to perform well [53]. However, we choose to use only the

54

scoring reward to verify the ability for our algorithm and baselines to function

in a high-complexity stochastic domain with sparse rewards. Accordingly, the

only reward all agents will receive in our evaluation is +1 when scoring a goal.

The termination criterion is the team scoring, ball out of bounds, or possession

change. We evaluate algorithms in the football academy scenario 3 vs. 2, where

we have 3 attackers vs. 1 defender, and 1 goalie. The three offending agents are

controlled by the MARL algorithm, and the two defending agents are controlled

by a built-in AI. We find that utilizing a 3 vs. 2 scenario challenges the robustness

of MARL algorithms to stochasticity and sparse rewards. In this domain, we

seek to maximize the average success rate (i.e., a goal is scored) and minimize the

average steps taken to complete an episode, thereby scoring a goal in the shortest

amount of time. We show in subsection 4.4.3 that our method outperforms all prior

state-of-the-art baselines.

Training Details: We distribute the training over 16 threads and each thread

runs batch learning with a batch size of 500. The threads share the parameters of

the policy network and update synchronously. There are 10 updates in one epoch.

We use RMSProp with a learning rate of 0.001 in all the domains except Predator-

Prey ten-agent scenario where we use 0.0003. The value coefficient β and discount

factor λ are set to 0.01 and 1 respectively. The size of each agent’s hidden state

for LSTM is 128. The sizes of original encoded messages and the final messages

for decision making are 128. 2/3 layers of GNNs have been used in practice and

shown to work well [164]. Empirically, we find that two rounds of communication

achieve the best performance with comparable training speeds to simpler methods

such as CommNet and IC3Net. As such, we use two rounds of communication

to test the performance of our method in all domains, and the number of heads

for the first GAT layer (sub-processor 1) is set to be 4, 4, 1 in Predator-Prey, Traffic

Junction and GRF respectively, and the number of heads for the output GAT layer

55

(sub-processor 2) is set to be 1. We use one-round communication for efficiency

evaluation for fair comparison, and the number of heads for the GAT layer is 1.

The output size of the GAT encoder in the Scheduler is set to 32. We implement our

method and baselines on each task over 5 random seeds and average the results.

We provide our code at https://github.com/CORE-Robotics-Lab/MAGIC.

4.4 Results and Discussion

In this section, we evaluate the performance of our proposed method on three

environments, including Predator-Prey [51], Traffic Junction [52], and Google Re-

search Football [53]. We benchmark our approach against a variety of state-of-

the-art communication-based MARL baselines, including CommNet [52], IC3Net

[51], GA-Comm [54], and TarMAC-IC3Net [55]. We implement our method and

baselines on each task, averaging the best performance at convergence over 5

random seeds. Following an analysis of performance, we evaluate MAGIC’s com-

munication efficiency, concluding MAGIC presents a new state-of-the-art in both

performance and efficiency in MARL.

4.4.1 Predator-Prey

Figure 4.3 depicts the average steps taken for the predators to locate the prey. In

Table 4.1: This table presents the number of steps taken to complete an episode at
convergence in Predator-Prey.

Method 10 × 10, 5 agents 20 × 20, 10 agents

MAGIC (Our Approach) 12.72 ± 0.03 32.88 ± 0.14
CommNet [52] 13.16 ± 0.04 73.12 ± 0.68
IC3Net [51] 15.60 ± 0.35 55.13 ± 4.80
TarMAC-IC3Net [55] 13.32 ± 0.11 36.16 ± 0.97
GA-Comm [54] 13.06 ± 0.09 35.78 ± 0.37

both the five- and ten-agent cases, our method converges faster and can achieve

56

https://github.com/CORE-Robotics-Lab/MAGIC

(a) Before prey found. (b) After prey found.

Figure 4.7: This figure displays the average steps taken to finish an episode as
training proceeds in each level of the Predator-Prey environment. The shaded
regions represent standard error. A lower value for steps taken on the vertical axis
is better.

better performance than the baselines. Our method converges 52% faster than the

next-quickest baseline while still achieving the highest performance. Figure 4.3

shows that as the number of agents increases, some baselines (CommNet and

IC3Net) are unable to learn a coherent policy. Table Table 4.1 shows the results of

average steps taken to reach the prey at convergence. While approaches such as

GA-Comm and TarMAC-IC3Net learn competitive policies for the five agent case,

these benchmarks perform much worse than our algorithm in the ten agent case,

suggesting a lack of scalability.

Predator-Prey Communication Heatmaps - Figure 4.7 depicts communication

heatmaps in Predator-Prey domain with 10 agents in an episode of 31 steps. The

color is associated with the probability of communication, with darker colors rep-

resenting more intensive communication between the two agents. The vertical axis

represents message receivers, and the horizontal axis represents message senders.

Agent 5 first reaches the prey at step 23, and the other 9 agents quickly reach the

prey in the following 7 steps. Figure 4.7a displays the communication before the

first agent (agent 5) reaches its prey and Figure 4.7b displays the communication

57

Figure 4.8: This figure displays the average number of epochs for convergence in
Traffic Junction with standard error bars.

Table 4.2: This table presents the success rate at convergence in Traffic Junction.

Method 7 × 7, 14 × 14, 18 × 18,

Nmax = 5, Nmax = 10, Nmax = 20,

parrive = 0.3 parrive = 0.2 parrive = 0.05

MAGIC (Our Approach) 99.9 ± 0.1 % 99.9 ± 0.1 % 98.0 ± 0.8 %
CommNet [52] 99.3 ± 0.6% 97.2 ± 0.3% 66.7 ± 1.6%
IC3Net [51] 97.8 ± 1.0% 96.0 ± 0.7% 85.4 ± 2.5%
TarMAC-IC3Net [55] 84.8 ± 4.5% 95.5 ± 1.3% 88.1 ± 1.9%
GA-Comm [54] 95.9 ± 0.1% 97.1 ± 0.7% 95.8 ± 1.1%

afterwards. We can see that agents communicate with each other intensively before

finding the prey. After finding the prey, communication becomes unnecessary, and

the learned communication graphs should be sparse, which is the behavior we see

in Figure 4.7b. This inspection supports that MAGIC learns to communicate only

when beneficial to team performance.

4.4.2 Traffic Junction

We evaluate our method in the Traffic Junction domain for the cases of a maximum

of 5 agents, 10 agents and 20 agents at a junction. Table Table 4.2 shows the success

rate (i.e., no collision in an episode) for each method at convergence in Traffic

Junction. Our algorithm achieves near-perfect performance after convergence,

widely outperforming all benchmarks in its success rate. Figure 4.8 depicts the

average number of epochs taken to converges for each method. Our method

58

Table 4.3: This table displays the success rate and average steps taken to finish an
episode in GRF.

Method Success Rate Steps Taken

MAGIC (Our Approach) 98.2 ± 1.0% 34.30 ± 1.34
Ours (without the Scheduler) 91.0 ± 4.6% 36.31 ± 2.59
CommNet [52] 59.2 ± 13.7% 39.32 ± 2.35
IC3Net [51] 70.0 ± 9.8% 40.37 ± 1.22
TarMAC-IC3Net [55] 73.5 ± 8.3% 41.53 ± 2.80
GA-Comm [54] 88.8 ± 3.9% 39.05 ± 3.05

maintains quick convergence as the number of agents increase. However, several

of the benchmarks experience a slowdown in their convergence rate.

Impact of the Message Processor - In Traffic Junction, we allow all agents to

communicate to accelerate training for all methods, common in highly vision-

limited environments [51]. As we are using complete graphs (i.e., Scheduler is not

used), our SOTA performance in the Traffic Junction domain displays that the MP

considerably contributes to the success of our algorithm.

4.4.3 Google Research Football

Figure 4.9: This figure displays the success rate in GRF as training proceeds.
As shown, our method achieves the highest performance, acheiving near-perfect
success at scoring.

Lastly, we evaluate our algorithm and several state-of-the-art MARL baselines

in the GRF environment. The results presented provide some insight into each

algorithm’s ability to handle stochasticity, sparse rewards, and a high-complexity

59

state-action space. We utilize the scoring success rate as our metric of evaluation.

Impact of the Scheduler - We verify the impact of the Scheduler mechanism

in MAGIC by testing our method without the use of the Scheduler. As seen, the

addition of a Scheduler provides a performance improvement. This result signifies

the importance of determining “when” and “whom” to communicate with.

Figure 4.9 displays the success rate for offending agents to score as the training

proceeds. Our method converges to a higher-performing policy than all the base-

lines. While utilizing the Scheduler may adversely affect early performance, it leads

to a significant improvement in the performance of our method. In our settings,

although each agent only has local observations, it is able to completely observe the

state space. MAGIC without the ability to utilize a scheduler performs poorly. It is

interesting to note that even with unlimited vision, utilizing a complete graph for

communication performs much worse than utilizing a scheduler that gives precise

and targeted communication. Table Table 4.3 displays the success rate and average

steps taken to finish an episode at convergence. Our method has a success rate of

98.5%, which is approximately a 10.5% improvement over the next-best baseline

of GA-Comm. Furthermore, our method has approximately a 8x lower average

variance than others at convergence. Even though we do not have rewards or time

penalties on finishing an episode, and the discount factor is set to 1, we find our

learned policy can still score within a short time. Our method achieves the lowest

number of average steps, scoring 13.8% more quickly than the closest benchmark

of GA-Comm. As we have have outperformed all benchmarks within the previous

two domains and in the complex GRF environment, we conclude that our method

of “Multi-Agent Graph-attentIon Communication” (MAGIC) is high-performing,

scales well to the number of agents, robust to stochasticity, and performs well with

sparse rewards.

60

4.4.4 Communication Efficiency

We present an analysis of the communication efficiency of our method in Table

Table 4.4. Communicating efficiently can save resources and allow for messages

to be processed more easily. To gauge the efficiency, we utilize the performance

improvement due to communication and divide the communication graph den-

sity. The results here are averaged over 3 random seeds. The graph densities are

determined using the sparsity of the adjacency matrix. A fully-connected graph

corresponds to a density of 1, and a graph with no connections corresponds to

a density of 0. We perform this analysis within a Predator-Prey domain of grid

size 5x5 with 3 predators, where a performance improvement refers to a reduc-

tion in steps. To obtain the performance improvement due to communication,

we evaluate a communication-blocked variant of each method and compare the

performance to the method itself. All methods use the same message size and one

round of communication, as some baselines do not support multi-round communi-

cation. Utilizing the performance improvement due to communication divided by

the graph density as our metric for communication efficiency, we see that MAGIC

is the most efficient. MAGIC communicates 27.4% more efficiently on average

than baselines while also achieving the highest performance within this domain.

Alongside achieving state-of-the-art performance, we are able to most efficiently

send and receive messages, displaying the strength of our method.

Impact of the combined framework of MAGIC - As we compare each method to

its non-communicatory variant, in MAGIC, this results in removing the Scheduler

and Message Processor. Comparing the variants, MAGIC achieves the greatest per-

formance improvement compared to other baselines, displaying the contribution

from the combined effects of the Scheduler and Message Processor.

61

Table 4.4: Communication efficiency measured as the performance improvement
with communication divided by graph density.

Method Graph Avg. Steps Performance Improvement
DensityDensity w/ Comms Improvement

MAGIC (Our Approach) 0.644 8.504 7.562 11.743
CommNet [52] 0.667 9.216 6.455 9.681
IC3Net [51] 0.638 9.208 6.421 10.058
TarMAC-IC3Net[55] 0.856 9.376 5.958 6.956
GA-Comm [54] 0.514 9.334 5.868 11.391

4.4.5 Discussion

Across multiple test domains, we set a new state-of-the-art in MARL performance,

outperforming baselines, including [52, 51, 54, 55]. Across our domains, we achieve

an average 5.8% improvement in steps taken (Predator-Prey), average 1.9% im-

provement in success rate (Traffic Junction), 10.5% improvement in success rate

(GRF), and 13.8% improvement in steps taken compared to the closest bench-

mark which varies across each domain. The strong performance improvement we

achieve in GRF suggests our approach is better able to scale to high-dimension

state-action spaces while effectively handling stochasticity and sparse rewards.

While our architecture shares some attributes as GA-Comm [54], GA-Comm has

several drawbacks including large epoch training times due to its bi-directional

LSTM in its hard attention mechanism, a dot-product soft attention mechanism

without scaling, and the inability to extend to multi-round communication. Our

approach takes significantly less compute by avoiding any recurrent structures in

the Scheduler. Specifically, GA-Comm requires 2x long to train with 3 agents, 3x

long with 5 agents, and 4x as long with 10 agents. Prior work [174] has also shown

that additive attention (used in the GAT layers in our Message Processor (MP))

outperforms dot-product attention without scaling when the message size is large.

MAGIC’s Scheduler can explicitly learn and generate different graphs for different

62

rounds of communication, allowing for higher performance. Additionally, MAGIC

achieves the highest ratio of performance improvement to communication graph

density, outperforming benchmarks by 27.4% on average.

4.5 Physical Robot Demonstration

We present a demonstration of our algorithm in a similar 3-vs.-2 soccer scenario on

physical robots in the Robotarium, a remotely accessible swarm robotics research

platform [175]. This demonstration displays the feasibility of trajectories produced

by our MARL algorithm. We present a depiction of MAGIC’s deployed trajectory

in Figure 4.10. A video is attached in the supplementary.

Figure 4.10: This figure displays a demonstration of our algorithm on physical
robots on the Robotarium platform. The display shows a 3 vs. 2 soccer scenario,
with blue agents as the attackers, and red agents as defenders.

4.6 Conclusion

In this chapter, we propose a novel, end-to-end-trainable, graph-attention com-

munication protocol, MAGIC, that utilizes a Scheduler to solve the problems of

when to communicate and whom to address messages to, and a Message Proces-

sor to integrate and process messages. We evaluate our method and baselines in

63

http://tiny.cc/qx1ftz

several environments, including Predator-Prey, Traffic Junction, and the more com-

plex Google Research Football, achieving state-of-the-art performance. In GRF, we

achieve a 98.5%, near-perfect success rate in scoring, while most baselines struggle

to reach 70%. Not only does MAGIC produce state-of-the-art results, MAGIC is able

to converge 52% faster than the next-quickest baseline, and communicates 27.4%

more efficiently than the average baseline. Finally, we demonstrate feasibility of

MAGIC on a physical robot testbed.

64

Algorithm 1 Training Multi-Agent Graph-attentIon Communication (MAGIC)

1: Initialize max updates M, agents N, threads L, max steps in an episode Te, max
steps in a batch Tb

2: for update = 1 to M do dθ← 0, dϕ← 0
3: for thread k = 1 to K do in parallel
4: Initialize params θk ← θ, ϕk ← ϕ, buffer D, step-count t← 1
5: while t < Tb do
6: Initialize thread step counter t′ ← 1
7: Initialize ht−1

i , ct−1
i for each agent i

8: Reset environment and get ot
i for each agent i

9: while t′ < Te and not terminal do
10: ht

i , c
t
i = LSTM(e(ot

i), h
t−1
i , ct−1

i) for each agent i
11: mt(0)

i = em(ht
i) for each agent i

12: {Gt(l)
}
L
1 = fSched

(
mt(0)

1 , · · · ,mt(0)
N

)
13: {mt(L)

i }
N
1 = fMP

(
mt(0)

1 , · · · ,mt(0)
N ,Gt(1), · · · ,Gt(L)

)
14: mt

i = e′m(mt(L)
i) for each agent i

15: Calculate πθk(a
t
i |o

t
i) and Vϕk(o

t
i) for each agent i

16: Perform at
i ∼ πθk(a

t
i |o

t
i) for each agent i

17: Receive rt
i and ot+1

i for each agent i
18: Store (ot

i , a
t
i , πθk(a

t
i |o

t
i),Vϕk(o

t
i), r

t
i , o

t+1
i) in D

19: t← t + 1, t′ ← t′ + 1
20: end while
21: end while
22: tmax ← t
23: for t = tmax, tmax − 1, · · · , 1 do
24: Rt

i = 0 if ot+1
i is terminal else Rt

i = rt
i + γRt+1

i using D
25: end for
26: Calculate dθk and dϕk using D with Equation 4.8
27: end for
28: for thread k = 1 to K do
29: Accumulate gradients: dθ← dθ + dθk, dϕ← dϕ + dϕk

30: end for
31: Perform update of θ using dθ, and of ϕ using dϕ
32: end for

65

CHAPTER 5

MULTI-AGENT COORDINATION FOR HETEROGENEOUS AGENTS

In this chapter, we design a multi-agent coordination algorithm, Heterogeneous

Policy Networks (HetNet) [7], to learn efficient and diverse communication models

for coordinating cooperative heterogeneous teams. Utilizing our novel formulation

with multi-agent reinforcement learning, we see that we can utilize simulation to

produce high-performance collaborative policies for heterogeneous teammates that

may have different capabilities and/or access to different sensory information.

5.1 Introduction

High-performing human teams benefit from communication to build and main-

tain shared mental models to improve team effectiveness [25, 176]. Information

sharing is key in building team cognition, and enables teammates to cooperate to

successfully achieve shared goals [24, 176]. Typical communication patterns across

human teams widely differ based on the task or role the human assumes [29]. The

field of MARL [77] has sought to develop agents that autonomously learn coordi-

nation and communication strategies to emulate high-performing human-human

teams [83, 177, 178, 167, 168]. Yet, these approaches have fallen short in properly

modeling heterogeneity and communication overhead in teaming [82, 55, 179, 180].

Heterogeneity in robots’ design characteristics and their roles are introduced to

leverage the relative merits of different agents and their capabilities [181, 182, 183]

We define a heterogeneous robot team as a group of cooperative agents that are

capable of performing different tasks and may have access to different sensory in-

formation. We categorize agents with similar state, action, and observation spaces

in the same class. In such a heterogeneous setting, communicating is not straightfor-

66

ward as agents do not speak the same “language”; we consider scenarios in which

agents have different action-spaces and observation inputs from the environment

(i.e., due to different sensors) or may not even have access to any observation input

(i.e., lack of sensors, broken or low-quality sensors). The dependency generated via

sensor-lax or sensor-void agents on agents with strong sensing capabilities makes

efficient communication protocols for cooperation a requirement rather than an

additional modeling technique for performance improvement.

While MARL researchers have increasingly focused on developing computa-

tional models of team communication [6], most of these prior frameworks fail to ex-

plicitly model the heterogeneity of composite teams and fail to explicitly quantify and

reduce the team’s communication overhead to support decentralized, bandwidth-

limited teaming. We define a composite team as a group of heterogeneous agents

that perform different tasks according to their respective capabilities while their

tasks are co-dependent on accomplishing an overarching mission [184, 185, 182].

Agents in a composite team can inherently have different state, action, and obser-

vation spaces and yet, must still communicate essential information. Without a

proper model for teaming, heterogeneous agents will not be able to reason about

the heterogeneity in their team and share information accordingly to achieve team

cognition. Therefore, communication may become unhelpful and deteriorate the

MARL performance. More recent prior work, such as MAGIC [6], utilized central-

ized schedulers and focused on communication efficiency to achieve improved high

team performance. In this work, we intend to push the boundaries beyond this

goal and seek to significantly reduce the bandwidth needs for communication to

minimize communication overhead and facilitate practical implementation of our

framework by designing a decentralized execution paradigm.

Inspired by heterogeneous communication patterns across human teams, we

propose Heterogeneous Policy Networks (HetNet) to learn efficient and diverse

67

communication models for coordinating cooperative heterogeneous robot teams.

The key to our approach is the design of an end-to-end communication learning

model with a differentiable encoder-decoder channel to account for the hetero-

geneity of inter-class messages, “translating” the encoded messages into a shared,

intermediate language among agents of a composite team. Our empirical vali-

dation shows that HetNet’s novel graph-based architecture achieves a new SOTA

in learning emergent cooperative behaviors in complex, heterogeneous domains.

HetNet achieves this result while also reducing communication overhead through

intelligent message binarization, compressing the number of communicated bits

needed by more than 200× per round of communication over the best performing

baseline.

Contributions:

1. We develop a novel, end-to-end heterogeneous graph-attention architecture

for MARL that facilitates learning efficient, heterogeneous communication

protocols among cooperating agents to accomplish a shared task.

2. We design a differentiable encoder-decoder communication channel to learn

efficient binary representations of states as an intermediate language among

agents of different types to improve their cooperativity. Our binarized com-

munication model achieves 200× reduction in the number of communicated

bits per round of communication over baselines while also setting a new

SOTA in team performance.

3. We develop Multi-Agent Heterogeneous Actor-Critic (MAHAC) to learn

class-wise cooperation policies in composite robot teams. Our results show

the per-class critic structure achieves better performance over a centralized

critic while having fewer model parameters than a per-agent critic.

4. We present empirical evidence that show HetNet is robust to varying band-

68

width limitations and team compositions, setting a new SOTA in learning

emergent cooperative policies by achieving at least an 8.1% to 434.7% perfor-

mance improvement over baselines and across domains.

5.2 Problem Formulation

Founding on a standard Partially Observable MDP (POMDP) [186], we formu-

late a new problem setup termed as Multi-Agent Heterogeneous POMDP (MAH-

POMDP), which can be represented by a 9-tuple ⟨C,N , {S(i)
}i∈C, {A(i)

}i∈C, {Ω(i)
}i∈C, {Oi

}i∈C, r,T , γ⟩.

C is set of all available agent classes in the composite robot team and the index

i ∈ C shows the agent class. N =
∑
⟨i∈C⟩N(i) is the total number of collaborating

agents where N(i) represents the number of agents in class i. {S(i)
}i∈C is a dis-

crete joint set of state-spaces. For each class-dependent state-space, S(i), we have

S
(i) =

[
si1

t , s
i2
t , · · · , s

iN(i)

t

]
, where si j

t represents the state-vector of agent j of the i-th

class, at time t. {A(i)
}i∈C, is a discrete joint set of action-spaces. For each state-

dependent action-space, A(i), we have A(i) =
[
ai1

t , a
i2
t , · · · , a

iN(i)

t

]
, forming the joint

action-vector of agents of class i at time t. {Ω(i)
}i∈C is similarly defined as the

joint set of observation-spaces, including class-specific observations. γ ∈ [0, 1) is

the temporal discount factor for each unit of time and T is the state transition

probability density function.

At each timestep, t, each agent, j, of the i-th class can receive (if the observation

input is enabled for class i) a partial observation oi j

t ∈ Ω
(i) according to some class-

specific observation function {O(i)
}i∈C : oi j

t ∼ O
(i)(·|s̄). If the environment observation

is not available for agents of class i, agents in the respective class will not receive any

input from the environment (e.g., lack of sensory inputs). Regardless of receiving

an observation or not, at each time, t, each agent, j, of class i, takes an action, ai j

t ,

forming a joint action vector ā =
(
a11

t , a
12
t , · · · , a

i1
t , · · · , a

i j

t

)
. When agents take the joint

action ā, in the joint state s̄ and depending on the next joint-state, they receive an

69

Figure 5.1: Overview of our multi-agent heterogeneous attentional communication
architecture in a CTDE paradigm. At each time point t = t0, each agent j of class i
generates a local embedding from its own inputs, by passing its input data through
class-specific preprocessing units (i.e., a CNN or a fully-connected NN) and an
LSTM cell. Each agent then sends the embedding to a class-specific encoder-
decoder networks to generate a binarized message, m jk

t , from its local neighbor
k. The message information is decoded and leveraged by the receiving agent to
compute the action probabilities as its policy output.

immediate reward, r(s̄, ā) ∈ R, shared by all agents and regardless of their classes.

Our objective is to learn optimal policies per existing agent-class to solve the MAH-

POMDP by maximizing the total expected, discounted reward accumulated by

agents over an infinite horizon, i.e., arg maxπ(s̄)∈ΠEπ(s̄)

[∑
∞

k=0 γ
krt+k|π(s̄)

]
.

5.3 Method

In this section, we first present an overview of the communication problems and

constraints considered in our work. We then describe how to construct a hetero-

geneous graph given a problem state and present the building block layer, which

we refer to as Heterogeneous Graph-Attention (HetGAT) layer, and develop a bi-

70

narized encoder-decoder communication channel to account for the heterogeneity

of messages passed among agents. Eventually, we cover the logistics of utilizing

HetGAT layers to assemble our heterogeneous policy network, HetNet, of arbitrary

depth.

5.3.1 Communication Problem Overview

In this work, we are concerned with the problem of coordinating a robot team

via fostering direct communication among interacting agents. We consider MARL

problems wherein multiple agents interact in a single environment to accomplish a

task which is of a cooperative nature. We are particularly interested in scenarios in

which the agents are heterogeneous in their capabilities, meaning agents can have

different state, action and observation spaces in forming a composite team. To

collaborate effectively, agents must share messages that express their observations

under a Centralized Training and Distributed Execution (CTDE) paradigm [79, 88].

In learning an end-to-end communication model, we take a series of problems

and constraints into consideration: (1) heterogeneous messages, where agents of

different classes have different action and observation spaces, resulting in different

interpretations of sent/received messages; (2) Attentional and scalable communica-

tion protocols, such that agents incorporate attention coefficients depending on the

agent/class they are communicating with for coordinating with teammates in any

arbitrary team sizes; (3) Learning communication models for Low-Size, -Weight,

and -Power (Low-SWAP) systems, where due to limited communication band-

width, agents must learn to communicate in a highly efficient shared intermediate

“language” (e.g., limited-length binarized messages); (4) Limited-range communi-

cations, where agents can only exchange messages when they are within a close

proximity.

71

5.3.2 Heterogeneous Communication Model

GNNs previously used in MARL operate on homogeneous graphs to learn a uni-

versal feature update and communication scheme for all agents [95, 91, 54, 6],

which fails to explicitly model the heterogeneity among agents. We instead cast

the cooperative MARL problem into a heterogeneous graph structure, and propose

a novel heterogeneous graph-attention network capable of learning diverse com-

munication strategies based on agent classes. Compared to homogeneous graphs,

a heterogeneous graph can have nodes and edges of different types that can have

different types of attributes. This advantage greatly increases a graph’s expressivity

and enables straightforward modeling of complicated, composite teams.

Given our MAH-POMDP formulation in section 5.2, we directly model each

agent class i ∈ C as a unique node type. This approach allows agents to have dif-

ferent types of state-space content, S(i), as input features according to their classes,

as well as enabling different types of action spaces,A(i). Communication channels

between agents are modeled as directed edges connecting the corresponding agent

nodes. When two agents move to a close proximity of each other such that those

agents fall within communication range, we add bidirectional edges to allow mes-

sage passing between them. We use different edge types to model different class

combinations of the sender and receiver agents to allow for learning heterogeneous

communication protocols and intermediate representations.

To form our novel architecture for modeling heterogeneous interactions, we

add a State Embedding Node (SEN) into the heterogeneous graph to train a critic

network. SEN serves as a central node where we aggregate all the important

meta-data from the MARL environment (i.e., number of agents, N , world size,

current time step, etc.) and use the embeddings for critic training. The SEN forms

a one-way connection to the agent nodes (i.e., from an agent to the SEN) to receive

messages from them during training. The SEN’s learned embeddings are used as

72

input of a critic network consisting of one Fully-Connected (FC) layer for state-

dependent value estimation. We note that, since there are no edges pointing from

the SEN to any agent nodes, during the execution phase, the SEN can be safely

removed without affecting an agent’s own policy output, which complies with our

underlying CTDE paradigm.

Accordingly, we present an overview of our multi-agent heterogeneous atten-

tional communication architecture in Figure 5.1. At each time, t, the features of

each agent (i.e., each node of the heterogeneous graph) are generated through a

class-specific feature preprocessor. We utilize separate modules to preprocess an

agent’s state-vector, si j

t , and observation, oi j

t , since depending on the agent’s class,

the environment observation input may not be available (e.g., an action agent in

a perception-action composite team). Each preprocecssing module contains one

CNN or a fully-connected unit followed by one LSTM cell to enable reasoning

about temporal information. As shown in Figure 5.1, the generated embeddings

are then passed into a HetGAT communication channel including a class-specific

encoder-decoder network and a Gumbel-Softmax [172] unit to generate a binarized

message, mt, for an agent, j.

5.3.3 Binarized Communication Channels

The feature update process in a HetGAT layer is conducted in two steps: per-edge-

type message passing followed by per-node-type feature reduction. When modeling

multi-agent teams, we reformulate the computation process into two phases: a

sender phase and a receiver phase. Figure 5.2 shows the computation flow during

the sender and receiver phases for an agent, j, of class i.

During the sender phase, the agent, j, of class i ∈ C, processes its input feature,

h j, using a class-specific weight matrix, ωi ∈ Rd′×d, where d and d′ are the input

and output feature dimensions, respectively. The agent also transforms h j into the

73

Figure 5.2: The sender and receiver phases of the feature update process in a
HetGAT layer for one agent, j, of class i.

assigned message dimension using a class-specific encoder, ωenc
i ∈ R

n×d, where n is

the communication channel band-width. Next, we leverage a universal binariza-

tion process utilizing Gumbel-Softmax to convert the message into 0s and 1s for all

classes as an efficient, intermediate language. The binarized message is then sent

to neighboring agents.

During the receiver phase, agent, j, of class i, processes all the received messages

74

using a class-specific decoder, ωdec
i ∈ R

d′×n. Next, for each type of communication

edge that an agent is connected to, the HetGAT layer computes per-edge-type

aggregation result by weighing received messages, along the same edge-type with

normalized attention coefficients, αedgeType. The aggregation results are then merged

with the agent’s own transformed embedding,ωih j, to compute the output features.

The feature update formula for an agent is shown in Eq. Equation 5.1, where j and

k are agent indexes and, i, l ∈ C are class indexes; such that, i2l is an edgeType

and means “from class i to class l”. m jk
t is the decoded message computed by

Eq. Equation 5.2 and, ∆l(j) include agent j’s neighbors that belong to class l.

Class (i) : h̄′j = σ
(
ωih̄ j +

∑
l∈C

∑
k∈Nl(j)

αi2l
jk m jk

t

)
(5.1)

m jk
t = ω

dec
i (GumbelSoftmax(ωenc

l hk)) (5.2)

Note that we have l = i for intra-class communication. When computing attention

coefficients in a heterogeneous graph, we adapt Eq. Equation 3.2 into Eq. Equa-

tion 5.3 to account for heterogeneous channels.

αi2l
jk = softmaxk

(
σ′
(
W̄T

att

[
ωih̄ j ∥ ωi2lh̄k

]))
(5.3)

As discussed in subsection 5.3.2, we add an SEN to the graph during centralized

training with a state-dependent critic network. The feature update formula of the

SEN is shown in Eq. Equation 5.4. Here, feature vectors from all agents are passed

to the SEN after being processed with edge-specific weights,ωedgeType. The attention

coefficients for the SEN are computed in a similar manner as in Eq. Equation 5.3.

SEN : h̄′s = σ
(
ωsh̄s +

∑
i∈C

∑
j∈N(i)

αi2sen
sj ωi2senh̄ j

)
(5.4)

75

To stabilize the learning process, we adapt the multi-head extension of the attention

mechanism [164] to fit our heterogeneous setting. We use L independent HetGAT

(sub-)layers to compute node features in parallel and then merge the results by

concatenation operation for each multi-head sub-layer in HetNet except for the last

layer which employs averaging. As a result, each type of communication channel

is split into L independent, parallel sub-channels.

5.3.4 Heterogeneous Policy Network (HetNet)

At each timestep, t, a HetGAT layer corresponds to one round of message exchange

between neighboring agents and feature update within each agent. By stacking

several HetGAT layers, we construct the Heterogeneous Policy Network (HetNet)

model that utilizes multi-round communication to extract high-level embeddings

of each agent for decision-making. For the last HetGAT layer in HetNet, we set

each agent’s output feature dimension to the size of its action-space, specific to its

class, i. Then, for each agent node, we add a Softmax layer on top of its output to

obtain a probability distribution over actions that can be used for action sampling,

resulting in class-wise stochastic policies. Accordingly, the computation process

of each agent’s policy remains local for distributed execution, and the SEN is no

longer needed during execution/testing.

5.4 Training and Execution

5.4.1 Multi-agent Heterogeneous Actor-Critic

We present our modified Multi-Agent Heterogeneous Actor-Critic (MAHAC) frame-

work for learning class-wise coordination policies. We assign one policy per ex-

isting class, πi
∈ {Π}C, each of which is parametrized by θi. The trained actor

network on the heterogeneous graph contains one set of learnable weights per

agent class, which due to the message-passing nature of GNN updates, can be

76

distributed to individual agents in the execution phase. Accordingly, in MAHAC,

the policy for each class, πi, is updated by a variant of the basic AC objective (see

section 3.4, shown in Eq. Equation 5.5. We leverage an on-policy training paradigm

for MAHAC.

∇θi J(θi) =

1
N

N
(i)∑

j=1

T∑
t=1

∇θi logπi
(
āi j

t |ō
i j

t , m̄t

) 
 T∑

t′=t

γt′−tri j (s̄i j , āi j)

 − b(t)

 (5.5)

In Eq. Equation 5.5, āi j

t and ōi j

t represent the joint actions taken and joint observations

received (if applicable for class i) by agents at time, t. m̄t represents the message-

vector received by agent j from its neighbors. The term
∑T

t′=t γ
t′−tri j(s̄i j , āi j) calculates

the total discounted future reward from current timestep to end of an episode.

Moreover, b(t) is a temporal baseline function leveraged to reduce the variance

of the gradient updates in MAHAC. We utilize the value-estimates via our critic

network as the baseline function [187]1.

5.4.2 Critic Architecture Design for HetNet

In this section, we propose and assess several MAHAC architectures to investigate

the utility of: (1) fully-centralized critic, b(t) (i.e., one critic signal for all), (2) per-class

critics, bi(t) (i.e., one critic signal per class of agents) and (3) per-agent critics, bi j(t)

(i.e., individual critic signals for each agent) to learn class-wise policies.

In the fully-centralized critic implementation for HetNet, we stack an FC layer

on top of SEN’s output feature for critic prediction of the value estimate. The

same predicted critic value is used in the policy gradient update for all agents of

all classes. The target value for training the critic output is the average returns

(i.e., discounted sum of future rewards) over all agents. Thus, in this architecture

one centralized critic network “criticizes” the actions of all agents. Note that

1We provide our code at https://github.com/CORE-Robotics-Lab/HetNet

77

https://github.com/CORE-Robotics-Lab/HetNet

this approach still complies with our CTDE paradigm, since the actor network is

implemented on a GNN structure.

For the per-class critic implementation, we split the critic head into one critic

head per existing agent class to separate the critic estimation for different types of

agents. The critic split is done while the critic is estimated based on a class-specific

SEN’s output feature. During training, the target value for each class of critic

output is the average returns over the same class of agents. Algorithm Algorithm 2

provides a pseudocode to train HetNet with the per-class critic architecture.

In our per-agent critic implementation for HetNet, the critic network outputs

one critic value for each agent. This is achieved by concatenating the SEN’s output

feature with each agent node’s output embedding to serve as the input of class-

specific critic heads. The per-agent critic estimation is used for each agent’s policy

update where the target value for training is the returns of that agent.

5.5 Empirical Evaluation

5.5.1 Evaluation Environments

We evaluate the utility of HetNet against several baselines in three cooperative

MARL domains (a homogeneous and two heterogeneous) that require learning

collaborative behaviors.

Predator-Prey (PP) [51] – For the homogeneous domain, we adopt the Predator-

Prey (PP) [51] in which the goal is for N predator agents with limited vision to

find a stationary prey and move to its location. The agents in this domain are

homogeneous in their state, observation, and action spaces, and thus, all agents are

of the same class.

Predator-Capture-Prey (PCP) – For the first heterogeneous domain, we modify

the PP to create a new environment, which we refer to as Predator-Capture-Prey

(PCP), to include a composite team. In PCP, we have two classes of agents: predator

78

Algorithm 2 The Per-class training procedure for HetNet.

1: Input: Agent classes, i ∈ C, number of agents in each class, N (i), number of
episodes per epoch K, maximum allowed steps for each episode, T, learning
rate, η.

2: Initialize: Per-class policy parameters {θi
} for {πi

} and per-class critic parame-
ters {ϕi

} for {Vi
}, i ∈ C

3: while not converged do
4: Sample a random environment instance
5: for k = 1 to K do
6: Get initial observations {o11

1 , o
12
1 , ..., o

i j

1 }, i ∈ C, j ∈ N (i)

7: for t = 1 to T do
8: Perform message passing and feature reduction
9: Store critic predictions {Vi

t}, i ∈ C
10: Sample actions: ai j

t ∼ π
i(∗ | oi j

t), i ∈ C, j ∈ N (i)

11: Step through environment using {a11
t , a

12
t , · · · , a

i j

t }, receive next observa-
tions and rewards: {o11

t+1, o
12
t+1, ..., o

i j

t+1}, {r
11
t , r

12
t , ..., r

i j

t }

12: if environment solved then: Terminate early end if
13: end for
14: end for
15: for i ∈ C do
16: Compute rewards-to-go Ri

t and GAE advantages Ai
t

17: ∇J(θi) = 1
N

∑
N

(i)

j=1
∑T

t=1 ∇ logπi
(
ai j

t |o
i j

t

)
Ai

t

18: Critic loss: L(Vi) = 1
N

∑
N

(i)

j=1
∑T

t=1

(
Vi

t − Ri
t

)2
19: Joint update: θi = θi + η∇J(θi), ϕi = ϕi

− η∇L(Vi)
20: end for
21: end while

agents and capture agents. The first class of agent, called the predator agents, have the

goal of discovering the prey and have an action-space of dimension five, including

cardinal movements and a null (stay) action. Predator agents have an observation

space similar to the agents in PP domain. The second class of agents, called the

capture agents, have the objective of locating the prey and capturing it. Capture

agents differ from the predator agents in both their observation and their action

spaces. Capture agents do not receive any observation inputs from the environment

(i.e., no scanning sensors) and have an additional action of capture-prey in their

action-space. This additional action must be used at a prey’s location to capture

79

the prey. Note that this domain is an explicit example of the perception-action

composite teams, as introduced in Section 6.1. An episode is deemed successful

once all agents have completed their class-specific objectives. Each predator agent

is penalized with -0.05 reward every timestep until it has discovered the prey. Each

capture agent is also penalized with -0.05 every timestep until it has captured (i.e.,

find the prey and then capture it) the prey. Note the difference in reward scheme,

a capture agent may have discovered the prey but will receive a negative reward

until the capture-action is utilized. We utilize PCP as a testbed for several test

heterogeneous interactions. In our head-to-head evaluation against baselines, we

utilize a problem with two predator agents and one capture agent within a 5x5 grid.

We set the maximum steps for an episode to be 80.

FireCommander (FC) [188] – In the second heterogeneous domain, the FireCom-

mander [188], two classes of perception and action agents must collaborate as a

composite team to extinguish a propagating firespot. FireCommander can be cate-

gorized as a strategic game, in which a composite team of robots (i.e., UAVs) must

collaboratively find hidden areas of propagating wildfire and extinguish the fire in

such areas as fast as possible. At each timestep, the firespot propagates to a new

location according to the FARSITE [189] model, while the previous location is still

on fire. All firespots are initially hidden to agents and need to be discovered before

being extinguished. The robot team in FC is composed of two classes of agents: (1)

perception agents (class P), which can only sense the environment and detect areas

of fire and, (2) action agents (class A), which can only manipulate the environment

by extinguishing a firespot which has already been detected by class P agents.

Neither class P, nor class A agents are capable of accomplishing the task on their

own, and therefore must communicate and collaborate. Under the notations in our

problem formulation in section 5.2, we have C = {P,A} where, A(P) = {1, 2, · · · , 4}

representing the four primitive motions andA(A) = {1, · · · , 5}, representing the four

80

Table 5.1: Reported results are Mean (± Standard Error (SE)) from 50 evaluation
trials. For all tests, the final training policy at convergence is used for each method.
As shown, HetNet outperforms all baselines in all three domains.

Method
Homogeneous Domain (PP) Heterogeneous Domain #1 (PCP) Heterogeneous Domain #2 (FC)
Avg. Avg. Steps Avg. Avg. Steps Avg. Avg. Steps
Cumulative R Taken Cumulative R Taken Cumulative R Taken

TarMAC [55] -0.563 ± 0.030 18.4 ± 0.46 -0.548 ± 0.031 17.0 ± 0.80 -109.2 ± 6.26 248.1 ± 6.97
IC3Net [51] -0.342 ± 0.015 9.69 ± 0.26 -0.411 ± 0.019 11.5 ± 0.37 -187.2 ± 0.79 276.0 ± 5.51
CommNet [52] -0.336 ± 0.012 8.97 ± 0.25 -0.394 ± 0.019 11.3 ± 0.34 -253.2 ± 1.01 292.7 ± 3.07
MAGIC [6] -0.386 ± 0.024 10.6 ± 0.50 -0.394 ± 0.017 10.8 ± 0.45 -267.6 ± 10.9 298.1 ± 23.3
HetNet [Ours] -0.232 ± 0.010 8.30 ± 0.25 -0.364 ± 0.017 9.98 ± 0.36 -9.862 ± 2.77 46.40 ± 2.90

primitive motions and an extra action which corresponds to extinguishing fire by

dousing water. Agents of class P are equipped with fire detection sensors and can

observe the environment, receiving an input vector of length 29 for each grid within

their FOV. Agents of class A, do not receive any observation from the environment.

The reward scheme in this domain includes a small temporal penalty of -0.1 per

timestep for all agents, a false water-drop penalty of -0.1 for action agents, a -0.1

penalty per new firespot for all agents, and a positive reward of +10 for all agents

per each extinguished firespot. In our head-to-head evaluation against baselines,

we utilize a problem with two perception agents and one action agent within a 5x5

grid and one initial firespot that propagates to a new location at each timestep,

leaving the previous grid on fire. We set the maximum steps for an episode to be

300. An episode of the game is marked as successful only if all the active firespots

within the map are discovered and extinguished.

5.5.2 Baselines

We benchmark two variants of our framework, i.e. HetNet-Binary and HetNet-

Real, against four end-to-end communicative MARL baselines: (1) CommNet [52],

(2) IC3Net [51], (3) TarMAC [55] and, (4) MAGIC [6]. For our HetNet-Real vari-

ant, we remove the binarization process (i.e., Gumbel-Softmax) and the encoder-

decoder network from the communication channel. Accordingly, agents directly

81

send their generated embeddings (i.e., the LSTM cell output) to a class-specific

communication edge in HetGAT layers. The HetNet-Real utilizes continuous,

agent-specific embeddings to generate limited-length, real-valued numbers which

allow for greater expressivity in the message-space. The real-valued numbers re-

quire more communication band-width and higher memory storage as compared

to HetNet-Binary (see subsection 5.5.3). We note that, for all four baselines, i.e.

CommNet [52], IC3Net [51], TarMAC [55] and, MAGIC [6], we directly pulled the

respective authors’ publicly available code-bases and hyperparameters for train-

ing. Note that we observed some performance discrepancies while directly using

MAGIC’s public repository (i.e., github.com/MAGIC).

5.5.3 Results, Ablation Studies, and Discussion

Here, we empirically validate the performance of our frameworks, across homoge-

neous and heterogeneous teaming domains and against the introduced baselines.

Next, we present an ablation study to investigate the required communication over-

head for each method (subsubsection 5.5.3). We then present evidence to support

the effects of communication on collaboration performance (subsubsection 5.5.3)

as well as to determine the sensitivity of HetNet to key variables such as num-

ber of agents (subsubsection 5.5.3). Additionally, we investigate the effects of the

critic structures proposed in subsection 5.4.2 on HetNet’s performance (subsubsec-

tion 5.5.3).

Baseline Comparison

Figure 5.3 depicts the average steps taken (± standard error) by each method across

episodes as training proceeds in PP and PCP domains. In both domains, PP and

PCP, HetNet outperforms all baselines by converging to a more efficient coordina-

tion policy (i.e., fewer steps taken). We also tested the learned coordination policies

82

https://github.com/CORE-Robotics-Lab/MAGIC

(a) Homogeneous Domain (PP) (b) Heterogeneous Domain (PCP)

Figure 5.3: Average steps taken (± SE) by each method across episodes and three
different random seeds as training proceeds. HetNet outperforms all baselines in
both domains.

at convergence by each of the baselines in PP, PCP and FC domains. The results of

this test are presented in Table 5.1 where the reported results are mean (± Standard

Error (SE)) from 50 evaluation trials with different random-seed initializations.

As shown, HetNet outperforms all baselines in all three domains. Additionally,

in the same experiment, the coordination policy learned by our HetNet-Binary

with 64-bits message dimensionality achieved 9.90±0.58 average steps taken in the

PCP domain; showing better performance than all baselines while significantly

compressing the communication bandwidth (see Figure 5.4). The heterogeneous

policies learned by our model set the SOTA for learning challenging cooperative

behaviors for composite teams.

Ablation Study #1: Communication Bandwidth

In this experiment, we compute the Communication Bandwidth (CB) for each

baseline as the number of bits required to communicate messages per round of

communication during evaluation (i.e., converged policies deployed for test). As

shown in Figure 5.4, HetNet facilitates binarized communication among agents

which requires significantly less CB as compared to real-valued baselines (i.e., one

bit per binary value vs. 64 bits in single-precision floating-point format [190]).

HetNet-Binary with 64 and 32-bits messages, respectively, achieve more than 100×

83

Figure 5.4: Communicated bits per round of communication vs. performance in
PCP for different methods. HetNet facilitates binarized messages among agents
which requires significantly less CB as compared to real-valued baselines.

and 200× lower CB while showing better performance than real-valued baselines.

Ablation Study #2: Effects of Communication

We assess the impact of the communication on cooperation performance of the

composite team. We present two experiments in the PCP domain for comparing

HetNet’s performance: (1) with Full, Half and No communication among agents

and (2) with different binary message dimensions (number of bits). As depicted in

Figure 5.5a, HetNet performs significantly better with full communication while the

performance drop for half-communication (i.e., limited range) is not considerable.

As such, the results show that our model, HetNet has robustness to degradation

in communication range. Additionally, as shown in Figure 5.5b, a gradual degra-

dation in performance is observed by decreasing message dimensionality rather

than a sharp drop-off. HetNet’s performance improves with longer messages as

the learned intermediate language will have greater expressivity.

84

(a) Communication range.

(b) Message dimensionality.

(c) Scalability to num. of agents.

Figure 5.5: Analyzing HetNet’s performance with and without communication
(Figure 5.5a) and across different binary message dimensions (Figure 5.5b) in the
PCP domain. Communication policy learned by HetNet improves the cooper-
ativity among agents and the performance improves with larger message sizes.
Figure 5.5c depicts results for analyzing HetNet’s ability to scale to different num-
ber of agents. As shown, HetNet-Binary can successfully scale to different sizes of
the composite team.

85

Ablation Study #3: Scalability to Number of Agents in the Composite Team

In this experiment, we evaluated the scalability of our HetNet-Binary to different

number of agents in the composite team. Specifically, we tested HetNet-Binary

in PCP domain with (2P, 1C), (3P, 3C) and (4P, 6C) team compositions, where P

and C represent predator and capture agents, to evaluate the scalability to different

team sizes. The results of this experiment are presented in Figure 5.5c. As shown,

HetNet’s GNN-based architecture can successfully scale to different combinations

of the composite team by approximately converging at the same rates.

Ablation Study #4: Effects of the Critic Structures

Finally, we investigate the utility and performance of the three critic structures

proposed in subsection 5.4.2 on HetNet’s performance in the PCP domain. We

utilized our HetNet-Real variant for this experiment. Figure 5.6a shows the learning

curves during training for centralized, per-class, and per-agent critic structures in

the PCP domain. The test results for coordination policies learned by each of the

critic architectures are presented in Figure 5.6b, showing the average number of

steps taken to win the game by deploying the converged policies by each critic

design. As depicted, HetNet-Real shows similar performance with per-class and

per-agent critics, both having better results than the centralized critic, decreasing

the number of steps of episode completion by 0.20 (10.01→ 9.81). The performance

benefit can be attributed to the ability to utilize individual and class-wise rewards,

both of which help to capture the heterogeneity in the received feedback from the

environment.

86

(a) Training Performance. (b) Converged Performance.

Figure 5.6: Learning curves during training as well as the test results (average
number of steps taken) for final policies learned by centralized, per-class and per-
agent critic architectures in the PCP domain.

5.6 Conclusion

Motivated by the diverse communication patterns across collaborating human

teams, we present a communicative, cooperative MARL framework for learning

heterogeneous cooperation policies among agents of a composite team. We propose

Heterogeneous Policy Network (HetNet), a heterogeneous graph-attention based

architecture, and introduce the Multi-Agent Heterogeneous Actor-Critic (MAHAC)

learning paradigm for training HetNet to learn class-wise cooperation policies. We

push the boundaries beyond performance considerations as in prior work by equip-

ping HetNet with a binarized encoder-decoder communication channel to facilitate

learning a new and highly efficient encoded language for heterogeneous commu-

nication. We empirically show HetNet’s superior performance against several

baselines in learning both homogeneous and heterogeneous cooperative policies.

We provide empirical evidence that show: (1) our binarized model achieves more

than 200× reduction in communication overhead (i.e., message bits) per round of

communication while also outperforming baselines in performance, (2) HetNet is

robust to varying bandwidth limitations and team compositions.

In later extended work, we create a scalable MARL architecture that can support

variable-length input representations [191] and an updated, more sample-efficient

87

learning algorithm based on MA-PPO [192] to support heterogeneous robot team

coordination. We provide several enhancements to the aforementioned, includ-

ing 1) the development of a novel Multi-Agent Heterogeneous Proximal Policy

Optimization (MAH-PPO) algorithm to support sample-efficient learning of coor-

dination policies for heterogeneous robots, 2) an architecture enhancement to sup-

port transferability to different environment sizes, resulting in non-parametricity

in the number of agents, and 3) a noise-degradation channel with three different

paradigms of communication loss, allowing us to test the robustness of our al-

gorithm. Overall, we find that HetNet can outperform baselines across several

domains, scale to domain configurations in which baselines fail to learn, and de-

velop robustness to noise-degraded communication channels.

88

CHAPTER 6

INFERRING DECISION-MAKING BEHAVIOR ACROSS HETEROGENEOUS

USERS

In this chapter, we begin to enable the previously found vital characteristics in

agent-agent collaboration, utilizing communication and accounting for heterogeneity,

to human-robot collaboration. Here, we specifically look to develop an interpretable

architecture that can infer latent characteristics of human behavior (i.e., capture di-

versity). We utilize resource coordination as a test domain, as schedulers maintain

a wide variety of heuristics (developed through experience and apprenticeship)

across their decision-making.

6.1 Introduction

Coordinating resources in time and space is a challenging and costly problem

worldwide, affecting everything from the medical supplies we need to fight pan-

demics to the food on our tables. The manufacturing and healthcare industries

account for a total of $35 trillion [193] and $8.1 trillion [194] USD, respectively.

In manufacturing, scheduling workers – whether they be humans or robots – to

complete a set of tasks in a shared space with upper- and lower-bound tempo-

ral constraints (i.e., deadline and wait constraints) is an NP-hard optimization

problem [195], typically approaching computational intractability for real-world

problems of interest.

Human domain experts efficiently, if sub-optimally, solve these NP-hard prob-

lems to coordinate resources using heterogeneous rules-of-thumb and strategies

honed over decades of apprenticeship, creating unique heuristics depending on

experts’ varied experiences and personal preferences [56, 57]. Each expert has her

89

own strategies, and it is common for factories and hospital wards to be run com-

pletely differently – yet effectively – across different shifts based upon the person

in charge of coordinating the workers’ activities [196, 197, 198]. The challenge we

pose is to develop new apprenticeship learning techniques for capturing these het-

erogeneous rules-of-thumb in order to scale beyond the power of a single expert.

However, such heterogeneity is not readily handled by traditional apprenticeship

learning approaches that assume demonstrator homogeneity. A canonical example

of this limitation is of human drivers teaching an autonomous car to pass a slower-

moving car, where some drivers prefer to pass on the left and others on the right.

Apprenticeship learning approaches assuming homogeneous demonstrations ei-

ther fit the mean (i.e., driving straight into the car ahead of you) or fit a single mode

(i.e., only pass to the left).

The field of apprenticeship learning has recently begun working to relax the

assumption of homogeneous demonstrations by explicitly capturing modes in het-

erogeneous human demonstrations [62, 64, 63, 199, 105]. One such approach,

InfoGAIL [62], uses a generative adversarial setting with variational inference to

learn discrete, latent codes to describe multi-modal decision-making. However,

InfoGAIL requires access to an environment simulator, relies on a ground-truth

reward signal, and is ill-suited to reasoning about resource scheduling and opti-

mization problems, as we show in section 6.4. Further, modern imitation learning

frameworks lack interpretability, hampering adoption in safety-critical and legally-

regulated domains [34, 35, 36, 37].

Contributions – Overcoming these key limitations of prior work, we develop a

novel, data-efficient apprenticeship learning framework for learning from hetero-

geneous scheduling demonstration. The key to our approach is a neural network

architecture that serves as a function approximator specifically designed for spar-

sity to afford easy “discretization” into a Boolean decision tree after training as

90

well as the ability to leverage variational inference to tease out each demonstra-

tor’s unique decision-making criteria. In section 6.4, we empirically validate that

our approach, “Personalized Neural Trees”, outperforms baselines even after dis-

cretization into a decision tree. Our contributions are as follows:
1. Formulate a personalized and interpretable apprenticeship scheduling frame-

work for heterogeneous LfD that outperforms prior state-of-the-art approaches

on both synthetic and real-world data across several domains (+51% and

+11%, respectively) through the use of personalized embeddings without

constraining the number of demonstrator types.

2. Develop a methodology for converting a personalized neural tree into an in-

terpretable representation that directly translates decision-making behavior.

Our discretized trees also outperform previous benchmarks on synthetic and

real-world data across several domains.

3. Conduct a user study that shows our post-processed interpretable trees are

more interpretable (p < 0.05), easier to simulate (p < 0.01), and quicker to

validate (p < 0.01) than their black box neural network counterparts.

6.2 Personalized and Interpretable Neural Trees

In this section, we present our apprenticeship framework that utilizes person-

specific (personalized) embeddings, learned through backpropagation, which en-

ables the apprenticeship learner to automatically adapt to a person’s unique char-

acteristics while simultaneously leveraging any homogeneity that exists within the

data (e.g., uniform adherence to hard constraints).

6.2.1 Algorithm Overview

To effectively learn from heterogeneous decision-makers, we must capture the

homo- and heterogeneity in their demonstrations, allowing us to learn a gen-

91

(a) PNT Architecture (b) Algorithm Overview

Figure 6.1: The PNT architecture (left) displaying decision nodes, yi, with eval-
uation equations, leaf nodes, k, with respective weights pk, and output equation
describing the calculation of the action probability mass function. An overview of
our training algorithm (right) displaying the input/output flow of the policy and
the posterior alongside their respective update equations.

eral behavior model accompanied by personalized embeddings that fit distinct

behavior modalities. We contribute a novel apprenticeship learning model for

resource scheduling, “Personalized Neural Trees”, by extending DDTs in four im-

portant ways: 1) Personalized embeddings, ω, as a latent variable representing

person-specific modality (subsection 6.2.2), 2) Variational inference mechanism

to maximize the mutual information between the embedding and the modeled

decision-maker (subsubsection 6.2.2), 3) Counterfactual reasoning to increase data-

efficiency (subsubsection 6.2.2), and 4) Novel feature selector, ψ⃗i, for each decision

node to enhance interpretability (subsection 6.2.3).

A Personalized Neural Tree (PNT) learns a model, f PNT
θ|ω : S × Ω → [0, 1]|A|, of

human demonstrator decision-making policies, where θ ∈ Θ are the policy weights

andω ∈ Ω (Ω ⊂ Rd) is the demonstrator-specific personalized embedding of length

d, which is a tunable hyperparameter. Here, Ω = {ω1, ω2, . . . , ωP} represents the

set of all demonstrator personalized embeddings. The person-specific features ω

identify the latent pattern of thinking for the current decision-maker. We note that

the policy weights, θ ∈ Θ, are specifically defined asΘ = α ×Ψ × B ×Φ × P, where

α, B, and Φ are the parameters of the decision nodes (subsection 6.2.2), P are the

92

leaf parameters (subsection 6.2.2), andΨ are a new set of parameters we introduce

in subsection 6.2.3 to enhance interpretability during post-training discretization.

Alongside learning a demonstrator’s decision-making policy f PNT
θ|ω , we intro-

duce (subsubsection 6.2.2) an information theoretic regularization model, similar

to [200], to maximize mutual information between latent embeddings, ω, and tra-

jectories, τ, by learning a model, qω
ζ|θ

: S × [0, 1]|A| →NΩ represented by a neural tree

(PNT\ω) with weights ζ, that approximates the true posterior P(ω|τ). This induces

the latent personalized embeddings to capture modality within demonstrator tra-

jectories.

6.2.2 Personalized Neural Tree

We present architecture of f PNT
θ|ω as shown in Fig. Figure 6.1a. First, a demonstrator-

specific embedding (represented by ω ∈ Ω) is concatenated with state s⃗ ∈ S and

routed directly to each decision node as x⃗ = [⃗s, ω⃗]). Each decision node in the

PNT is conditioned on three differentiable parameters: weights β⃗ ∈ B, comparison

values ϕ⃗ ∈ Φ ⊂ [0, 1]n+d, and selective importance vectors ψ⃗ ∈ Ψ. When input data x⃗

is passed to a decision node, i, the data is weighted by β⃗i and compared against ϕ⃗i

as shown in Equation 6.1, where ◦ is the Hadamard product. The PNT algorithm

uses its selective importance vector ψ⃗i ∈ [0, 1]|x⃗| before weighting by α and passing

through a sigmoid to decide which “rule” is the most helpful to apply for this node;

yi is the probability of decision node i evaluating to TRUE.

yi = σ[α(ψ⃗i · (β⃗i ◦ x⃗ − ϕ⃗i))] (6.1)

subsection 6.2.3 describes how this extension of the original formulation [67] en-

hances interpretability.

Leaf nodes, k, in the PNT maintain a set of weights over each output class

denoted p⃗k ∈ P. Each decision node, i, along a path from the root to a leaf (i.e., a

branch) output probabilities, yi, for each such decision node. The branch’s prob-

93

abilities are multiplied to produce a joint probability of reaching the leaf in that

branch given state s⃗ and the current demonstrator embedding ωp. Each leaf, k con-

tains a probability mass function (PMF), p⃗k, where p⃗k,a is the probability of applying

action a for the branch leading to leaf node, k. This probability distribution, p⃗k, for

leaf, k, is multiplied by its corresponding branches’ joint probability. Finally, the

products of all leaf vectors with their branch’s joint probability is summed to pro-

duce the final network output, a PMF for actions given state, s, and embedding, ωp.

An example is shown in Fig. Figure 6.1a complete with an equation summarizing

the output.

Maximizing Mutual Information

The parameters, ζ, θ, and ω, are updated via a cross-entropy loss and mutual

information maximization loss, as discussed in subsection 6.2.4. Maximizing mu-

tual information encourages ω to correlate with semantic features within the data

distribution (i.e., mode discovery) [200, 62]. Yet, maximizing mutual information

between the trajectories and latent code, G(ω; τ), is intractable as it requires access to

the true posterior, P(ω|τ). Therefore, researchers employ the evidence lower bound

(ELBO) of the mutual information G(ω; τ), as shown in Equation 6.2. Maximizing

G(ω; τ) incentivizes the policy, f PNT
θ|ω , to utilize the latent embedding ω as much as

possible.

G(ω; τ) = H(ω) −H(ω|τ) (6.2)

= Eω∼P(ω),at
p∼ f PNT

θ|ω
[logP(ω|st

p, a
t
p)] +H(ω)

= Ea∼ f PNT
θ|ω

[DKL(log(P(ωp|st
p, a

t
p))||log(qωζ|θ(st

p, a
t
p))) + Eω∼P(ω)log(qωζ|θ(st

p, a
t
p))] +H(ω)

≥ Eωp∼N(µ⃗p,σ⃗2
p),a∼ f PNT

θ|ω
[log(qωζ|θ(ωp|st

p, a
t
p))] +H(ω) = LG(f PNT

θ|ω ||q
ω
ζ|θ)

94

In our approach, we make use of continuous personalized embeddings which

allow for greater expressivity in the embedding space, Ω. As such, we utilize a

mean-squared error (MSE) loss between a sample from the approximate posterior

(modeled as a normal distribution with constant variance) and the current embed-

ding. A derivation of the equivalence between using the MSE and log-likelihood

loss to maximize the posterior is attached below.

We present the approximate normal distribution, Nqω
ζ|θ

, in Equation 6.3, where

ω is the mean outputted by the posterior network, and σ is the standard deviation.

Nqω
ζ|θ
=

1

σ
√

2π
e−

1
2

(x−ω)2

σ2 (6.3)

Theorem 6.2.1 Minimizing the mean-squared error between a sample from the approxi-

mate posterior and the current embedding is equivalent to maximizing the log-likelihood

and therefore, the evidence lower bound.

Proof: The mean-squared error (MSE) loss is (x−ω)2, where ω is the sample from

the approximate posterior, and x is the current personalized embedding used to

generate the predicted action. This is equivalent to the exponent numerator in

Nqω
ζ|θ

. With constant variance, the exponential function is monotonic, and thus,

minimizing the exponent will maximize the likelihood of the posterior. Thus,

minimizing the MSE is equivalent to maximizing the likelihood of the posterior.

This naturally extends to the multivariate case. □

Counterfactual Reasoning

We further enhance our model’s learning capability through counterfactual rea-

soning [201, 65, 79, 202, 203, 204, 205]. Based upon the insight in prior work in

homogeneous apprenticeship scheduling [65] that counterfactual reasoning was

critical for learning scheduling strategies from demonstration, we adopt counter-

95

factual reasoning through pairwise comparisons. We present a novel extension

to construct counterfactuals in Equations Equation 6.4-Equation 6.5 that leverages

person-specific embeddings as pointwise terms.

zt,p
a,a′ B [ωp, x̄t, xt

a − xt
a′], y

t
a,a′ = 1 for ∀a′ ∈ A \ a (6.4)

zt,p
a′,a B [ωp, x̄t, xt

a′ − xt
a], y

t
a′,a = 0 for ∀a′ ∈ A \ a (6.5)

At each timestep, we observe the decision, a, that person, p, made at time t. From

each observation, we then extract 1) the feature vector describing that action, xt
a,

from state st, 2) the corresponding feature, xt
a′ , for an alternative action ∀a′ ∈ A \ a,

3) a contextual feature vector capturing features common to all actions, x̄t, and

4) the person’s embedding, ωp. We note that each demonstrator has their own

embedding which is updated through backpropagation.

Given this dataset, the apprentice is trained to output a pseudo-probability,

f (a, a′, p) of action a being taken over action a′ at time t by the human decision-

maker p described by embedding ωp, using features zt,p
a,a′ . To predict the probability

of taking action a at timestep t, we marginalize over all other actions, as shown in

Equation 6.6. Finally, the action prediction is the argument max of this probability,

â = arg maxa∈A P̂(a|t, p). We term models that use counterfactual reasoning as

pairwise models.

P̂(a|t, p) ∼
∑
a′∈A

f (a, a′, p) (6.6)

96

Algorithm 3 PNT Training
Input: data s⃗ ∈ S, labels a ∈ A, embeddings

ω ∈ Ω

Output: f PNT∗
θ|ω

1: Initialize f PNT
θ|ω

, qω
ζ|θ

, Ω

2: for i epochs do

3: Sample data of person p at time t : s⃗t
p, at

p

4: x⃗t
p← [ω(i)

p , s⃗t
p]

5: ât
p ← f PNT

θ|ω
(x⃗t

p)

6: µp, σp ← qω
ζ|θ

(⃗st
p, ât

p)

7: ω̂(i)
p ∼ N(µ⃗p, σ⃗p

2)

8: Jζ,θ,ω = |ω̂
(i)
p − ω

(i)
p |

9: Jθ,ω = CrossEntropy(ât
p||at

p)

10: J← Jθ,ω + Jζ,θ,ω

11: [ωp, θ, ζ](i+1)
← [ωp, θ, ζ](i)

− η∇ωp,θ,ζJ

12: end for

Algorithm 4 PNT Run-time Adaptation
Input: data s⃗t

p∗ ∈ S, f PNT∗
θ|ω , training

embeddings mean Ω̄

Output: Demonstrator p∗’s action: ât
p

1: ωt
p∗ = Ω̄

2: for t in range(1,T) do

3: x⃗t
p∗ = [ωt

p∗ , s⃗
t
p∗]

4: ât
p∗ ← f PNT∗

θ|ω (x⃗t
p∗)

5: at
p∗ ← ObserveAction()

6: Jθ,ω = CrossEntropy(ât
p∗ ||a

t
p∗)

7: ω(t+1)
p ← ω(t)

p − η∇θ,ωJθ,ω

8: end for

Nota Bene: While counterfactuals have been exploited in prior work, ours is the first

to our knowledge that incorporates variational inference for counterfactual learning from

heterogeneous demonstration.

6.2.3 Interpretability via Discretization

In our work, the PNT is able to learn over datasets from heterogeneous demon-

strators with high performance while still being able to convert back into a simple,

interpretable decision tree post-training. Our formulation, as shown in Equa-

tion 6.1, includes two important augmentations to the original DDT formulation to

allow for discretization post-training: 1) The per-node feature selector vector, ψ⃗i,

97

that learns the relative importance of each candidate splitting rule, (βi, jxi, j −ϕi, j) for

each feature, j, and node, i, and 2) a per-feature splitting criterion, ϕ⃗i, j, that enables

us to simultaneously curate per-node and per-feature splitting criteria.

During discretization of the PNT to its interpretable form, we apply the follow-

ing operations to each decision node, i: 1) Set the argument max of ψ⃗i to 1 and

all other elements to zero; 2) Set α ← ∞. For each leaf node, i′, we likewise set

the argument max of p⃗i′ to one and all non-maximal elements zero. The result of

these operations is that each decision node has a single, Boolean splitting rule as

per a standard decision tree and each leaf node dictates a single action to be taken.

This procedure produces a simple yet powerful decision tree, which we show in

section 6.4 outperforms all baselines even in its interpretable form.

6.2.4 Training and Runtime Procedure

Offline – At the start of training (Algorithm 3), each ωp is a vector of uniform

values. A state is sampled, st
p at time t, for demonstrator p, as well as the person-

specific embedding, ω(i)
p at training iteration i, to produce a concatenated input, x⃗t

p

as shown in lines 3 and 4. Policy f PNT
θ|ω uses input x⃗t

p to predict the demonstrator’s

action in that state, ât
p, as shown in line 5. The predicted action, ât

p, and state, st
p,

are then used to recover a normal distribution, N(µ⃗p, σ⃗2
p), representing that user’s

personalized embedding ω(i)
p . By sampling from this distribution, ω̂(i)

p ∼ N(µ⃗p, σ⃗p
2),

we can estimate the accuracy of our approximate posterior by computing the

difference between the current embedding and the sampled embedding shown

in lines 6 and 7. The learning from demonstration loss is then computed as the

cross entropy loss between the true action at
p and the predicted action ât

p. Summed

together, we have a total loss J that is dependent on ζ, θ, and ω, as shown in lines

7-10. This loss is then used to update model parametersθ, personalized embedding

ω, and embedding regularization parameters ζ via SGD [206], as shown in line 11.

98

This process is repeated until a convergence criterion is satisfied. An overview of

this training procedure is displayed in Fig. Figure 6.1b.

Online – When applying the algorithm during runtime for a new human

demonstrator, p′, the model updates the embedding, ωp′ ; however, θ remain static.

This online update utilizes the information provided after every timestep (i.e., the

true action) to converge on the type of current demonstrator in embedding space.

The personalized embedding ωp′ for a new human demonstrator is initialized to

the mean of the embeddings of demonstrators in the training set and updated as

we gain more information, as shown in Algorithm Algorithm 4. In other words,

we start by assuming a new expert is performing the planning task; over time, we

infer how she is acting differently and update our personalized embedding accord-

ingly (repetition of steps 3-8). Note that during deployment of our framework, the

embedding regularization model qω
ζ|θ

is not utilized.

Interpretable Policy – Once this tuning process has finished, the person-specific

policy can be converted into an interpretable tree, through discretization of our

PNTs. An interpretable model of resource allocation or planning tasks would

be highly useful for a variety of reasons, from decision explanations to training

purposes.

Covariate Shift – Typically, policy-based apprenticeship suffers from covariate

shift. This refers to the case where the policy degrades as it enters unknown

regions of the state space during deployment. To remedy the co-variate shift

typically encountered with policy-based apprenticeship learning, DAgger [207]

was proposed for problems where there is access to the environment model. In

section 6.4, we show that pre-training with PNTs leads to a significant increase

in performance for DAgger-based training while also reducing the number of

environment samples DAgger requires.

99

6.3 Evaluation Environments

We utilize three environments to evaluate the utility of our personalized apprentice-

ship scheduling framework. Additional details about each domain are provided

in the supplementary material.

1) Synthetic Low-Dimensional Environment The synthetic low-dimensional

environment represents a simple domain where an expert will choose an action

based on the state and one of two hidden heuristics. This domain captures the

idea that we have homogeneity in conforming to constraints z and strategies or

preferences (heterogeneity) in the form ofλ. Demonstration trajectories are given in

sets of 20 (which we denote a complete schedule), where each observation consists

of xt
∈ {0, 1} and zt

∈ N(0, 1), and the binary output is yt. Exact specifications for the

computation of the label are given by the observation of y = x ∗ 1(z>=0∧λ=1)∨(z<0∧λ=2),

where 1 is the indicator function.

2) Synthetic Scheduling Environment The second environment we use is a

synthetic environment that we can control, manipulate, and interpret to empirically

validate the efficacy of our proposed method. For our investigation, we leverage

a jobshop scheduling environment built on the XD[ST-SR-TA] scheduling domain

defined by [58], representing one of the hardest scheduling problems. In this

environment, two agents must work together to complete a set of 20 tasks that have

upper- and lower-bound temporal constraints (i.e., deadline and wait constraints),

proximity constraints, and travel-time constraints. Schedulers have a randomly-

generated task-prioritization scheme dependent upon task deadline, distance, and

index. The decision-maker must decide the optimal sequence of actions according

to the decision-maker’s own criteria. For this environment, we construct a set of

100

heterogeneous, mock decision-makers that schedule according to Equation 6.7.

τ∗i = arg max
τ j⊂τS

(ρ1HEDF(τ j) + ρ2Hdist(τ j) +HID(τ j, ρ3)) (6.7)

In this equation, our decision-maker selects a task τ∗i from the set of tasks τS. The

task-prioritization scheme is based on three criteria: HEDF prioritizes tasks accord-

ing to deadline (i.e., “earliest-deadline first”), Hdist prioritizes the closest task, and

HID prioritizes tasks according to a user-specified highest/lowest index or value

based on ρ3 (i.e., ρ3(j) + (1 − ρ3)(− j)). The heterogeneity in decision-making comes

from the latent weighting vector ρ⃗. Specifically, ρ1 ∈ R and ρ2 ∈ R weight the im-

portance of HEDF and Hdist, respectively. ρ3 ∈ {0, 1} is a mode selector in which the

highest/lowest task index is prioritized. By drawing ρ⃗ from a multivariate random

distribution, we can create an infinite number of unique demonstrator types. This

adapted environment differs from the synthetic, low-dimensional environment in

that there are a rich set of temporal, spatial, and agent-based constraints modeling

the job-shop scheduling problem; furthermore, the parameters of the demonstra-

tor’s decision-making process is hidden and comprised of one discrete factor and

two continuous factors. In this domain, counterfactuals are generated by consider

specific task information such as availability, distance from agent, prerequisites

satisfied. We note that this domain is a more complex variant of the domain in [65]

as we have demonstrations of heterogeneous scheduling strategies.

3) Real-world Data: Taxi Domain We evaluate our algorithm with actual human

decision-making behavior collected in a variant of the Taxi Domain in [59]. This

domain describes a ND[ST-SR-TA] scheduling domain as defined by [58]. Our

environment has three locations: the village, the airport, and the city. The taxi

driver has the objective of picking up a passenger from the city or village. A

dataset of 70 human-collected tree policies to solve this task (given with leaf node

101

Table 6.1: A comparison of heterogeneous LfD approaches. Our method achieves
superior performance. Interpretable approaches are shown in the right-hand table.

Method Low-Dim Scheduling Taxi

Our Method 97.30 ± 0.3% 96.13 ± 2.3% 88.22 ± 0.6%

Sammut et al. 55.36 ± 1.2% 5.00 ± 0.0% 76.16 ± 0.3%

Nikolaidis et al. 54.23 ± 2.5% 5.00 ± 0.0% 76.16± 0.3%

Tamar et al. 55.83 ± 0.6% 9.78 ± 0.3% 60.93± 2.8%

Hsiao et al. 56.06 ± 1.1% 11.25 ± 0.1% 76.19 ± 0.4%

InfoGAIL 54.66 ± 3.4% 25.72 ± 5.5% 75.51 ± 0.8%

DDT 55.28 ± 1.8% 52.35 ± 0.7% 76.70 ± 0.7%

Method Low-Dim Scheduling Taxi

Our Method 96.13 ± 2.5% 99.66 ± 0.5% 77.73 ± 1.9%(Interpretable)

Our Method 53.66 ± 2.4% 32.85 ± 0.1% 87.85 ± 0.5%(DT + ω)

Gombolay et al. 55.76 ± 1.4% 45.50 ± 2.0% 75.88 ± 0.7%

Vanilla DT 55.76 ± 1.4% 32.4 ± 0.7% 74.90 ± 0.2%

actions such as “Drive to X” and “Wait for Passenger”, and decision node criterion

depending on the amount of wait time, traffic time, and current location) [208] are

used to generate heterogeneous trajectories.

6.4 Results and Discussion

We benchmark our approach against a variety of baselines [60, 61, 62, 63, 64,

65]2. Accuracy is the k-fold cross-validation, multi-class, classification accuracy for

state-action pairs.

1) Synthetic Low-Dimensional Environment – Table 6.1 shows that our method

for learning a continuous, personalized embedding sets the state-of-the-art (95.30%±

0.3%) for solving this latent-variable classification problem. Even after discretiz-

ing to an interpretable form, our method is still able to outperform all baselines,

achieving a 96.13% ± 2.49% accuracy. A graphical depiction of the interpretable

PNT model, generated through discretization is provided in the supplementary.

2) Synthetic Scheduling Environment – Table Table 6.1 shows that our per-

sonalized apprenticeship learning framework outperforms all other approaches,

1To infer the embeddings for the interpretable form of our PNT model, we utilize a pre-discretized
version of the PNT to learn a demonstrator’s embeddings, which is run prior or concurrently with
the discretized version.

2An offline version of InfoGAIL [62] is used, as access to a simulator and ground truth reward
signal, R, is not available in many real-world domains.

102

achieving 96.13% ± 2.3% accuracy in predicting demonstrator actions before con-

version to an interpretable policy. After discretizing to an interpretable form, our

method is able to achieve 99.66% ± 0.5% accuracy1. Furthermore, benchmarks

that seek to handle heterogeneity [62, 63, 64] are unable to handle the complexity

associated with resource coordination problems, with InfoGAIL achieving only

25.72% ± 5.5% accuracy. We provide a sensitivity analysis for this domain within

our supplementary material by considering noisy demonstrations and varying the

amount of data available to train the algorithm.

3) Real-world Data: Taxi Domain – As seen in Table Table 6.1, our personalized

apprenticeship learning framework outperforms all other benchmarks and is the

only method to achieve over 80%. Even after discretizing to an interpretable form,

our method again outperforms all baselines from prior work. We posit that all

other methods overfit to the most prevalent behavior, and are unable to tease out

the heterogeneity represented within the training dataset.

Interpretability – We validate the effectiveness of using the discretized PNT

architecture versus several interpretable architectures in Table Table 6.1. In two

out of three of our environments, using our discretized PNT architecture results

in a large performance gain (42.57% in the low-dim and 38.01% in the scheduling

environment). In one domain, our method for distilling a DT using our PNT

architecture’s learned embeddings appended to the states for training a DT policy

was better.

Understanding Performance of Baselines – Each baseline has particular flaws

that results in its low performance on scheduling problems. [60] simply assumes

homogeneity and serves as a lowerbound. [61] has two-step approach that first

clusters to find modes and then trains policies; thus, there is no feedback symbol

to adjust clustering-established modes. [63] utilizes a sampling-based approach

which is acknowledged to require larger data sets. [64] uses a categorical vari-

103

able for modes results in limited expressively. InfoGAIL [62] does not have access

to a ground-truth reward signal nor the environment. Our approach is the only

method that both includes a decision tree-like architecture, helpful for apprentice-

ship scheduling [65], while also allowing for variational inference.

Performance of Pretrained Policies with DAgger – In deploying our pretrained

policies within the scheduling environment, our metrics to verify whether our

pre-trained PNT (PT-PNT) policies with DAgger are able to outperform randomly-

initialized PNT (RI-PNT) policies with DAgger are 1) to maximize the number of

tasks scheduled before a terminal state and 2) maximize the number of successful

schedules. Our PT-PNT is trained on a set of 150 schedules and then with 500

episodes of DAgger. Our RI-PNT is given 650 episodes of DAgger. We find that

our PT-PNT outperforms a RI-PNT by 28.57% in successful schedule completion

and 12.5% in the number of tasks completed before failure. This result shows the

benefits of pre-training using our framework and that our approach is amenable

to DAgger-based training.

6.5 Hyperparameters and Architecture Details

Throughout this section, we will discuss the architecture, implementation details,

and learning rates for all baselines and our algorithm in each domain. The runtime

mentioned is in respect to a desktop with a NVIDIA RTX 2080Ti GPU and an Intel

i7 processor.

6.5.1 Synthetic Low-Dimensional Environment

Each apprenticeship learning algorithm below is given 50 schedules to learn from

and tests on a set of 50 unseen demonstrations.

• For the method of [60], we utilize an multi-layer perceptron (MLP) with 3

linear layers connected by ReLU activation functions. After the last linear

104

layer, we utilize a log softmax function to compute the log probability of

which task to schedule. Each linear layer has 10 hidden units. We utilize the

Adam optimizer with a learning rate of 1e−3. The runtime for training and

verifying this model is under 30 minutes.

• For the method of [61], we utilize k-means clustering to separate the data

into two clusters. Two neural networks (one for each cluster) are trained to

imitate demonstrator data within the cluster. Each network utilizes the same

architecture and learning rate used in the baseline of [60]. The runtime for

training and verifying this model is under 30 minutes.

• For the method of [62], we utilize an simulator-free version of infoGAIL. The

policy, discriminator, and approximate posterior are modeled by MLPs with

2 linear layers (32 hidden units) connected by a ReLU activation function, and

an output activation function of a softmax, sigmoid, and softmax respectively.

We initialize the number of discrete modes to 2. We utilize learning rates

of 1e−4, 1e−3, 1e−4 respectively. For the hyperparameters of infoGAIL, we

initialize λ1 to 1, γ to 0.95, and λ2 to 0. The runtime for training and verifying

this model is under 30 minutes.

• For the method of [63], we utilize a neural network with 3 linear layers (10,

2, 2 hidden units, respectively) connected by ReLU activation functions. We

use N=5 samples as our hyperparameter to estimate the intention probability

distribution P(z). We utilize a learning rate of 1e−3 alongside Stochastic

Gradient Descent (SGD). The runtime for training and verifying this model

is under 30 minutes.

• For the method of [64], we utilize a bidirectional LSTM with attention fol-

lowed by a linear layer as specified in their paper. For the decoder, we utilize

three linear layers connected by ReLU activation functions. We utilize a learn-

105

ing rate of 1e−3 alongside Stochastic Gradient Descent (SGD). The runtime

for training and verifying this model is under 30 minutes.

• For the method of [65], we utilize a standard decision tree (counterfactuals

are not possible when |A| ≤ 2) of depth 10. The runtime for training and

verifying this model is under 30 minutes.

• For our Personalized Neural Trees, we utilize a max depth of 6 (32 leaves)

and embedding dimension of 2 (d = 2). We set learning rates of θ to 1e−3, ω

to 1e−2, and ζ to 1e−3. We find empirically that setting the learning rate of ω

slightly higher allows for better LfD accuracy. For our approximate posterior,

qωζ|θ, we set the value of σp to zero. The runtime for training and verifying this

model is under 30 minutes.

6.5.2 Synthetic Scheduling Environment

Each apprenticeship learning algorithm below is given 150 schedules to learn from

and tests on a set of 100 unseen demonstrators.

• For the method of [60], we utilize an multi-layer perceptron (MLP) with six

linear layers connected by ReLU activation functions. After the last linear

layer, we utilize a log softmax function to compute the log probability of

which task to schedule. Each linear layers have 128, 128, 32, 32, 32, and 20

hidden units, respectively. We utilize the Adam optimizer with a learning rate

of 1e−4. The runtime for training and verifying this model is approximately

30 minutes.

• For the method of [61], we utilize k-means clustering to separate the data into

three clusters. Three neural networks (one for each cluster) are trained to

imitate demonstrator data within the cluster. Each network utilizes the same

106

architecture and learning rate used in the baseline of [60]. The runtime for

training and verifying this model is approximately 30 minutes.

• For the method of [62], we again utilize a simulator-free version of infoGAIL.

The policy follows the same network structure used in the [60] baseline. The

discriminator and approximate posterior are modeled by MLPs with six linear

layers (128, 128, 128, 32, 32, 32 hidden units, respecitively) connected by a

ReLU activation function, and an output activation function of a sigmoid, and

softmax respectively. We initialize the number of discrete modes to 3. We

utilize learning rates of 1e−4, 1e−3, 1e−4 respectively. For the hyperparameters

of infoGAIL, we initialize λ1 to 1, γ to 0.95, and λ2 to 0. The runtime for

training and verifying this model is approximately 24-48 hours.

• For the method of [63], we utilize a neural network with 5 linear layers

(128, 32, 32, 32, 32, 20, 2, 2 hidden units, respectively) connected by ReLU

activation functions. We use N=5 samples as our hyperparameter to estimate

the intention probability distribution P(z). We utilize a learning rate of 1e−3

alongside Stochastic Gradient Descent (SGD). The runtime for training and

verifying this model is approximately 3 hours.

• For the method of [64], we utilize a bidirectional LSTM with attention fol-

lowed by a linear layer as specified in their paper. For the decoder, we utilize

six linear layers connected by ReLU activation functions. We utilize a learn-

ing rate of 1e−3 alongside Stochastic Gradient Descent (SGD). The runtime

for training and verifying this model is approximately 3 hours.

• For the method of [65], we utilize a pairwise decision tree of depth 10. The

counterfactuals are set to one-hot encodings of each action, as done in the

original paper. The runtime for generating and verifying this model is ap-

proximately 5 minutes.

107

• For our Personalized Neural Trees, we utilize a max depth of six (32 leaves)

and embedding dimension of 3 (d = 3). We set learning rates of θ to 1e−2,

ω to 1e−2, and ζ to 1e−2. We find empirically that pretraining the policy

network first and then adding in the posterior at a later epoch results in both

good performance and mutual information maximization. This is opposed

to training both models at once from scratch. For our approximate posterior,

qω
ζ|θ

, we set the value of σp to zero. The runtime for training and verifying this

model is approximately 24 hours.

6.5.3 Taxi Domain

Each apprenticeship learning algorithm below is given 25 successful trajectories

from each user and tested on a set of 25 unseen trajectories from each demonstrator.

• For the method of [60], we utilize the same architecture and learning rate as

that of the synthetic scheduling environment. The runtime for training and

verifying this model is approximately 30 minutes.

• For the method of [61], we utilize k-means clustering to separate the data into

three clusters. Three neural networks (one for each cluster) are trained to

imitate demonstrator data within the cluster. Each network utilizes the same

architecture and learning rate used in the baseline of [60]. The runtime for

training and verifying this model is approximately 30 minutes.

• For the method of [62], we utilize the same architecture and learning rate as

that of the synthetic scheduling environment. The runtime for training and

verifying this model is approximately 24-48 hours.

• For the method of [63], we utilize the same architecture and learning rate as

that of the synthetic scheduling environment. The runtime for training and

verifying this model is approximately 3 hours.

108

(a) Time to Simulate (b) Validation Accuracy
(c) Interpretability Likert
Ratings

Figure 6.2: The findings of our user study. We find significance for hypotheses H1,
H2, and H3.

• For the method of [64], we utilize the same architecture and learning rate as

that of the synthetic scheduling environment. The runtime for training and

verifying this model is approximately 3 hours.

• For the method of [65], we utilize a pairwise decision tree of depth 13. The

counterfactuals are set to one-hot encodings of each action, as done in the

original paper. The runtime for generating and verifying this model is ap-

proximately 5 minutes.

• For our Personalized Neural Trees, we utilize a max depth of 8 (128 leaves)

and embedding dimension of 3 (d = 3). As counterfactual task information

is not readily available, we utilize one-hot encodings for each action. We

set learning rates of θ to 1e−2, ω to 1e−1, and ζ to 1e−2. We find empirically

that pretraining the policy network first and then adding in the posterior

at a later epoch results in both good performance and mutual information

maximization. For our approximate posterior, qω
ζ|θ

, we set the value of σp to

zero. The runtime for training and verifying this model is approximately 12

hours.

109

(a) Low-dim Environment
(b) Survey Environment (counterfac-
tual)

Figure 6.3: This figure depicts the learned PNT model after translation to an inter-
pretable form.

6.6 Interpretable Models

As machine learning is being increasingly deployed into the real world, inter-

pretability is required for these systems to gain human trust [209, 210, 211]. Inter-

pretability refers to attempts that help the user understand why a machine learning

model behaves the way it does. A clear visualization of a policy is one way to help

a human form an accurate representation of its capabilities [212]. Furthermore,

an interpretable model of resource allocation or planning tasks would be highly

useful for a variety of reasons, from decision explanations to training purposes. In

Figure 6.3, we display interpretable models generated through discretization for

the low-dimensional environment and survey scheduling environment.

6.7 Interpretability User Study

Thus far, we have shown across a variety of datasets that our counterfactual PNT

algorithm is able to achieve SOTA performance in learning from heterogeneous

decision-makers. To show that our models are interpretable, we assess whether

the counterfactual PNT is useful in the hands of end users. Accordingly, we

conducted a novel user study to assess the interpretability of our framework. We

design an online questionnaire that asks users to make predictions following each

a counterfactual decision tree (PNT) and a neural network (NN). Detail about

the generation of these models is in the supplementary material. We explore

110

three hypotheses: tree-based decision-making models are more interpretable (H1),

quicker to validate (H2), and are easier to simulate (H3) than neural networks.

To test (H1), we ask users to answer a 13-item Likert questionnaire assessing

whether the user understands the components of the decision-making model (i.e.,

model interpretability) and how to translate an input to an output (i.e., process

interpretability) after utilizing each decision-making framework. These subjective

measurements provide a practical gauge of how interpretable the decision-making

models are in the hands of end-users in a XD[ST-SR-TA] scheduling domain as

defined by [58]. To test (H2) and (H3), we record the time required for a user to

compute the model’s output given a set of inputs, and measure the user’s ability

to correctly determine the model’s output given a set of inputs, respectively.

6.7.1 User Study Results and Discussion

Our IRB-approved anonymous survey was completed by twenty adult univer-

sity students. Fig. Figure 6.2 depicts the results testing H1-H3. The complete

analysis is located in the supplementary material. H1: We test for normality and

homoscedasticity and do not reject the null hypothesis in either case, using Shapiro-

Wilk (p > 0.3 and p > 0.7) and Levene’s Test (p > 0.5 and p > 0.1). We perform a

paired t-test and find that tree-based models were rated statistically significantly

higher than neural networks on users’ Likert scale ratings for model interpretabil-

ity and overall process interpretability (p < 0.05 and p < 0.05). H2: We perform

a Wilcoxon signed-rank test on the per-model time to determine an output and

find that tree-based models were statistically significantly quicker to validate than

neural networks (p < 0.01). H3: We test for normality and homoscedasticity and

do not reject the null hypothesis in either case, using Shapiro-Wilk (p > 0.2) and

Levene’s Test (p > 0.4). We perform a paired t-test and find that users using tree-

based models statistically significantly achieved higher overall correctness scores

111

compared to NN based models (p < 0.01), supporting H3. Given these positive

results, we believe our model sets a new state-of-the-art in accuracy for heteroge-

neous LfD (Table 6.1) and also a strong step towards making such models more

interpretable.

6.8 Sensitivity Analysis of PNTs

To analyze the sensitivity of our framework, we use our synthetic scheduling

environment and perturb the amount of data available to the PNT and the amount

of noise (correctness) within the data. To provide a thorough analysis, we validate

our approach using k-fold cross-validation. This entails both choosing a different

subset of data to learn from and perturbing different truth-values of state-actions

pairs each fold.

As shown in Figure 6.4, our PNT is reasonably robust to noise for 2, 5, and 15

schedules as there is not a steep drop in accuracy. We do not see the typical trend

where the effect of noise deteriorates as the amount of data increases. We posit the

cause of this deviation as follows: As the number of demonstrators increases, the

embedding space Ω of the PNT tends to represent a richer distribution. While the

heterogeneity among the demonstrators may remain constant (represent the same

number of modes), cases in which the PNT is unable to tease out the demonstrator

mode from a single schedule are more likely (due to the increase in the number of

schedules), leading to an embedding distribution with higher variance. Without

noise, the PNT is able to make sense of the embedding space and learn with high

performance; as the amount of noise increases, it is likely more difficult to represent

demonstrators compactly within the embedding space. We posit that this increased

variance within the embedding space caused by the combined effect of an increased

number of demonstrators and noise leads to a reduction in performance when noise

is held constant and the amount of data increases.

112

Figure 6.4: Sensitivity analysis in the synthethic scheduling environment.

As expected, as the number of schedules increase, the PNTs have higher accu-

racy. However, from 15 to 150 schedules (a 10x magnitude increase in data), for

the case of 100% correct data, there is only a ∼ 2% increase in accuracy. This result

provides support to the claim of data-efficiency in our apprenticeship scheduling

framework.

6.9 Conclusion

We present an apprenticeship scheduling framework for learning from heteroge-

neous demonstrators, leveraging a Personalized Neural Tree that is able to capture

the homo- and heterogeneity in scheduling demonstrations through the use of

personalized embeddings. The design of our PNT allows for translation into an

interpretable form while maintaining a high level of accuracy. We demonstrate

that our approach is notably superior to standard apprenticeship learning models

and several approaches used in multi-modal behavior learning on synthetic and

real-world data across three domains. Finally, we conduct a novel user study to

assess the interpretability between our discretized trees and neural networks and

113

find that our discrete trees are more interpretable (p < 0.05), easier to simulate

(p < 0.01), and quicker to validate (p < 0.01).

6.10 Broader Impact

Our interpretable apprenticeship scheduling framework has broad impacts on so-

ciety and the learning from demonstration community. Our interpretable trees can

give key insight into the behavior of a machine-learning-based agent, allowing a

human to verify that safety constraints are being met and increasing the trustwor-

thiness of the autonomous agent. Furthermore, these trees allow human operators

to follow the decision step-by-step, allowing for verification [213, 214], and holding

machines accountable [215].

Beneficiaries – Our work has the potential to benefit all human-machine collabo-

rations, providing improved transparency, and strengthening the trustworthiness

of machine teammates through policy verification. Our research contributions ad-

ditionally benefit research and laboratories pursuing learning from diverse human

data (which commonly contains heterogeneity).

Negatively affected parties – With any model, we believe it is important to gather

consent before utilizing one’s data. As our model can be used by humans as both

a forward model to understand decision-maker behavior and as an inverse model

to infer modality, there is a possibility of discovering latent characteristics about

individuals that may reflect negatively upon them.

Implications of failure – Failure of our approach to produce high-accuracy be-

havior during deployment will result in a lack of trust towards the system. In

the worst case, careless application may contribute to misunderstandings causing

damage from a deployed robot.

114

Bias and Fairness – The learned behavior of our PNTs will be biased towards

demonstrators within the training set. If the collected set excludes certain persona,

the behavior of these persona will not be represented by our PNT. However, it

should be noted that as our approach is able to better take into account heterogene-

ity within the training data compared to other apprenticeship learning approaches.

In other words, our framework is better able to represent the entire population

rather than overfitting to the most prevalent demonstrator behavior than previous

approaches.

Impact on LfD community – Personalized Neural Trees can easily be extended

to a variety of domains, increasing the data-efficiency, accuracy, and utility of

learning-from-demonstration with multiple human demonstrators. We demon-

strate this by using a PNT to learn kinesthetic robot table tennis demonstrations.

We provide details about this domain, the collection process, and the results in the

supplementary material.

Reproducibility – Following the NeurIPS Reproducability Checklist, we upload

all code here. Within this repository, we provide collected real-world datasets,

code to generate synthetic data, and code to run all benchmarks. Alongside this,

we attach trained models for each domain. Further in the supplementary material,

we provide specifications of our hyperparameters, descriptions of our computing

infrastructure, and other details regarding runtime.

115

https://github.com/CORE-Robotics-Lab/Personalized_Neural_Trees

CHAPTER 7

GENERATING COBOT POLICIES VIA INTERPRETABLE

REINFORCEMENT LEARNING

In this chapter, we further extend our use of DDT-based architectures to enable

true policy interpretability for robots, specifically those functioning in continuous

control spaces (e.g., reasoning over torque motors to rotate a joint on a robot arm

or acceleration for an autonomous vehicle). This is a vital step in enabling a form

of transparency for robots, which will facilitate a sense of communication from the

robot to the human (discussed further in Chapter 8 and Chapter 9).

7.1 Introduction

Reinforcement learning (RL) with deep function approximators has enabled the

generation of high-performance continuous control policies across a variety of

complex domains, from robotics [120] and autonomous driving [71] to protein

folding [216] and traffic regulation [217]. These approaches hold tremendous

promise in real-world applicability and have the potential to increase traffic safety

[218], decrease traffic congestion, increase average traffic speed in human-driven

traffic [217], reduce CO2 emissions, and allow for more affordable transportation

[219]. However, while the performance of these controllers opens up the possibility

of real-world adoption, the conventional deep-RL policies used in prior work [120,

71, 217] lack interpretability, limiting deployability in safety-critical and legally-

regulated domains [34, 35, 36, 37].

White-box approaches, as opposed to typical black-box models (e.g., deep neu-

ral networks) used in deep-RL, model decision processes in a human-readable

representation. Such approaches afford interpretability, allowing users to gain in-

116

sight into the model’s decision-making behavior. In autonomous driving, such

models would provide insurance companies, law enforcement, developers, and

passengers with insight into how an autonomous vehicle (AV) reasons about state

features and makes decisions. Utilizing such white-box approaches within machine

learning is necessary for the deployment of autonomous vehicles and essential in

building trust, ensuring safety, and enabling developers to inspect and verify poli-

cies before deploying them to the real world [209, 210, 211]. In this work, we

present a novel tree-based architecture that affords gradient-based optimization

with modern RL techniques to produce high-performance, interpretable policies

for continuous control applications. We note that our proposed architecture can

be applied to a multitude of continuous control problems ranging from robotics

[120], protein folding [216], and traffic regulation [217] to high-speed autonomous

driving [71] and autopilots for landing spacecraft [220].

Prior work [209, 221, 210] has attempted to approximate interpretability via

explainability, a practice that can have severe consequences [114]. While the ex-

planations produced in prior work can help to partially explain the behavior of

a control policy, the explanations are not guaranteed to be accurate or generally

applicable across the state-space, leading to erroneous conclusions and a lack of

accountability of predictive models [114]. In autonomous driving, where under-

standing a decision-model is critical to avoiding collisions, local explanations are

insufficient. An interpretable model, instead, provides a transparent global represen-

tation of a policy’s behavior. This model can be understood directly by its structure

and parameters [222] (e.g., linear models, decision trees, and our ICCTs), offering

verifiability and guarantees that are not afforded by post-hoc explainability frame-

works. Few works have attempted to learn an interpretable model directly; rather,

prior work has attempted policy distillation to a decision tree [223, 133, 224] or

imitation learning via a decision tree across trajectories generated via a deep model

117

[225], leaving much to be desired. Interpretable RL remains an open challenge

[66]. In this work, we directly produce high-performance, interpretable policies

represented by a minimalistic tree-based architecture augmented with low-fidelity

linear controllers via RL, providing a novel interpretable RL architecture. Our In-

terpretable Continuous Control Trees are human-readable, allow for closed-form

verification (associated with safety guarantees), and parity or outperform baselines

by up to 33% in autonomous driving scenarios. In this work, our key contributions

are:

1. We propose Interpretable Continuous Control Trees (ICCTs), a novel tree-

based architecture that can be optimized via gradient descent with modern

RL algorithms to produce high-performance, interpretable continuous control

policies. We provide several extensions to prior differentiable decision tree

(DDT) frameworks to increase expressivity and allow for direct optimization

of a sparse decision-tree-like representation.

2. We show that our ICCTs are universal function approximators and can thus

be utilized to learn continuous control policies in any domain, assuming that

the ICCT has a reasonable depth.

3. We empirically validate ICCTs across six continuous control domains, in-

cluding four autonomous driving scenarios. Further, we demonstrate ICCT’s

ability to learn driving policies in complex domains grounded in realistic

real-world lane geometries, including the I-94 highway in Michigan, USA,

and the I-280 highway in California, USA.

4. We show that our ICCTs can be verified in linear time, a vital characteristic

in assessing and understanding a model’s behavior under a set of inputs.

Whereas black-box approaches are difficult to verify, our ICCTs can be verified

118

quickly, providing the possibility of safety guarantees and opening the door

for safe, real-world adoption.

5. We demonstrate the utility of our ICCTs with end-users through a human-

subjects study (N=34) and show that the ICCT is rated by users as easier to

simulate, quicker to validate, and more interpretable than neural networks.

Recently, [66] presented a set of grand challenges in interpretable machine

learning to guide the field towards solving critical research problems that must be

solved before machine learning can be safely deployed within the real world. In this

work, we present a solution to directly assess two challenges: (1) Optimizing sparse

logical models such as decision trees and (10) Interpretable reinforcement learning.

We propose a novel high-performing, sparse tree-based architecture, Interpretable

Continuous Control Trees (ICCTs), which allows end-users to directly inspect the

decision-making policy and developers to verify the policy for safety guarantees.

This paper presents our work in the field of Interpretable Reinforcement Learn-

ing and Explainable AI. In Section 3, we introduce the necessary preliminary work

on Differentiable Decision Trees and Reinforcement Learning. Our Methodology,

covered in Section 4, outlines the ICCT architecture and the Differentiable Crispifi-

cation technique used for enabling policy updates via gradient-based techniques.

Section 5 establishes ICCTs as universal function approximators, and Section 6 an-

alyzes the time complexity for model verification. In Sections 7 and 8, we introduce

and evaluate our ICCT across six continuous control domains. In Section 9, we

offer a qualitative example of a learned policy within the Lunar Lander domain

to showcase the interpretability of our model. Section 10 explores the tradeoff

between performance, leaf controller sparsity, and tree depth. We compare our

differential crispification method to the Gumbel-Softmax procedure in Section 11.

Section 12 demonstrates the interpretability and utility of ICCTs through a 14-car

physical robot demonstration. In Section 13, we introduce two realistic driving do-

119

Figure 7.1: The ICCT framework (left) displays decision nodes, both in their fuzzy
form (orange blocks) and crisp form (blue blocks1), and sparse linear leaf controllers
with pointers to sections discussing our contributions. A learned representation of
a high-performing ICCT policy in Lunar Lander (right) displays the interpretability
of our ICCTs. Each decision node is conditioned upon only a single feature and the
sparse linear controllers (to control the main engine throttle and left/right thrusters)
are set to have only one active feature.

mains based on real-world lane geometries and find that trained ICCTs can produce

safe, high-performance behavior that follows traffic regulations. Finally, Section 14

presents a user study evaluating the interpretability of our model.

7.2 Weaknesses of Prior Work with Differentiable Decision Trees

In section 3.6, we introduce Differentiable Decision Trees. Here, we discuss the

mechanism used to achieve post-hoc interpretability.

7.2.1 Conversion of a DDT to a DT

DDTs with decision nodes represented in the form of Equation 3.3 are not inter-

pretable. As DDTs maintain a one-to-one correspondence to DTs with respect to

their structure, prior work [131, 9] proposed a methodology to convert a DDT into

an interpretable decision tree (a process termed “crispification”). To create an in-

terpretable, “crisp” tree from a differentiable form of the tree, prior work adopted

a simplistic procedure. Starting with the differentiable form, prior work first con-

verts each decision node from a linear combination of all variables into a single

1For figure simplicity, when displaying the crisp node (blue block), we assume α > 0 in the fuzzy
node (orange block). If α < 0, the sign of the inequality would be flipped (i.e., wki

i xki < b).

120

feature check (i.e., a 2-arity predicate with a variable and a threshold). The feature

reduction is accomplished by considering the feature dimension corresponding

to the weight with the largest magnitude (i.e., most impactful), k = arg max j |w
j
i |,

where j represents the feature dimension, resulting in the decision node represen-

tation yi = σ(α(wk
i x

k
− bi)). The sigmoid steepness, α, is also set to infinity, resulting

in a “hard” decision (branch left OR right) [131, 9]. After applying this procedure

to each decision node, decision nodes are represented by yi = 1(wk
i x

k
− bi > 0). As

each leaf node is represented as a probability mass function over output classes

in prior work, each leaf node, ld, indexed by d, must be modified to produce a

single output class, od, during crispification. As such, we can apply an argument

max, od = arg maxa la
d, where a denotes the action dimension, to find the maximum

valued class within the d-th leaf distribution.

Deficiency of direct conversion from DDT to DT: This simplistic crispification proce-

dure results in an interpretable crisp tree that is inconsistent with the original DDT

(model differences arise from each argmax operation and setting the signmoid steep-

ness, α, to infinity). These inconsistencies can lead to performance degradation of

the interpretable model, as we show in section 7.7, and results in an interpretable

model that is not representative of and inconsistent with the model learned via

reinforcement learning.

In our work, we address these limitations by designing a novel architecture that

updates its parameters via gradient descent while maintaining an interpretable

decision-tree-like representation, thereby avoiding any inconsistencies generated

through a post-hoc crispification procedure. To the best of our knowledge, we

are the first work to deploy an interpretable tree-based framework for continuous

control.

In this work, while ICCTs are framework-agnotistic (i.e., ICCTs will work with

any RL update rule), we proceed with Soft Actor-Critic (SAC) [81] as our RL

121

algorithm due to its learning stability and sample efficiency. The actor objective

within SAC is given in Equation 7.1, where Qw(st, at) is expected, future discounted

reward parameterized by ω and ατ is a temperature parameter that determines the

relative importance of the stochastic policy entropy versus the reward.

Jπ(θ) = Est∼D[Eat∼πθ[ατ log(πθ(at|st)) −Qω(st, at)]] (7.1)

7.3 Method

In this section, we introduce our ICCTs, a novel interpretable reinforcement learn-

ing architecture. ICCTs are able to maintain interpretability while representing

high-performance continuous control policies, making them suitable for appli-

cations that require trust and accountability, such as robotic manipulation and

autonomous vehicle control. We provide several extensions to prior DDT frame-

works within our proposed architecture, including 1) a differentiable crispification

procedure allowing for optimization in a sparse decision-tree-like representation

and 2) the addition of sparse linear leaf controllers to increase expressivity while

maintaining legibility.

7.3.1 ICCT Architecture

Our ICCTs are initialized to be a symmetric decision tree with Nl decision leaves

and Nl − 1 decision nodes. A depiction of our ICCT can be seen in Figure 7.1, with

decision leaves shown in red and decision nodes shown in blue. The tree depth

can be determined by log2(Nl). Each decision leaf is represented by a sparse linear

controller that operates on x⃗. Decisions are routed via decision nodes toward a

leaf controller, which is then used to produce the continuous control output (e.g.,

acceleration or steering wheel angle). Our ICCT is similar to hierarchical models,

which encompass a high-level controller that governs and coordinates multiple

122

low-level controllers. Prior work has shown this to be a successful paradigm in

continuous control [226].

Each decision node, i, has an activation steepness weight, α, associated weights,

w⃗i, with cardinality, m, matching that of the input feature vector, x⃗, and a scalar bias

term, bi, similar to that of Equation 3.3. Each leaf node, ld, where d ∈ {1, . . . ,Nl},

contains per-leaf weights, β⃗d ∈ Rm, per-leaf selector weights that learn the relative

importance of candidate features, θ⃗d ∈ Rm, per-leaf bias terms, ϕ⃗d ∈ Rm, and

per-leaf scalar standard deviations, γd. We note that if the action space is multi-

dimensional, then only the leaf controllers (and associated weights) are expanded

across |A| dimensions, where |A| is the cardinality of the action space. For each

action dimension, the mean of the output action distribution is represented by the

linear controller, ld.

ld ≜ (u⃗ ◦ β⃗d)T(u⃗ ◦ x⃗) − u⃗Tϕ⃗d (7.2)

Before enforcing leaf controller sparsity (i.e., by forcing the controller to condition

upon only a subset of features, Section subsubsection 7.3.2), u⃗ = [1, ...,Nl]T is an

all-ones vector, representing the set of active features within the leaf node, in

which case Equation Equation 7.2 can be simplified as ld = β⃗T
d x⃗ − u⃗Tϕ⃗d. The output

action can be determined via sampling (a ∼ N(β⃗T
d x⃗− u⃗Tϕ⃗d, γd)) during training and

directly via the mean during runtime. We term decision nodes that are represented

as Equation 3.3 as fuzzy decision nodes, displayed by the orange rectangles within

the left-hand side of Figure 7.1. Similarly, we term the leaf node, ld, when it is

represented in the dense representation of β⃗T
d x⃗ − u⃗Tϕ⃗d, as a fuzzy leaf node. Here,

we parameterize the bias term as a vector, ϕ⃗d, instead of a scalar as in our decision

nodes to provide a corresponding bias for each feature and facilitate feature-wise

optimization across different dimensions of the bias term.

Utilizing a novel differentiable crispification procedure to convert fuzzy deci-

sion nodes into crisp decision nodes (i.e., 2-arity predicate with a variable and a

123

threshold) and fuzzy leaf nodes into sparse leaf nodes (i.e., linear controller condi-

tioned upon a small subset of features), our model representation follows that of

a decision tree with sparse linear controllers at the leafs (shown on the right-hand

side of Figure 7.1). We further discuss our differentiable crispification procedure in

Sections subsubsection 7.3.2-subsubsection 7.3.2 (i.e., the mechanism that translates

orange blocks to blue within Figure 7.1) and leaf controller sparsification procedure

in subsubsection 7.3.2.

While decision trees (DT) are generally considered interpretable [35], trees of

arbitrarily large depths can be difficult to understand [227] and simulate [134].

A sufficiently sparse DT is desirable and considered interpretable [228]. Further-

more, the utilization of linear controllers at the leaves also allows us to maintain

interpretability, as linear controllers are widely used and generally considered inter-

pretable for humans [229]. However, for large feature spaces typically encountered

in real-world problems, such a controller would not be interpretable. As such, in

our work, we utilize sparse linear controllers at the leaves to balance the trade-off

between sparsity/complexity in logic, model depth, and performance.

7.3.2 ICCT Key Elements

In this section, we discuss our ICCT’s interpretable procedure for determining an

action given an input feature. As our ICCT configuration maintains interpretability

both during training via RL and deployment, the inference of an action must allow

gradient flow. We present a novel approach that allows for direct optimization of

sparse logical models via an online differentiable crispification procedure to deter-

mine feature importance (subsubsection 7.3.2) and allows for bifurcate decisions

(subsubsection 7.3.2). In Algorithm Algorithm 5, we provide general pseudocode

representing our ICCT’s decision-making process.

At each timestep, the ICCT model, I(·), receives a state feature, x⃗. To determine

124

an action in an interpretable form, in Steps 1 and 2 of Algorithm Algorithm 5, we

start by applying the differentiable crispification approaches of Node Crisp and

Outcome Crisp to decision nodes so that each decision node is only conditioned

upon a single variable (subsubsection 7.3.2), and the evaluation of a decision node

results in a Boolean (subsubsection 7.3.2). Once the operations are completed, in

Step 3, we can utilize the input feature, x⃗, and logically evaluate each decision

node until arrival at a linear leaf controller (Interpretable Node Routing). The

linear leaf controller is then modified, in Step 4, to only condition upon e features,

where e is a sparsity parameter specified a priori (subsubsection 7.3.2). Finally, an

action can be determined via sampling from a Gaussian distribution conditioned

upon the mean generated via the input-parameterized sparse leaf controller, l∗d, and

scalar variance maintained within the leaf, γd, during training (Step 6) or directly

through the outputted mean (Step 8) during runtime.

Algorithm 5 ICCT Action Determination
Input: ICCT I(·), state feature x⃗ ∈ S, controller sparsity e, training flag t ∈ {True, False}
Output: action a ∈ R

1: Node Crisp(σ(α(w⃗T
i x⃗ − bi)))→ σ(α(wk

i xk
− bi))

2: Outcome Crisp(σ(α(wk
i xk
− bi)))→ 1(α(wk

i xk
− bi) > 0)

3: ld ← Interpretable Node Routing(x⃗)
4: l∗d ← Enforce Controller Sparsity(e, ld)
5: if t then
6: a ∼ N(l∗d(x⃗), γd)
7: else
8: a← l∗d(x⃗)
9: end if

Decision Node Crispification

The Node Crisp procedure in Algorithm Algorithm 5 recasts each decision node to

split upon a single dimension of x⃗. Instead of using a non-differentiable argument

max function as in [131] to determine the most impactful feature dimension, we

utilize a softmax function, also known as softargmax [230], described by Equa-

125

tion 7.3. In this equation, we denote the softmax function as f (·), which takes as

input a set of class weights and produces class probabilities. Here, w⃗i represents

a categorical distribution with class weights, individually denoted by w j
i , and τ is

the temperature, determining the steepness of f (·).

f (w⃗i)k =
exp
(wk

i
τ

)
∑m

j=1 exp
(w j

i
τ

) (7.3)

While setting the temperature near-zero would satisfy our objective of producing

a one-hot vector, where the outputted class probability of the index of the most

impactful feature would be one, this operation can lead to a large variance within

the gradients and unstable training. We therefore set the softmax temperature, τ

equal to 1, which we find effective empirically, and utilize a differentiable one hot

function, g(·), to produce a one-hot vector with the element associated with the

highest-weighted class set to one and all other elements set to zero. We display the

procedure for determining the one-hot vector associated with the largest magnitude

in Equation 7.4.

z⃗i = g(f (|w⃗i|)) (7.4)

Here, |w⃗i| represents a vector with absolute elements within w⃗i. We maintain dif-

ferentiability in the procedure described in Equation 7.4 by utilizing the straight-through

trick [68]. This allows us to obtain the desired output, z⃗i, a one-hot vector over

weights required for the purpose of matching the decision node representation of

a decision tree, while maintaining gradients for all weight parameters {w j
i }

m
j=1 (by

treating the gradient with respect to z⃗i as the gradient with respect to f (|w⃗i|)). This

procedure is further elaborated in subsubsection 7.3.2 and Algorithm Algorithm 8.

The one-hot encoding z⃗i can then be element-wise multiplied by the original

126

weights to produce a new set of weights with only one active weight, z⃗i ◦ w⃗i →

w⃗′i . Accordingly, the decision node representation is transferred from σ(α(w⃗T
i x⃗ −

bi)) → σ(α(w⃗′Ti x⃗ − bi)) = σ(α(wk
i x

k
− bi)), where k is the index of the most impactful

feature. We provide an algorithm detailing the Node Crispprocedure in Algorithm

Algorithm 6, where node crispification recasts each decision node to split upon a

single dimension of the input.

Algorithm 6 Node Crispification: Node Crisp(·)
Input: The original fuzzy decision node σ(α(w⃗T

i x⃗− bi)), where i is the decision node index,

w⃗i = [w1
i ,w

2
i , ...,w

j
i ,w

j+1
i , ...,wm

i]T, and m is the number of input features

Output: The intermediate decision node representation σ(α(wk
i xk
− bi)) (see the green box

in Figure 7.2)

1: z⃗i = diff argmax(|w⃗i|) (diff argmax(·) displayed in Algorithm Algorithm 8)

2: w⃗′i = z⃗i ◦ w⃗i

3: σ(α(wk
i xk
− bi)) = σ(α(w⃗′Ti x⃗ − bi))

Node crispification takes as input the original fuzzy decision node, σ(α(w⃗T
i x⃗−bi)),

where all input features are used in determining the output of decision node i. The

output of this function is an intermediate decision node, σ(α(wk
i x

k
− bi)), where the

output of decision node i is only determined by a single feature, xk. To perform

this transformation, in Line 1, we use the differentiable argument max function (in

Algorithm Algorithm 8) to produce a one-hot vector, z⃗i, with the element associated

with the most impactful feature set to one and all other elements set to zero.

In Line 2, we element-wise multiply the one-hot encoding, z⃗i, by the original

weights, w⃗i, to produce a new set of weights with only one active weight, w⃗′i .

In Line 3, we show that by multiplying x⃗ by w⃗′i , we can obtain the intermediate

decision node σ(α(wk
i x

k
− bi)), where k is the index of the most impactful feature

(i.e., k = arg max j(|w
j
i |)). The transformation to each decision node performed by

node crispification is further displayed by the green arrow in Figure 7.2.

127

Figure 7.2: This figure displays the process of differentiable crispification, including
node crispification (Algorithm Algorithm 6) and outcome crispification (Algorithm
Algorithm 7). The node crispification sparsifies the weight vector, w⃗i, and chooses
the most impactful feature. The outcome crispification enforces a “hard” decision
at the node rather than a “soft” decision, so the computation proceeds along one
branch. Both operations are differentiable through the use of the straight-through
trick.

Below, we conduct a short example detailing our procedure.

Example: Consider we have a two-leaf decision tree (one decision node) with an

input feature, x⃗ = [2, 3]T with a cardinality of 2 (i.e., m = 2), associated weights of

w⃗1 = [2, 1]T, and a bias term b1 of 1. The sigmoid steepness, α, is also set equal to 1

for simplicity. It is easily seen that the most impactful weight within the decision

node is w1
1 = 2. Utilizing Equation 7.4, we can compute z⃗1 = [1, 0]T. Multiplying z⃗1

to the original weights, w⃗1, and input feature, x⃗, subtracting b1, and scaling by α, we

have an crisp decision node σ(2x1
− 1) or σ(3) = 0.95. Here, 0.95 is the probability

that the decision node evaluates to True. We display a depiction of this example

in the left-hand side of Figure 7.3.

Decision Outcome Crispification

Here, we describe the second piece of our online differentiable crispification pro-

cedure, noted as Outcome Crisp in Algorithm Algorithm 5. Outcome Crisp trans-

128

lates the outcome of a decision node so that the outcome is a Boolean decision

rather than a probability generated via a sigmoid function (i.e., p = yi for True/Left

Branch and q = 1 − yi for False/Right Branch). We start by creating a soft vector,

v⃗i = [α(wk
i x

k
− bi), 0], for the ith decision node. Placing v⃗i through a softmax opera-

tion, we can produce the probability of tracing down the left branch or right. We

can then apply the differentiable one-hot function, g(·), to produce a hard decision

of whether to branch left or right, denoted by yi and described by Equation 7.5.

[yi, 1 − yi] = g(f (v⃗i)) (7.5)

Essentially, the decision node will evaluate to True if α(wk
i x

k
− bi) > 0 and right

otherwise. This process can be expressed as an indicator function1(α(wk
i x

k
−bi) > 0).

We note the procedure of g(f (v⃗i)) is highly similar to that in Equation 7.4, both

outputting a one-hot vector, with the former input being the decision node weights,

|w⃗i|, and the latter input being the soft vector representation of the decision node

outcome, v⃗i. We provide an algorithm detailing the Outcome Crisp procedure in

Algorithm Algorithm 7, where outcome crispification translates the outcome of a

soft decision node to a hard decision node, resulting in a Boolean output from the

decision node rather than a set of probabilities.

Algorithm 7 Outcome Crispfication: Outcome Crisp(·)
Input: The intermediate decision node σ(α(wk

i xk
− bi)), where i is the decision node index,

k = arg max j(|w
j
i |), and w j

i is the jth element in w⃗i

Output: Crisp decision node 1(α(wk
i xk
− bi) > 0) (see the blue box in Figure 7.2)

1: v⃗i = [α(wk
i xk
− bi), 0]

2: z⃗′i = diff argmax(v⃗i) (diff argmax(·) displayed in Algorithm Algorithm 8)

3: 1(α(wk
i xk
− bi) > 0) = z⃗′i [0]

Outcome crispification takes in the intermediate decision node σ(α(wk
i x

k
− bi)),

129

which outputs the probability of branching left. The output of Outcome Crisp is

the crisp decision node, 1(α(wk
i x

k
− bi) > 0), a Boolean decision to trace down to

the left branch OR right. In Line 1, we construct a soft vector representation of

the decision node i’s output, v⃗i, by concatenating α(wk
i x

k
− bi) with a 0. In Line

2, we use the differentiable argument max function (in Algorithm Algorithm 8)

to produce a one-hot vector, z⃗′i , where the first element represents the Boolean

outcome of the decision node. In Line 3, we show that the output of the crisp

decision node, 1(α(wk
i x

k
− bi) > 0), can be obtained by choosing the first element of

vector z⃗′i (we use bracket indexing notation here, starting with zero). We further

display the transformation performed by outcome crispification by the blue arrows

in Figure 7.2.

Example: Continuing the example in subsubsection 7.3.2, we can take the outputted

crisp decision node and generate a vector v⃗1 = [2x1
− 1, 0]T, or by substituting the

input feature, v⃗1 = [3, 0]T. Performing the operations specified in Equation 7.5,

we receive the intermediate output from the softmax [0.95, 0.05]T (rounded to two

decimal places), the one-hot vector [1, 0]T after performing the one hot operation,

and finally y1 = 1, denoting that the decision-tree should follow the left branch.

We display a depiction of this example on the right-hand side of Figure 7.3.

Figure 7.3: This figure displays the process of decision node crispification and
decision outcome crispification across the Examples within subsubsection 7.3.2
and subsubsection 7.3.2.

Conversion to a Simple Form: The above crispification processes produce decision-

130

tracing equal to that of a DT. The node representation can thus be simplified to that

of Figure 7.1 by algebraically reducing each crisp decision node to xk > bi

wk
i

(given

αwk
i > 0) or xk < bi

wk
i

(given αwk
i < 0).

Sparse Linear Leaf Controllers

After applying the decision node and outcome crispification to all decision nodes

and outcomes, the decision can be routed to leaf node (Step 3). This section de-

scribes the procedure to translate a linear leaf controller to condition upon e features

(Enforce Controller Sparsity procedure in Algorithm Algorithm 5), enforcing

sparsity within the leaf controller and thereby, enhancing ICCT interpretability.

As noted in subsection 7.3.1, our ability to utilize sparse sub-controllers allows us

to balance between interpretability and performance. The sparsity of the linear

sub-controllers ranges from setting e = 0 and maintaining static leaf distributions,

where each leaf node contains scalar value representing the mean (i.e., ICCT-static

in section 7.7), to e = m, containing a linear controller parameterized by the entire

feature space of x⃗ (i.e., ICCT-complete in section 7.7).

Equation 7.6 displays the procedure for determining a k-hot encoding, u⃗d, that

represents the k (or in our case, e) most impactful selection weights within a leaf’s

linear controller. The k-hot function, denoted by h(·), takes as input a vector of

weights and returns an equal-dimensional vector with k elements set to one. The

indexes associated with the elements set to one match the k highest-weighted

elements within the input feature.

u⃗d = h(f (|θ⃗d|)) (7.6)

Here, |θ⃗d| represents a vector with absolute elements within the per-leaf selector

weights, θ⃗d. As before, we maintain differentiability and formulate a differentiable

131

top-k function in Equation 7.6 by utilizing the straight-through trick [68] and iter-

atively applying diff argmax(·) (Algorithm Algorithm 8) k times. In Equation 7.7,

we transform a fuzzy leaf node, for leaf, ld (represented in Equation 7.2), into a

sparse linear sub-controller, l∗d, with the sparse feature selection vector, u⃗d, given by

Equation Equation 7.6.

l∗d ≜ (u⃗d ◦ β⃗d)T(u⃗d ◦ x⃗) + u⃗T
d ϕ⃗d (7.7)

A depiction of the sparse sub-models can be seen at the bottom right-hand side of

Figure 7.1, where the sparsity of the sub-controllers, e, is set to 1 and the dimension

of the action space is 2.

Differentiable Argument Max Function for Differentiable Crispification

In this section, we provide a description of the differentiable argument max func-

tion.

Algorithm 8 Differentiable Argument Max Function for Crispification:
diff argmax(·)
Input: Logits q⃗

Output: One-Hot Vector h⃗

1: h⃗so f t ← f (q⃗)

2: h⃗hard ← one hot(argmax(f (q⃗))) {step 1 for function g(·)}

3: h⃗ = h⃗hard + h⃗so f t−stop grad(⃗hso f t) {step 2 for function g(·)}

Similar to [231], we present a function call (in Algorithm Algorithm 8) that can

be utilized to maintain gradients over a non-differentiable argument max operation.

The function takes in a set of logits, q⃗, and applies a softmax operation, denoted

by f (·), to output h⃗so f t, as shown in Line 1. In Line 2, the logits are transformed

using an argument max followed by a one-hot procedure, causing the removal

of gradient information, producing h⃗hard. In Line 3, we combine h⃗so f t, h⃗hard, and

stop grad(⃗hso f t) to output h⃗, where stop grad(·) keeps the values and removes the

132

gradient data of h⃗so f t. The outputted value of h⃗ is equal to that of h⃗hard. However,

the gradient maintained within h⃗ is associated with h⃗so f t. Automatic differentiation

frameworks can then utilize the outputted term to perform backpropagation. Here,

the operations in Line 2 and Line 3 compose function g(·) in Equation 7.4 and

Equation 7.5.

Summary: In this section, we discuss our novel interpretable reinforcement

learning architecture, ICCTs. We present a description of components of ICCTs,

including decision nodes and linear leaf controllers, and provide a differentiable

crispification procedure allowing for optimization similar to a differentiable de-

cision tree (DDT) while maintaining a forward-propagation process identical to

a sparse decision tree. To the best of our knowledge, we present the first truly

interpretable tree-based framework for continuous control.

7.4 Universal Function Approximation

In this section, we provide a proof to show our ICCTs are universal function approx-

imators, that is, can represent any decision surface given enough parameters. Our

ICCT architecture consists of successive indicator functions, whose decision point

lies among a single dimension of the feature space, followed by a linear controller

to determine a continuous control output. For simplicity, we assume below that the

leaf nodes contain static distributions. However, maintaining a linear controller

at the leaves is more expressive and thus, the result below generalizes directly to

ICCTs.

The decision-making of our ICCTs can be decomposed as a sum of products.

In Equation 7.8, we display a computed output for a 4-leaf tree, where decision

node outputs, yi, are given by Equation 3.3. Here, the sigmoid steepness, α is set

to infinity (transforming the sigmoid function into an indicator function) resulting

in hard decision points (yi ∈ {0, 1}). Equation 7.8 shows that the chosen action is

133

determined by computation of probability of reaching a leaf, y, multiplied by static

tree weights maintained at the distribution, p.

ICCT(x) = p1(y1 ∗ y2) + p2(y1 ∗ (1 − y2)) (7.8)

+ p3((1 − y1) ∗ y3) + p4 ∗ ((1 − y1) ∗ (1 − y3))

Equation 7.8 can be directly simplified into the form of G(x) =
∑N

j=1 p jσ(wT
j x + b j),

similar to Equation 1 in [232]. [232] demonstrates that finite combination of fixed,

univariate functions can approximate any continuous function. The key difference

between our architecture is that our univariate function is an indiator function

rather than the commonly used sigmoid function. Below, we provide two lemmas

to show that indicator functions fall within the space of univariate functions [232].

Lemma 7.4.1 An indicator function is sigmoidal.

Proof: This follows from the definition of sigmoidal: σ(t)→ 1 as t→∞ and σ(t)→ 0

as t→ −∞.

Lemma 7.4.2 An indicator function is discriminatory.

Proof: As an indicator function is bounded and measureable, by Lemma 1 of [232],

it is discriminatory.

Theorem 7.4.3 Let σ be any continuous discriminatory function. ICCTs are universal

function approximators, that is, dense in the space of C(In). In other words, there is a

representation of ICCTs, I(x), for which |I(x) − f (x)| < ϵ for all x ∈ In, for any function, f

(f ∈ C(In)), where C(In) denotes the codomain of an n-dimensional unit cube, In.

Proof: As the propositional conditions hold for Theorem 1 in [232], the result

that ICCTs are dense in C(In) directly follows. We note that as the indicator func-

tion jump-continuous, we refer readers to [233] whom extend UFA for G(x) =

134

∑N
j=1 p jσ(wT

j x + b j) to the case when σ is jump-continuous. As ICCTs are dense in

C(In), ICCTs are universal function approximators. □

7.5 Model Robustness Verification

A desirable property for a controller is to be able to verify the policy, ensuring

the controller outputs desirable values for a set of inputs. This often translates to

answering the following question:

• For a range of input features, what is the range of output values that can be expected?

By answering this question, engineers and end-users can attain key insights into

a policy’s decision-making behavior and make guarantees about its behavior. Uti-

lizing autonomous driving as an example, an engineer may want to verify that if

a human is detected within 5 meters, the acceleration of the vehicle is never above

5m/s−2. Verification of policies is vital in creating models that are safe and can help

ensure that models accurately perform the purpose they are designed for.

In this section, we analyze the time complexity of verifying an ICCT. Following

[234], we formalize the problem of robustness verification as follows: Consider a

regression model: f : Rd
→ R, where d is the dimension of the input features and

the output is a real-valued scalar. In [234], for input, x, the minimal adversarial

perturbation is defined by Equation Equation 7.9, where y = f (x) is the expected

controller output value. The solution to this equation determines the minimum

input perturbation required to have the controller output a value different from the

expected value, y.

r∗ = min
λ
||λ||∞ s.t. f (x + λ) , y (7.9)

As we are concerned with continuous control policies, where a slight perturbation

on the input may cause a slight perturbation on the controller output, we instead

generalize y to an expected output range, y = {a, b}, and search for an input pertur-

135

bation that causes y to fall out of the specified range, i.e., f (x+λ) < {a, b}. Following

our autonomous driving example, finding the minimum adversarial perturbation

allows an engineer to understand what input deviations may result in unsafe or

undesirable controller outputs. Thus below, we present a discussion of the time

complexity associated with solving Equation Equation 7.9 of neural network mod-

els and our ICCTs. Positively, for our ICCTs, determining the minimal input perturbation

can be done in linear time.

Due to complex nonlinearities within neural network architectures, small input

perturbations can lead to large changes in predicted values [235, 236], making

it intractable to perform verification. Often, verification is only possible if the

neural network architecture follows certain desiderata [237] or by utilizing convex

relaxations of nonlinear activation functions [238]. Even so, such verification, in

the best case, is only NP-Complete.

ICCTs, on the other hand, can be verified in linear time. Here, we first present

an analysis showing ICCT-static (ICCT maintaining static Gaussian distributions at

each leaf) can be verified in linear time. We then extend this proof to ICCT-complete,

where linear controllers parameterized by the input features are maintained at each

leaf. For simplicity, we assume that the output value of our controller is solely

determined by the mean value within the leaf distribution of our ICCTs, similar to

how ICCTs are deployed during runtime.

Assume we have a decision tree that has n decision nodes and n + 1 leaf nodes.

For each decision node i, we define a variable, ti, representing which feature is

activated within the decision node, and a variable, ηi, representing the threshold

maintained with the decision node (which is equal to bi
wi

). Depending on the

outcome of the decision node, the computation will further proceed to either the

left or right child until arrival at a leaf node, where the leaf node contains a scalar

value representing the Gaussian mean.

136

Following [234], the key of the proof is to split the d-dimensional input space

to n + 1 hyperspaces corresponding to leaf nodes, such that any input will result

in falling into one and only one leaf node’s hyperspace. This can be done by

traversing the entire tree and computing bounding boxes via a depth-first search.

By definition, all input variables will reach the root node, resulting in a root node

box represented by the Cartesian product B = [−∞,∞] × · · · [−∞,∞], of cardinality

d. Each child’s box can be obtained by splitting one interval from the parent box

based on the split condition (the variable selected, ti, and threshold, ηi). This

process can be completed until the entire tree is traversed (via a depth-first search

fashion), resulting in a time complexity of O(nd), where n is the number of nodes

and d is the cardinality of the input space.

The distance from an input x to a leaf node’s region can be written as a vector,

ϵ(x,Bi) ∈ Rd, defined by the Equation 7.10, where li
t, r

i
t, represent the upper and

lower bound of a node’s Cartesian product on dimension t for leaf i, respectively.

ϵ(x,Bi)t =


0 if it ∈ (li

t, r
i
t)

xt − ri
t if xt > ri

t

li
t − xt if xt ≤ li

t

(7.10)

Thus, the minimal distortion required to result in an incorrect output value can

be obtained by Equation 7.11, where y = {a, b} is the output range desired, and vi

is the value for leaf node i. Intuitively, Equation Equation 7.11 finds the minimum

perturbation on a feature, t, that leads to a leaf node with associated output outside

of the desired output range.

r∗ = min
i:vi<y,t∈[d]

ϵ(x,Bi)t (7.11)

The time complexity of the verification algorithm for ICCT robustness is O(nd)

137

due to the traversal of the tree, the combination of bounding boxes, and the minimal

perturbation finding in Equation Equation 7.11 by iterating over all leaf node and

all feature dimensions. As stated above, this results in addressing the decision

problem of robustness verification in linear time.

When extending to ICCTs with linear controllers at the leaves, we can utilize the

same formalism to obtain the bounding boxes represented by Cartesian products at

each leaf. However, as each leaf controller depends on input variables, the range of

outputs would require extra computation based on the bounding boxes and linear

controller parameters. Because of the monotony of the linear controllers with

respect to each input feature, the computation is still O(d) for each leaf node, and

therefore we can still achieve the overall O(nd) time complexity for the robustness

verification.

7.6 Environments

Here, we provide short descriptions across six domains used in our extensive

evaluation. We start with two common continuous control problems, Inverted

Pendulum, and Lunar Lander, provided by OpenAI Gym [69]. We then test across

four autonomous driving scenarios: Lane-Keeping provided by [70] and Single-

Lane Ring Network, Multi-Lane Ring Network, and Figure-8 Network all provided

by the Flow deep reinforcement learning framework for mixed autonomy traffic

scenarios [71].

Inverted Pendulum: In Inverted Pendulum [239], a control policy must apply throttle

(ranging from+3 to move left to -3 to move right) to balance a pole. The observation

includes the cart position, velocity, pole angle, and pole angular velocity.

• Lunar Lander: In Lunar Lander [240, 69], a policy must throttle the main engine

and side engine thrusters for a lander to land on a specified landing pad. The

observation is 8-dimensional, including the lander’s current position, linear

138

W
or

st
to

Be
st

:

M
et

ho
d

C
om

m
on

C
on

ti
nu

ou
s

C
on

tr
ol

Pr
ob

le
m

s
A

ut
on

om
ou

s
D

ri
vi

ng
Pr

ob
le

m
s

In
ve

rt
ed

Pe
nd

ul
um

Lu
na

r
La

nd
er

La
ne

K
ee

pi
ng

Si
ng

le
-L

an
e

R
in

g
M

ul
ti

-L
an

e
R

in
g

Fi
gu

re
-8

D
T

15
5.

0
±

0.
9

−
28

5.
5
±

15
.6

−
35

9.
0
±

11
.0

12
3.

2
±

0.
03

50
3.

2
±

24
.8

83
1.

1
±

1.
1

25
6

le
av

es
(7

66
pa

ra
m

s)
25

6
le

av
es

(1
02

2
pa

ra
m

s)
25

6
le

av
es

(7
66

pa
ra

m
s)

32
le

av
es

(9
4

pa
ra

m
s)

25
6

le
av

es
(1

02
2

pa
ra

m
s)

25
6

le
av

es
(7

66
pa

ra
m

s)

D
T

w
\

D
A

gg
er

77
6.

6
±

54
.2

18
4.

7
±

17
.3

39
5.

2
±

13
.8

12
1.

5
±

0.
01

12
49
.4
±

3.
4

11
13

.8
±

9.
5

32
le

av
es

(9
4

pa
ra

m
s)

32
le

av
es

(1
26

pa
ra

m
s)

16
le

av
es

(4
6

pa
ra

m
s)

16
le

av
es

(4
6

pa
ra

m
s)

31
le

av
es

(1
22

pa
ra

m
s)

16
le

av
es

(4
6

pa
ra

m
s)

C
D

D
T-

C
ri

sp
5.

0
±

0.
0

−
45

1.
6
±

97
.3

−
43

52
6.

0
±

15
90

5.
0

68
.1
±

18
.7

66
4.

5
±

19
2.

6
32

2.
9
±

47
.1

2
le

av
es

(5
pa

ra
m

s)
8

le
av

es
(3

7
pa

ra
m

s)
16

le
av

es
(6

1
pa

ra
m

s)
16

le
av

es
(6

1
pa

ra
m

s)
16

le
av

es
(7

7
pa

ra
m

s)
16

le
av

es
(6

1
pa

ra
m

s)

IC
C

T-
st

at
ic

98
4.

0
±

10
.4

19
2.

4
±

10
.7

37
4.

2±
55

.8
12

0.
5
±

0.
5

12
71

.7
±

4.
1

10
03

.8
±

27
.2

32
le

av
es

(1
25

pa
ra

m
s)

32
le

av
es

(1
57

pa
ra

m
s)

16
le

av
es

(6
1

pa
ra

m
s)

16
le

av
es

(6
1

pa
ra

m
s)

16
le

av
es

(7
7

pa
ra

m
s)

16
le

av
es

(6
1

pa
ra

m
s)

IC
C

T-
1-

fe
at

ur
e

10
00
.0
±

0.
0

19
0.

1
±

13
.7

43
7.

6
±

7.
0

12
1.

6
±

0.
5

12
69
.6
±

10
.7

10
72
.4
±

37
.1

8
le

av
es

(4
5

pa
ra

m
s)

8
le

av
es

(6
9

pa
ra

m
s)

16
le

av
es

(9
3

pa
ra

m
s)

16
le

av
es

(9
3

pa
ra

m
s)

16
le

av
es

(1
41

pa
ra

m
s)

16
le

av
es

(9
3

pa
ra

m
s)

IC
C

T-
2-

fe
at

ur
e

10
00
.0
±

0.
0

25
8.

4
±

7.
0

45
8.

5
±

6.
3

12
1.

9
±

0.
5

12
80

.4
±

7.
3

10
88

.6
±

21
.6

4
le

av
es

(2
9

pa
ra

m
s)

8
le

av
es

(1
01

pa
ra

m
s)

16
le

av
es

(1
25

pa
ra

m
s)

16
le

av
es

(1
25

pa
ra

m
s)

16
le

av
es

(2
05

pa
ra

m
s)

16
le

av
es

(1
25

pa
ra

m
s)

IC
C

T-
3-

fe
at

ur
e

10
00

.0
±

0.
0

27
5.

8
±

1.
5

44
8.

8
±

3.
0

12
0.

8
±

0.
5

12
80

.8
±

7.
7

10
48
.7
±

46
.7

2
le

av
es

(1
7

pa
ra

m
s)

8
le

av
es

(1
33

pa
ra

m
s)

16
le

av
es

(1
57

pa
ra

m
s)

16
le

av
es

(1
57

pa
ra

m
s)

16
le

av
es

(2
69

pa
ra

m
s)

16
le

av
es

(1
57

pa
ra

m
s)

IC
C

T-
L1

-s
pa

rs
e

10
00
.0
±

0.
0

26
5.

2
±

4.
3

46
5.

5
±

4.
3

12
1.

5
±

0.
3

12
75
.3
±

6.
7

99
3.

2
±

14
.6

4
le

av
es

(2
9

pa
ra

m
s)

8
le

av
es

(1
65

pa
ra

m
s)

16
le

av
es

(2
53

pa
ra

m
s)

16
le

av
es

(7
65

pa
ra

m
s)

16
le

av
es

(2
18

9
pa

ra
m

s)
16

le
av

es
(5

09
pa

ra
m

s)

IC
C

T-
co

m
pl

et
e

10
00
.0
±

0.
0

30
0.

5
±

1.
2

47
6.

6
±

3.
1

12
0.

7
±

0.
5

12
48
.6
±

3.
6

99
4.

1
±

29
.1

2
le

av
es

(1
3

pa
ra

m
s)

8
le

av
es

(1
65

pa
ra

m
s)

16
le

av
es

(2
53

pa
ra

m
s)

16
le

av
es

(7
65

pa
ra

m
s)

16
le

av
es

(2
18

9
pa

ra
m

s)
16

le
av

es
(5

09
pa

ra
m

s)

C
D

D
T-

co
nt

ro
lle

rs
C

ri
sp

84
.0
±

10
.4

−
12

6.
6
±

53
.5

−
39

82
6.

4
±

21
23

0.
0

97
.9
±

12
.0

63
9.

62
±

16
0.

4
24

5.
5
±

48
.5

2
le

av
es

(1
3

pa
ra

m
s)

8
le

av
es

(1
65

pa
ra

m
s)

16
le

av
es

(2
53

pa
ra

m
s)

16
le

av
es

(7
65

pa
ra

m
s)

16
le

av
es

(2
18

9
pa

ra
m

s)
16

le
av

es
(5

09
pa

ra
m

s)

M
LP

-L
ow

er
10

00
.0
±

0.
0

23
1.

6
±

49
.8

47
4.

7
±

5.
8

12
1.

8
±

0.
6

64
6.

4
±

15
1.

2
86

8.
4
±

10
0.

9
79

pa
ra

m
s

11
0

pa
ra

m
s

12
7

pa
ra

m
s

15
1

pa
ra

m
s

22
1

pa
ra

m
s

10
3

pa
ra

m
s

M
LP

-U
pp

er
10

00
.0
±

0.
0

28
8.

7
±

2.
8

46
7.

9
±

8.
5

12
1.

8
±

0.
3

12
39
.5
±

4.
2

10
77
.7
±

31
.1

12
1

pa
ra

m
s

22
2

pa
ra

m
s

40
7

pa
ra

m
s

70
9

pa
ra

m
s

32
66

pa
ra

m
s

10
21

pa
ra

m
s

M
LP

-M
ax

10
00
.0
±

0.
0

29
8.

5
±

0.
7

47
8.

2
±

6.
7

12
1.

7
±

0.
4

10
11
.9
±

14
1.

3
11

04
.3
±

9.
4

67
32

9
pa

ra
m

s
68

61
0

pa
ra

m
s

69
37

7
pa

ra
m

s
77

56
9

pa
ra

m
s

83
45

8
pa

ra
m

s
73

47
3

pa
ra

m
s

C
D

D
T

10
00

.0
±

0.
0

22
6.

4
±

44
.5

46
4.

7
±

5.
4

12
0.

9
±

0.
5

12
48

.0
±

6.
4

10
33
.2
±

24
.1

2
le

av
es

(8
pa

ra
m

s)
8

le
av

es
(8

6
pa

ra
m

s)
16

le
av

es
(2

26
pa

ra
m

s)
16

le
av

es
(7

06
pa

ra
m

s)
16

le
av

es
(1

03
6

pa
ra

m
s)

16
le

av
es

(4
66

pa
ra

m
s)

C
D

D
T-

co
nt

ro
lle

rs
10

00
.0
±

0.
0

28
9.

0
±

2.
4

46
9.

7
±

11
.1

12
0.

1
±

0.
3

12
43
.8
±

3.
6

10
10
.9
±

25
.7

2
le

av
es

(1
6

pa
ra

m
s)

8
le

av
es

(2
14

pa
ra

m
s)

16
le

av
es

(4
18

pa
ra

m
s)

16
le

av
es

(1
41

0
pa

ra
m

s)
16

le
av

es
(2

09
2

pa
ra

m
s)

16
le

av
es

(9
14

pa
ra

m
s)

Ta
bl

e
7.

1:
In

th
is

ta
bl

e,
w

e
di

sp
la

y
th

e
re

su
lt

s
of

ou
r

ev
al

ua
ti

on
.

Fo
r

ea
ch

ev
al

ua
ti

on
,

w
e

re
po

rt
th

e
m

ea
n

(±
st

an
da

rd
er

ro
r)

an
d

th
e

co
m

pl
ex

it
y

of
th

e
m

od
el

re
qu

ir
ed

to
ge

ne
ra

te
su

ch
a

re
su

lt
.

O
ur

ta
bl

e
is

br
ok

en
in

to
th

re
e

se
gm

en
ts

,t
he

fir
st

co
nt

ai
ni

ng
eq

ua
lly

in
te

rp
re

ta
bl

e
ap

pr
oa

ch
es

th
at

ut
ili

ze
st

at
ic

di
st

ri
bu

ti
on

s
at

th
ei

r
le

av
es

.
T

he
se

co
nd

se
gm

en
t

co
nt

ai
ns

in
te

rp
re

ta
bl

e
ap

pr
oa

ch
es

th
at

m
ai

nt
ai

n
lin

ea
r

co
nt

ro
lle

rs
at

th
ei

r
le

av
es

.
Th

e
or

de
ri

ng
of

m
et

ho
ds

de
no

te
s

th
e

re
la

ti
ve

in
te

rp
re

ta
bi

lit
y.

Th
e

th
ir

d
se

gm
en

ts
di

sp
la

ys
bl

ac
k-

bo
x

ap
pr

oa
ch

es
.

W
e

bo
ld

th
e

hi
gh

es
t-

pe
rf

or
m

in
g

m
et

ho
d

in
ea

ch
se

gm
en

t,
an

d
br

ea
k

ti
es

in
pe

rf
or

m
an

ce
by

m
od

el
co

m
pl

ex
it

y.
W

e
co

lo
r

ta
bl

e
el

em
en

ts
in

as
so

ci
at

io
n

w
it

h
th

e
nu

m
be

r
of

pa
ra

m
et

er
s

an
d

pe
rf

or
m

an
ce

.R
ed

di
sh

co
lo

rs
re

la
te

to
a

la
rg

er
nu

m
be

r
of

po
lic

y
pa

ra
m

et
er

s
an

d
lo

w
er

av
er

ag
e

re
w

ar
d.

139

velocity, tilt, angular velocity, and information about ground contact. The

continuous action space is two-dimensional, with the first dimension con-

trolling the main engine thruster and the second controlling the side engine

thrusters.

• Lane-Keeping [70]: A control policy must control a vehicle’s steering angle to

stay within a curving lane. The observation is 12-dimensional, which consists

of lane information and the vehicle’s lateral position, heading, lateral speed,

yaw rate, and linear, lateral, and angular velocity. The action is the steering

angle to control the vehicle.

• Flow Single-Lane Ring Network [71]: A control policy must apply accelera-

tion commands to a vehicle agent to stabilize traffic flow consisting of 21

other human-driven (synthetic) vehicles. The observation includes the world

position and velocity of all vehicles.

• Flow Multi-Lane Ring Network [71]: A control policy must apply acceleration

and lane-changing commands to an ego vehicle to stabilize the flow of noisy

traffic flow across multiple lanes. The observation includes the world position

and velocity of all vehicles.

• Flow Figure-8 Network [71]: A control policy must apply acceleration to a

vehicle to stabilize the flow in a Figure-8 network (contains a section where

the vehicles must cross paths at the center of the 8), requiring the policy

to adapt its control input to create a stable flow through this section. The

observation is the world position and velocity of all vehicles.

7.7 Results

In this section, we present the set of baselines we test our model, ICCTs, against.

Then, we report the results of our approach versus these baselines across the six

140

continuous control domains, as shown in Table Table 7.1. All presented results are

across five random seeds, and all differentiable frameworks are trained via SAC

[81]. Each tree-based framework is trained while maximizing performance and

minimizing the complexity required to represent such a policy, thereby emphasiz-

ing interpretability. We release our codebase at https://github.com/CORE-Robotics-

Lab/ICCT.

7.7.1 Baselines

We provide a list of baselines alongside abbreviations used for reference and brief

definitions below. We compare against interpretable models, black-box models,

and models that can be converted post-hoc into an interpretable form. For each

method, we also include details regarding the number of active parameters utilized

in each model (a surrogate measure for model complexity). We briefly list the

following notations for an easier understanding of the computation of the number

of parameters for each model discussed below. The number of leaf nodes is Nl (the

number of decision nodes is Nl − 1), the dimension of the observation space is m,

the number of active features within the leaf controllers is e, and the dimension

of the action space is da. The calculated number of parameters is denoted as Np

for each model. Our approach, ICCT-e-feature, has a number of parameters of

Np = 3(Nl − 1) + (2e + 1)daNl = (2eda + da + 3)Nl − 3.

• Continuous DDTs (CDDT): We translate the framework of [131] to function

with continuous action-spaces by modifying the leaf nodes to represent static

probability distributions. Here, Np = (m+2)(Nl−1)+daNl = (da+m+2)Nl−m−2.

When converted into an interpretable form post-hoc, this approach is reported

as CDDT-crisp which has a number of parameters, Np = 3(Nl − 1) + daNl =

(3 + da)Nl − 3.

• Continuous DDTs with controllers (CDDT-controllers): We modify CDDT

141

https://github.com/CORE-Robotics-Lab/ICCT
https://github.com/CORE-Robotics-Lab/ICCT

leaf nodes to utilize linear controllers rather than static distributions. Here,

Np = (m + 2)(Nl − 1) + (m + 1)daNl = (mda + da + m + 2)Nl − m − 2. When

converted into an interpretable form post-hoc, this approach is reported as

CDDT-controllers Crisp that has Np = 3(Nl−1)+(m+1)daNl = (mda+da+3)Nl−3.

• ICCTs with static leaf distributions (ICCT-static): We modify the leaf archi-

tecture of our ICCTs to utilize static distributions for each leaf (i.e., set e = 0).

Comparing ICCT and ICCT-static displays the effectiveness of the addition

of sparse linear sub-controllers. Here, the number of parameters can be com-

puted as Np = 3(Nl − 1) + daNl = (3 + da)Nl − 3.

• ICCT with complete linear sub-controllers (ICCT-complete): We allow the

leaf controllers to maintain weights over all features (no sparsity enforced,

i.e., e = m). Comparing ICCT-complete and CDDT-controllers displays the

effectiveness of the proposed differentiable crispification procedure. Here,

the number of parameters can be computed as Np = 3(Nl − 1) + (m + 1)daNl =

(mda + da + 3)Nl − 3.

• ICCT with L1-regularized controllers (ICCT-L1-sparse): We achieve spar-

sity via L1-regularization applied to ICCT-complete rather than enforcing

sparsity directly via the Enforce Controller Sparsity procedure. While this

baseline produces sparse sub-controllers, there are drawbacks limiting its in-

terpretability. L1-regularization enforces weights to be near zero rather than

exactly zero. These small weights must be represented within leaf nodes, and

thus, the interpretability of the resulting model is limited. Here, the number of

parameters can be computed as Np = 3(Nl−1)+(m+1)daNl = (mda+da+3)Nl−3.

• Multi-layer Perceptron (MLP): We maintain three variants of an MLP. The

first (MLP-Max) contains a very large number of parameters, typically uti-

lized in continuous control domains. The second (MLP-Upper) maintains

142

approximately the same number of parameters of our ICCTs with sparse

leaf controllers during training, including all inactive parameters. The last

(MLP-Lower) maintains approximately the same number of active parame-

ters as our ICCTs with sparse leaf controllers. The number of parameters

of MLP depends on the size of the network, including all weights and bias

parameters.

• Decision Tree (DT): We train a DT via CART [38] on state-action pairs gener-

ated from MLP-Max. This baseline represents policy distillation from a high-

performance black-box policy to an interpretable model. Here, the number

of parameters can be computed as Np = 2(Nl − 1) + daNl = (2 + da)Nl − 2.

• DT w\ DAgger: We utilize the DAgger imitation learning algorithm [207] to

train a DT to mimic the MLP-Max policy. The number of parameters can be

computed as in the DT baseline above.

7.7.2 Discussion

We present the results of our trained policies in Table Table 7.1. We provide the

performance of each method alongside the associated complexity of each bench-

mark in Table Table 7.1 across three sections, with the top section representing

interpretable approaches that maintain static distributions at their leaves, the mid-

dle section containing interpretable approaches that maintain linear controllers at

their leaves, and the bottom section containing black-box methods.

Static Leaf Distributions (Top): The frameworks of DT, DT w\DAgger, CDDT-

Crisp, and ICCT-static maintain similar representations and are equal in terms of

interpretability given that the approaches have the same depth. We see that across

three of the six control domains, ICCT-static is able to widely outperform both

the DT and CDDT-Crisp models. In the remaining three domains, ICCT-static

143

outperforms CDDT-Crisp by a large margin and achieves competitive performance

compared to DTs, even without access to a superior expert policy.

Linear Controller Leaf (Middle): Here, we rank frameworks (top-down) by

their relative interpretability. As the sparsity of the sub-controller decreases, the

interpretability diminishes. We see that most approaches are able to achieve

the maximum performance in the simple domain of Inverted Pendulum. How-

ever, CDDT-controllers-crisp encounters an inconsistency issue from the crispifi-

cation procedure of [131, 9] and achieves very low performance. In regards to

interpretability-performance tradeoff, in Inverted Pendulum, we see that as spar-

sity increases within the sub-controller, a lower-depth ICCT can be used to achieve

a equally high-performing policy. We note that across all domains, we do not find

such a linear relationship. We provide additional results within section 7.9 that

provide deeper insight into the interpretability-performance tradeoff.

Black-Box Approaches (Bottom): MLP-based approaches and fuzzy DDTs are

not interpretable. While the associated approaches perform well across many of the

six domains, the lack of interpretability limits the utility of such frameworks in real-

world applications such as autonomous driving. We see that in half the domains,

highly-parameterized architectures with over 65,000 parameters are required to

learn effective policies.

Comparison Across All Approaches: We see that across all continuous con-

trol domains, CDDT-Crisp and CDDT-controllers Crisp typically are the lowest-

performing models. This displays the drawbacks of the crispification procedure

of [131, 9] and the resultant performance inconsistency. Comparing our ICCTs to

black-box models, we see that in all domains, we parity or outperform deep highly-

parameterized models in performance while reducing the number of parameters

required by orders of magnitude. In the difficult Multi-Lane Ring scenario, we

see that we can outperform MLPs by 33% on average while achieving a 300x-600x

144

Figure 7.4: A Learned ICCT in Lunar Lander

reduction in the number of policy parameters required.

Overall, we find strong evidence for our Interpretable Continuous Control Trees,

displaying and validating the ability to at least parity black-box approaches while

maintaining high interpretability. Our novel architecture and training procedure

provide a strong step towards providing solutions for two grand challenges in

interpretableML: (1) Optimizing sparse logical models such as DTs and (10) Inter-

pretable RL.

7.8 Qualitative Exposition of ICCT Interpretability

Here, we provide a display of the utility and interpretability of a learned ICCT

model. In Figure 7.4, we present our learned ICCT model in Lunar Lander, round-

ing each element to two decimal places for brevity. The displayed figure is an

ICCT-1-feature model (i.e., only one active feature within the sparse sub-controller).

The 8-dimensional input in Lunar Lander is composed of position (x1,x2), velocity

(x3,x4), angle (x5), angular velocity (x6), left (x7) and right (x8) lander leg-to-ground

contact. The action space is two-dimensional: the first (dictated by the top of each

pair of the red-colored leaves) controls the main engine thrust, and the second (bot-

tom) controls the net thrust for the side-facing engines. The tree can be interpreted

145

(a) Performance vs. Number of Controller
Features

(b) Performance vs. Number of ICCT
Leaves

Figure 7.5: In this figure, we display the interpretability-performance tradeoffof our
ICCTs with respect to the number of active features within our linear sub-controllers
(Figure 7.5a) and the number of tree leaves (Figure 7.5b) in Lunar Lander. Within
each figure, we display the approximate Pareto-Efficiency Curve and denote the
reward required for a successful lunar landing as defined by [69].

as follows: taking the leftmost path as an example, if the left leg is not touching the

ground, the horizontal velocity is greater than -0.07 m/s, and the angular velocity is

greater than 0.00 rad/s, then the main engine action is 2.1 ∗ (the lander angle)+ 0.2,

and the side engine action is 9.8 ∗ (the lander angle) − 0.5. Such a tree has several

use cases: 1) An engineer/developer may pick certain edge cases and verify the

behavior of the lander. Performing robustness verification on our ICCTs can be

done in linear time (see section 7.5), while DNN verification is NP-complete [237].

2) An engineer can evaluate the decision-making in the tree and detect anoma-

lies. Furthermore, there are hands-on use-cases of such a model, such as threshold

editing (directly modifying nodes to increase affordances), etc. Finally, as seen

throughout this example, the structure of our ICCTs lends itself to the classification

of being a “neuro-symbolic system [241]”, being able to discover high-performance

decision-making policies by recognizing patterns between state-action pairs and

high-reward behavior, and capturing these relationships through a hierarchical tree

structure, mimicking a first-order logical formula.

146

7.9 Ablation: Interpretability-Performance Tradeoff

Here, we provide an ablation study over how ICCT performance changes with

respect to the number of active features within our linear sub-controllers and depth

of the learned policies. [228] states that decision trees are interpretable because of

their simplicity and that there is a cognitive limit on how complex a model can

be while still being understandable. Accordingly, for our ICCTs to maximize

interpretability, we emphasize the sparsity of our sub-controllers and attempt to

minimize the depth of our ICCTs. Here, we present a deeper analysis by displaying

the performance of our ICCTs while varying the number of active features, e, from

ICCT-static to ICCT-complete (Figure 7.5a), and varying the number of leaves

maintained within the ICCT from Nl = 2 to Nl = 32. We conduct our ablation study

within Lunar Lander.

In Figure 7.5a, we show how the performance of our ICCTs changes as a function

of active features in the Sub-Controller. Here, we fix the number of ICCT leaves to

8. We see that as the number of active features increase, the performance also in-

creases. However, there is a tradeoff in interpretability. As greater than 200 reward

is considered successful in this domain, a domain expert may determine a point

on the Pareto-Efficiency curve that maximizes the interpretability-performance

tradeoff. In Figure 7.5b, we show how the performance of our ICCTs changes as

a function of tree depth while fixing the number of active features in the ICCT

sub-controller to two. We see a similar, albeit weaker, relationship between perfor-

mance and interpretability. As model complexity increases, there is a slight gain in

performance and a large decrease in interpretability. The Pareto-Efficiency curve

provides insight into the interpretability-performance tradeoff for ICCT tree depth.

147

Figure 7.6: This figure displays the average running rollout rewards of six methods
for the ablation study during training. The results are averaged over 5 seeds, and
the shadow region represents the standard error.

7.10 Ablation: Differentiable Argument Max and Gumbel-Softmax

In this section, we provide an ablation study on the differentiable operator used in

ICCTs to perform decision node crispification, perform decision outcome crispifi-

cation, and enforce sub-controller sparsity. Here, we substitute the Softmax func-

tion with a Gumbel-Softmax [172] function, a widely-used differentiable approxi-

mate sampling mechanism for categorical variables. To allow ICCTs to utilize the

Gumbel-Softmax function, as opposed to diff argmax(·), we modify the original

Softmax function, f , introduced by Equation 7.3, to f ′ defined in Equation 7.12.

Here, w⃗i is an m-dimensional vector, [w1
i , · · · ,w

m
i]T, and {g j

i }
m
j=1 are i.i.d samples from

a Gumbel(0, 1) distribution [172].

f ′(w⃗i)k =
exp
(wk

i+gk
i

τ

)
∑m

j exp
(w j

i+g j
i

τ

) (7.12)

In Table Table 7.2, we compare the performance of ICCT-complete, ICCT-1-

feature, and ICCT-2-feature to their variants using Gumbel-Softmax in Lunar Lan-

der and Lane-Keeping. All the methods and their corresponding variants are

trained using the same hyperparameters. From the results shown in Figure 7.6 and

148

Method Lunar Lander Lane-Keeping
ICCT-complete 300.5 ± 1.2 476.6 ± 3.1

ICCT-complete (Gumbel-Softmax) 276.7 ± 7.0 412.6 ± 31.3
ICCT-complete (Gumbel-Softmax, Crisp) 239.0 ± 18.9 309.1 ± 94.6

ICCT-1-feature 190.1 ± 13.7 437.6 ± 7.0
ICCT-1-feature (Gumbel-Softmax) 113.2 ± 43.1 −853.4 ± 333.2

ICCT-1-feature (Gumbel-Softmax, Crisp) −20.1 ± 50.0 −658.114 ± 345.3
ICCT-2-feature 258.4 ± 7.0 458.5 ± 6.3

ICCT-2-feature (Gumbel-Softmax) 161.7 ± 54.8 −560.6 ± 251.6
ICCT-2-feature (Gumbel-Softmax, Crisp) 62.3 ± 82.2 −945.0 ± 331.0

Table 7.2: This table shows a performance comparison between ICCTs utilizing
our proposed differentiable argument max function (diff argmax(·) in Algorithm
Algorithm 8), and a variant of ICCTs utilizing the Gumbel-Softmax function (fuzzy
and crisp). Across each approach, we present our findings across Lunar Lander
and Lane-Keeping and include ICCTs with fully parameterized sub-controllers
(ICCT-complete) and sparse sub-controllers.

Figure 7.7: In this figure, we display our ICCTs controlling a vehicle in a 14-
car physical robot demonstration within a Figure-8 traffic scenario. Active nodes
and edges are highlighted by the right online visualization, where si represents the
speed of vehicle i, and pi represents the position of vehicle i. We include a full video,
including an enlarged display of our ICCT at https://sites.google.com/view/icctree

.

Table Table 7.2, we find that the addition of Gumbel noise reduces performance

by a wide margin. Furthermore, comparing crisp ICCTs utilizing Gumbel-Softmax

to ICCTs utilizing Gumbel-Softmax, we see that due to the sampling procedure

within the Gumbel-Softmax, an inconsistency issue arises between fuzzy and crisp

performance. Such results support our design choice of the differentiable argument

max function over the Gumbel-Softmax.

149

https://sites.google.com/view/icctree

7.11 Physical Robot Demonstration

Here, we demonstrate our algorithm with physical robots in a 14-car figure-8

driving scenario and provide an online, easy-to-inspect visualization of our ICCTs,

which controls the ego vehicle. We utilize the Robotarium, a remotely accessible

swarm robotic research platform [175], to demonstrate the learned ICCT policy.

The demonstration displays the feasibility of ego vehicle behavior produced by

our ICCT policy and provides an online visualization of our ICCTs. A frame taken

from the demonstrated behavior is displayed in Figure 7.7. We provide a complete

video of the demonstrated behavior and the online visualization of the control

policy at https://sites.google.com/view/icctree.

7.12 Case Studies on Complex Driving Domain Grounded in Realistic Lane

Geometries

We extend our analysis of the ICCT with experiments on two realistic driving

domains modeled after 1) the I-94 highway in Michigan and 2) the I-280 highway

in California, and verify ICCT’s ability to drive safely on crowded highways.

7.12.1 The I-94 Domain

The I-94 domain is built with the SUMO traffic simulator [242] and modeled off

the Interstate Highway 94 from Exit 190 to Exit 192. As illustrated in Figure 7.8,

the I-94 domain consists of three ramp entries and three ramp exits. The task of

the ego vehicle is to enter from the first ramp entry and exit from the last ramp exit

and do so as quickly as possible while being safe.

The state space of I-94 is 19-dimensional and consists of the ego longitudinal

location (i.e., progress of the driving), the ego speed, the ego latitudinal location (i.e.,

lane information), and the surrounding vehicles’ status. We define “surrounding”

150

https://sites.google.com/view/icctree

Figure 7.8: This figure illustrates the I-94 domain. The red arrows denote the traffic
flow directions. There are four traffic inflows: one highway inflow (leftmost)
and three ramp inflows. There are also four traffic outflows: highway outflow
(rightmost) and three ramp outflows.

Metrics

ICCT MLP
2 leaves 2 leaves 4 leaves 4 leaves 8 leaves Lower Upper Max1-feature 2-feature 1-feature 2-feature 1-feature

Environment Returns 878.72 899.65 858.62 910.93 871.80 907.11 901.29 897.13
number of parameters 15 23 33 49 69 46 862 71426
collisions 0 0 0 0 0 0 0 1
hard-brakes 0 0 0 0 0 0 0 2
unsafe lane changes 14 7 30 0 9 13 0 3

Table 7.3: This table shows our findings within the I-94 domain. Environment
returns are the average of ten evaluation episodes after training has been completed.
The remaining metrics are computed through a summation over occurrences of the
respective phenomena across the ten evaluation episodes.

vehicles as the leading cars and following cars on each lane with respect to the ego

car, and for each surrounding vehicle, we provide the distance to the ego car as well

as its velocity. As there are four lanes on I-94, the surrounding vehicles’ information

is 16-dimensional. The action space of the RL agent is two-dimensional, which

controls the ego vehicle’s acceleration and steering angle.

As we would like to ensure both the performance and safety of the RL agent,

we design a 6-component reward function, RI-94 =
∑6

i=1 Ri. Here, R1 represents the

positive reward for ego speed, R2 represents the negative constant time penalty,

R3 denotes the negative penalty for too-small headways, R4 provides the negative

penalty for wrong routing (i.e., the ego vehicle does not exit properly via the last

ramp), R5 encodes the negative penalty for emergency braking behaviors, and R6

is the negative penalty for unsafe lane changes. Intuitively, R1 and R2 motivate the

ego car to move faster, R4 helps the ego car to follow the desired route, and R3,

R5, and R6 encourage the RL vehicle to be safe by keeping headways and avoid

151

dangerous behaviors.

7.12.2 I-94 Results

We summarize the results of the I-94 domain in Table Table 7.3. We compare five

sizes of ICCTs and three sizes of MLPs (as introduced in subsection 7.7.1) across four

metrics. Firstly, we find that the ICCT and MLP can achieve similar performance on

the environment returns metric, with ICCT (4 leaves, 2-feature) variant achieving

the highest returns. The second and third metrics we consider are the number of

collisions and the number of hard brakes in the evaluation of 10 episodes after

training the policies. As our driving simulator, SUMO, always prevents an actual

collision by applying a high deceleration, we regard a deceleration that is higher

than 10m ·s−2 as a collision, and a deceleration that is between 5m ·s−2 and 10m ·s−2 as

a hard brake. We observe that most ICCT and MLP models achieve zero collisions

and hard brakes, with the exception of MLP-Max. We hypothesize that MLP-

Max may overfit to the training data and generate undesired large-model artifacts,

showing the brittleness of large MLPs in general. The last metric we consider is

the number of unsafe lane changes, which counts the number of instances that the

ego car tries to merge onto a lane with too small of a headway or tailway, or tries

to change to a non-existing lane (e.g., attempts to change to the left lane on the

left-most lane). We observe that the best-performing ICCT model with 4 leaves of 2

features achieves zero unsafe lane changes and higher rewards than the best MLP

model. Comparing ICCT-2-feature with 4 leaves and MLP-Upper, although the two

models have similar performance on all metrics, the ICCT model maintains 94%

fewer parameters compared with the MLP-Upper model. Thus, we conclude that

in the case study of the I-94 domain, ICCT models were able to learn to successfully

accomplish the task, meeting both performance and safety objectives while being

highly parameter-efficient.

152

7.12.3 The I-280 Domain

The I-280 domain is a complex environment modeled off the Interstate Highway

280 around the Palo Alto area in California2. An overview of the I-280 Domain is

shown in Figure 7.9a. The ego vehicle is tasked to join the highway from the ramp

and then exit the environment at the end of the highway. As shown in Figure 7.9b

and Figure 7.9c, the I-280 domain is more challenging than the I-94 domain due

to the multiple road geometries encountered across a trajectory, including road

splits and the introduction and disappearance of lanes. The state space for I-280 is

19-dimensional and consists of the ego lane index, the ego speed, the speed limit

within the current segment, the target lane (i.e., the lanes that lead the ego to the

next road segment on its route), ego progress within the current segment, and the

surrounding vehicles’ information. In I-280, the surrounding vehicles include the

leading cars and following cars on the lanes adjacent to the ego car (i.e., the left lane,

the current lane of the ego car, and the right lane). For each surrounding vehicle,

the domain provides its distance to the ego car and velocity information. The

action space of the ego agent is two-dimensional, which controls the ego vehicle’s

acceleration and steering angle. There are 119,347 passenger vehicles in total involved

within this domain, creating an extremely large-scale simulation with complex, stochastic

vehicle interactions. However, as dense traffic makes the simulation significantly

slow, we reduce the traffic density in the original I-280 Domain to involve vehicles

that are near to the ego vehicle controlled by our model. The modification makes

the environment renders faster and boosts the training process.

As I-280 introduces the notion of the speed limit and complex road routing, we

design an 8-component reward function, RI-280 =
∑8

i=1 Ri. Here, R1 represents the

positive reward for ego speed, R2 represents the negative penalty if the ego vehicle

is not in the target lane, R3 encodes the negative penalty for too-small headways,

2Our I-280 domain can be found here: https://github.com/songanz/flow evaluation.

153

https://github.com/songanz/flow_evaluation

R4 provides the negative penalty for too-large headways, R5 encodes a negative

penalty for emergency braking behaviors, R6 represents a negative penalty for

unsafe lane changes, R7 is a progress reward once the ego vehicle finishes 40% and

60% of its route, and R8 is a reward if the ego vehicle arrives at its destination (i.e.,

accomplishing the task). Intuitively, R1 and R4 motivate the ego vehicle to move

faster and follow traffic flow, R2 helps the ego car to follow the correct route, R3,

R5, and R6 encourage the RL vehicle to be safe by keeping headways and avoiding

dangerous operation, and R7 and R8 encourage the RL vehicle to move further in

its trajectory.

7.12.4 I-280 Results

We have summarized the results of the I-280 case study in Figure 7.10. We compare

six sizes of the ICCT and three sizes of an MLP. The “environment returns” metric

represents the average episode reward in 10 rollouts. The environment returns for

the 2-feature ICCT with 2 leaves and 2-feature ICCT with 8 leaves are significantly

higher than the MLP models, demonstrating the ICCT’s capability on more complex

and realistic domains. We also observe that ICCT-2-Feature performs better than

ICCT-1-feature.

Summary: Across both realistic autonomous driving domains, we find that

ICCTs can serve as safe continuous control models that follow traffic regulations

and maintain high performance with respect to the domain objectives.

7.13 Interpretability User Study

In the previous sections, we have validated ICCT’s efficacy in learning high-

performance, safe policies. In this section, we seek to verify ICCT’s interpretability

with end-users through a human-subject experiment. To get a comprehensive un-

derstanding of ICCT’s interpretability compared with neural networks, we design

154

a 3 × 3 × 2 × 2 experiment. We describe the four independent variables as follows:

Models (3-levels): 1) Tree, 2) MLP, and 3) Paragraph. We compare the interpretabil-

ity across the three models. The condition, Tree, refers to an ICCT in its original

tree form (e.g., Figure 7.4). The condition, Paragraph, refers to a text description

encompassing a set of rules extracted from an ICCT. We obtain this form by first

training an ICCT and then transforming it into a text description after training has

been completed. During the transformation, each leaf node corresponds to a sub-

paragraph, which is formed by two components, namely the conditions and the

consequence. The conditions of a sub-paragraph describe the junction of all deci-

sion nodes on the path from the root node to the leaf, and the consequence is the leaf

node itself. For example, a four-leaf tree corresponds to four sub-paragraphs. We

hypothesize such a Paragraph form may positively contribute to the interpretability

of the ICCT as it does not assume prior familiarity with tree-based models. The

condition, MLP, displays a multi-layer perceptron.

Repeats of evaluation (3-level): 1st, 2nd, and 3rd. To test the interpretability of

the three models, we task participants to calculate the output of the model given

the model parameters and its inputs. For each model, we ask participants to

make predictions with the same model three times, each with varying inputs. This

allows us to attain a lower-variance estimation of both the participant’s accuracy

and time spent in model computation. This condition also allows us to compare the

learning effect of interpreting each of the models (i.e., improvements from repeated

evaluations).

Contexts (2-levels): 1) With Context and 2) Without Context. We investigate

whether providing context (i.e., a visualization of the traffic scenario) contributes

to the user’s rating of model interpretability. This condition helps us understand

whether each model’s interpretability is its inherent property from its model struc-

ture or is related to specific example contexts.

155

Domains (2-levels): 1) Multi-Lane Ring and 2) I-94. We examine whether models’

interpretability is impacted by the environment’s complexity.

Out of the four factors, we design Models and Repeats of evaluation to be within-

subject factors as we seek to test for the learning effects and choose Contexts and

Domains to be between-subject factors. We test for the following six hypotheses

from the user study.

• H1: Tree and Paragraph are easier to simulate than neural network, i.e., the

simulation of Tree and Paragraph has higher accuracy than MLP.

• H2: Tree and Paragraph are quicker to validate than MLP.

• H3: Tree and Paragraph are more interpretable than MLP, measured by a

13-item Likert questionnaire introduced by [9].

• H4: Performance improvement by repeated evaluations of Tree is larger than

of MLP.

• H5: Environment context of the decision-making increases interpretability.

• H6: The advantage of Tree and Paragraph’s subjective interpretability over

MLP is domain-independent.

To test for the six hypotheses, we build an online survey with Qualtrics. In

each question of the survey, we show a model (Tree, MLP, or Paragraph) and an

input feature vector. The subject is asked to make predictions (i.e., compute the

output of the model) given the respective input. We collect N = 34 responses. The

average age of participants is 25.15 with a standard deviation of 4.28. Out of the 34

participants, 15 are male, and 19 are female.

156

7.13.1 User Study Results

For H1-H5, we illustrate results on the I-94 domain, and for H6, we show the results

on both the Multi-lane Ring and I-94 domains to verify the conclusions hold for

both environments. For all statistical tests, the assumptions for the ANOVA test are

not satisfied. Thus, we instead perform a non-parametric Friedman test followed

by a posthoc Nemenyi–Damico–Wolfe (Nemenyi) test [243].

H1-H3: We summarize the results for H1-H3 in Figure 7.11. As we test the

user’s simulation of outputs on each model three times and the action output is

two-dimensional (acceleration and lane-changing), each user is validated across

six action outputs for each model. We denote the number of accurate answers

out of the six as the “score” in Figure 7.11 left. We observe that participants are

able to simulate the outputs of the ICCT more accurately than an MLP (p < .05),

supporting H1. Furthermore, the time spent on the ICCT and Paragraph to evaluate

the output is significantly less than the time spent on MLP (p < .001), shown in

Figure 7.11 (middle). Tree and Paragraph are also rated by users to have significantly

higher interpretability (p < .001) (Figure 7.11 right). As such, the results from the

user study support H1-H3, showing Tree and Paragraph are easier to simulate,

quicker to validate, and more interpretable than neural networks. We find there

is no significant difference across all three metrics between the tree form and the

paragraph form of the ICCT.

H4: We show the results to test for H4 in Figure 7.12. We hypothesize that with

practice, the ability of the users to evaluate the models may increase. However,

Figure 7.12 shows that the accuracy on the first trial is the highest, and the time

spent on the first trial is the lowest. Instead of the learning effect, the finding may

be explained by a fatiguing effect, which causes the participants to have lower

performance in later trials. Another hypothesis is that the first trial questions are

relatively easy as they correspond to the early stages of the execution, where the

157

environment has fewer cars. The changes in accuracy score and time across three

trials do not have a significant interaction effect with models, and therefore H4 is

not supported. However, across repeated iterations, we observe that the score and

the prediction time of the ICCT tree form and paragraph form are close while being

much easier to simulate than an MLP.

H5: We illustrate the result for H5 in Figure 7.13. We observe that generally, for

all three models, the condition with context results in slightly lower accuracy scores

and interpretability scores. For Tree and Paragraph, the time spent with context is

slightly higher than the condition without context. However, the time spent on

MLP without context is higher than with context. One possible reason could be

that tree depictions and paragraph descriptions are interpretable and quick to

evaluate, and therefore context does not provide more benefit but introduces some

workload overhead. For MLP, the context helps the user to understand the situation

and therefore makes the evaluation faster. Overall, H5 is not supported as context

does not provide a significant boost to subjective interpretability.

H6: The comparison of results between the two domains, Multi-Lane Ring

and I-94, can be viewed in Figure 7.14. We observe that the results for H1-H3

are similar for both domains and therefore, H6 is supported by displaying the

advantage of different representations of the ICCT’s (both the Tree and Paragraph

form) interpretability over an MLP is regardless of the two domains (p < .05 on

accuracy score and p < .001 on both time and subjective interpretability).

7.14 Conclusion

In this work, we present a novel tree-based model for continuous control, applicable

to a wide variety of domains including robotic manipulation, autonomous driving,

etc. Our Interpretable Continuous Control Trees (ICCTs) have competitive perfor-

mance to that of deep neural networks across several continuous control domains,

158

including six difficult autonomous driving scenarios and two driving domains

grounded in realistic lane geometries, while maintaining high interpretability. The

maintenance of high performance within an interpretable and verifiable reinforce-

ment learning architecture provides a paradigm that would be beneficial for the

safe real-world deployment of autonomous systems.

7.15 Limitations and Future Work:

Our framework has several limitations. Continuous control outputs (e.g., pre-

dicting a steering angle) may not be interpretable to end-users and may require

post-processing to enhance a user’s understanding. Also, the relationship between

controller sparsity, tree depth, and interpretability is not clear, making controller

sparsity and tree depth difficult-to-define hyperparameters. We also note that in

more challenging environments, larger ICCTs may be required to increase their rep-

resentative power. In these instances, although the size of Interpretable Continuous

Control Trees (ICCTs) may pose challenges for end-users in terms of interpretation,

it is important to note that they can still be verified by experts and interpreted

within specific tree sub-spaces.In future work, we will extend ICCTs to incorporate

constraints from end-users, provide safety guarantees on our ICCTs, and reason

about how the complexity of an ICCT may change as we move to higher-abstraction

state spaces.

159

(a) I280-overview

(b) I280-begin

(c) I280-end

Figure 7.9: Figure 7.9a presents the overview of the I-280 domain. The ego vehicle
is tasked to join the highway from the ramp and then exit the environment at the
end of the highway. The ego vehicle’s entrance ramp and exit is zoomed in and
presented in Figure 7.9b and Figure 7.9c, respectively.

160

Figure 7.10: This figure compares the performance of ICCT agents and MLP agents
in the I-280 domain. The environment returns for each model are displayed through
a mean and standard deviation across ten evaluation episodes.

Figure 7.11: This figure shows the comparisons of accuracy score (left), time spent
(middle), and subjective interpretability rated (right) across the three models in the
I-94 user study. ∗ denotes a significant difference of p < .05. ∗∗∗ denotes a significant
difference of p < .001.

Figure 7.12: This figure shows the accuracy score (left) and time spent (right)
changes in three repeats trials across the three models in the user study.

161

Figure 7.13: This figure shows the comparisons of accuracy score (left), time spent
(middle), and interpretability rated (right) with or without context across the three
models in the user study.

162

Figure 7.14: This figure shows the comparison of results between the Multi-Lane
Ring domain and the I-94 domain across the three models in the user study. ∗

denotes a significant difference of p < .05. ∗∗∗ denotes a significant difference of
p < .001.

163

CHAPTER 8

THE UTILITY OF EXPLAINABLE AI IN AD HOC HUMAN-MACHINE

TEAMING

In this chapter, we characterize the utility of Explainable AI techniques in Human-

Machine Teaming. Importantly, I assess the ability for human teammates to gain

improved situational awareness (SA) through the augmentation of xAI techniques

and quantified the subjective and objective impact of xAI-supported SA on human-

machine team fluency.

8.1 Introduction

Collaborative robots (i.e., ”cobots”) and machine learning-based virtual agents

are increasingly entering the human workspace with the aim of increasing pro-

ductivity, enhancing safety, and improving the quality of our lives [2, 1]. In the

envisage of ubiquitous cobots, these agents will dynamically interact with a wide

variety of people in dynamic and novel contexts. Ad hoc teaming characterizes

this type of scenario, where multiple unacquainted agents (in this case, humans

and cobots) with varying capabilities must collectively collaborate to accomplish

a shared goal [244, 245]. Ad hoc teaming presents a significant challenge in that

agents are unaware of the capabilities and behaviors of other agents, and lack the

opportunity to develop a team identity, shared mental models, and trust [246, 149,

73]. For example, the human may not be aware of the cobot’s possible actions and

proclivities towards specific activities, limiting her ability to coordinate and plan

effectively [247, 248]. Furthermore, this lack of understanding negatively impacts

the user’s ability to perform situational analysis, impeding a key component of the

Observe-Orient-Decide-Act (OODA) loop [249]. For a human teammate to main-

164

tain situational awareness (SA) and effectively make decisions in human-machine

teaming, the human must maintain an internal model of the cobot’s behavior.

However, to develop such an understanding of the cobot, the human may have to

constantly observe or monitor the cobot’s behavior, a costly and tedious process.

Effective collaboration in teaming arises from the ability for team members

to coordinate their actions by understanding both the capabilities and decision-

making criterion of their teammates [7, 6]. For human-human teams, [250] states

that successful joint coordination among agents depends on the abilities to share

representations, to predict other agents’ actions, and to integrate the effects of

these action predictions. Similarly, we believe these findings should correlate in

human-machine teaming. Explainable AI (xAI) techniques, utilizing abstractions

or explanations that provide the user insight into the AI’s rationale, strengths and

weaknesses, and expected behavior [251], can supply the human teammate a rep-

resentation of the cobot’s behavior policy and may assist in the human teammate’s

ability to predict and develop a collaboration plan. Furthermore, effective human-

machine teaming requires the ability for team members to develop a shared mental

model (i.e., team members share common expectations about the team coordina-

tion strategy, the outcomes of individual strategies, and the individual roles in

achieving the team’s objective [252]) [248]. xAI techniques offer the promise of

enhancing team situational awareness, shared mental model development, and

human-machine teaming performance.

Recent work in the machine learning community on xAI has emphasized the

importance of interpretability, and post-hoc explainability in enhancing the preva-

lence of machine learning-based approaches [253]. Other work has even explored

simulatability [9, 131], assessing a human’s ability to observe a model (e.g., a de-

cision tree, which lends itself to interpretability [34]) and be able to produce the

correct output given an input feature. Augmenting machine learning-based sys-

165

Figure 8.1: This figure displays an overview of our experimentation in relation to
the Observe-Orient-Decide-Act (OODA) loop. On the left, we display the human-
machine teaming interaction with both agents taking actions and the cobot out-
putting a policy explanation to the human teammate. On the right-hand side, we
display the two questions assessed by our human-subjects experiments.

tems with some form of intepretability or simulatability can enable these systems to

gain human trust [209, 210, 211], an essential quality in high-performance teaming

[221]. While prior work has provided approaches for explaining machine behavior

through natural language [148], interpretable decision trees [9], and attention-based

focusing[254], the utility of collaborative agents augmented with explainable AI

techniques in human-machine teaming has not been explored.

In this work, we present two novel human-subjects studies to quantify the utility

of xAI in human-machine teaming. We assess the ability for human teammates to

gain improved SA through the augmentation of xAI techniques and quantify the

subjective and objective impact of xAI-supported SA on human-machine team

fluency. We first assess if xAI can support the different levels of SA [255] by

assessing how different abstractions of the AI’s policy support SA within a human-

machine teaming scenario. Here, users are presented visualizations of human-

machine teaming gameplay and are tested on their understanding of the human

and cobot’s decision-making behaviors through an adapted Situation Awareness

Global Assessment Technique (SAGAT) [256] questionnaire. Second, we study the

166

effect of augmenting cobots with online xAI and assess how different abstractions

of the AI’s policy affect ad hoc human-machine teaming performance. In Figure 8.1,

we present an overview of our experimentation in relation to the Observe-Orient-

Decide-Act (OODA) loop. We provide the following contributions:

1. We design and conduct a study relating different abstractions of the cobot’s

policy to their induced situational awareness levels, measuring how different

explanations can help a human perceive the current environment (Level 1),

comprehend the AI’s decision-making model (Level 2), and project into the

future to develop a collaboration plan (Level 3). Our results show that xAI

techniques can support situational awareness (p < 0.05).

2. We design and conduct an ad hoc human-machine teaming study assess-

ing how online xAI-based support, generated via cobot abstractions, and the

human’s ability to process higher levels of information affect teaming per-

formance. We find novices benefit from xAI-based support (p < 0.05) but

are susceptible to information overload from more involved xAI abstractions

(p < 0.05). Expert performance, on the other hand, degrades with the addition

of xAI-based support (p < 0.05), indicating that the cost of paying attention to

the explanation outweighs the benefits obtained from generating an accurate

mental model of the cobot’s behavior.

8.2 Human-Machine Teaming Domain

For our experiments investigating the deployment of xAI techniques in human-

machine teaming, we utilize the Microsoft Malmo Minecraft AI Project [72]. Minecraft

is an open-world environment where players can build structures, craft tools, and

play alongside other individuals. Crafting within Minecraft can be classified as a

hierarchical task that requires obtaining base materials before generating a more

167

complex object/tool and may require traveling to a crafting table. Building struc-

tures is also a hierarchical task as lower layers must be (partially) constructed before

the upper layers of a structure can be built. Collaboration among other individuals

is highly complex as high-performance teaming requires intent recognition, task

coordination, resource/tool sharing, among other personal factors such as game

proficiency and trust among teammates.

We generate a 61×61 grid utilizing the Python API provided by [72]. Within

this grid is two agents, the human and the cobot. The human plays with standard

Minecraft controls, utilizing both a keyboard and mouse to continuously move

and change her field of view. This teaming scenario is notably different from prior

human-machine teaming experiments [73] that restrict human motion to discrete

cardinal movements. The cobot is also programmed in continuous space with

several action primitives further described below.

Planning within this domain is challenging as agents take macro-actions that

can take an arbitrary number of time-steps to execute which induces asynchronicity,

closely resembling the complexities associated with that of solving a Decentralized

Partially Observable Semi-Markov Decision Process (Dec-POSMDP) [257].

Within this domain, the human is unable to explicitly communicate with the

cobot (e.g., through chat), and the cobot is able to communicate with the human

through a policy abstraction depending on the experiment factor (cf. section 8.4).

The human also has access to a first-person view of the cobot’s screen, providing

partial knowledge of the cobot’s current location, cobot’s current resources, cobot’s

current action. The cobot has complete access to the human’s global state, including

current resources, location, and approximate action. The cobot and human are able

to share resources through a chest located at a static position, with both agents able

to store and take resources depending on need. We provide additional environment

dynamics within the supplementary material.

168

Figure 8.2: This figure displays a sample gameplay image where the cobot is aug-
mented with the decision-tree explanation. Note this shows IV1:SA1-2-3 condition
and IV2:Display Cobot Inference of Human Policy and Cobot Policy in section 8.4.

As shown in Figure 8.2, the human will see up to four elements on her screen.

On the top-left, the participant will play Minecraft. On the top-right, the partici-

pant has a display showing the first-person view of the cobot. On the bottom of

the screen, we utilize the Pygame interface to display information regarding the

cobot’s policy. On the bottom-left, the participant has a display that may show

information regarding the cobot’s inference of her action (i.e., the cobot’s inference

of the human’s behavior). On the bottom-right, the participant has a display that

may show information regarding the robot’s policy (i.e., how the cobot chooses an

action).

8.2.1 Human-Machine Collaborative Task

The human and cobot are assigned to build a house with certain specifications.

The 4-level house contains eight unique objects including two types of planks, two

types of stone, doors, stairs, a fence, and fence gates totaling 89 objects. The latter

four items are crafted materials that require combining base materials. Each agent

has unique capabilities. The cobot has the ability to collect resources and craft

certain items. The human is made aware of all possible behaviors of the cobot.

169

However, the cobot cannot help the human build. The human player is able to

collect resources and is in charge of building the house. The human is told a priori

that her goal is to “Collaborate with the AI as best as possible to complete the house

as quickly as possible.” However, the human is not strictly specified to build or

collect resources in any order.

Cobot Policy – The cobot maintains a hierarchical policy. A low-level policy

determines the cobot’s action, and a high-level policy determines the cobot’s infer-

ence of the human’s action (which the low-level policy is conditioned upon). Both

components of the hierarchical policy are decision tree-based policies of depth two

and with four leaf nodes. The cobot’s high-level policy stays fixed throughout

gameplay and is displayed in the bottom-left of Figure 8.2. The cobot’s low-level

policy changes throughout gameplay across five phases of play, correlating with

different periods of the task (i.e., building different portions of the house). A depic-

tion of one low-level policy in displayed on the bottom-right in Figure 8.2. Across

all policies, the cobot has the ability to 1) Chop Birch Wood, 2) Chop Jungle Wood,

3) Mine Andesite Stone, 4) Mine Cobblestone, 5) Put resources in chest, 6) Craft

pickaxe, 7) Craft axe, 8) Craft sticks, and 9) Craft planks.

The cobot’s behavior loop is to observe the human behavior and perform infer-

ence of the human’s action. Following the inference of the human’s behavior, the

cobot determines its action based on the current tree-based low-level policy. Once

the action has been completed, the cobot will deposit its excess resources into the

chest and begin the loop again.

The cobot deposits any materials that have a quantity above two into the chest

for the human to use for building/crafting and any tools with a quantity above one

into the chest. The cobot’s movement policy (contained within each macro-action)

is to move in a straight-line path towards the object. If the agent meets an obstacle

and/or takes longer than 9 seconds to reach its goal, the cobot will teleport to the

170

object. For “Chop” or “Mine” actions, the cobot will perform the chopping/mining

action until each block of the target has disappeared (detected using Line of Sight

variables).

We conducted an initial IRB-approved pilot study with 30 participants to fine-

tune the thresholds within the cobot’s policy to enforce that the cobot is highly

collaborative. We note that while the cobot policy models are hand-designed,

the decision-tree based policies serve as a surrogate for the interpretable models

produced by interpretable machine learning-based approaches [258, 9].

8.3 Study 1: Relationship Between Explanations and Situational Awareness

Here, we present the details of our first human-subjects study relating different xAI

techniques to the three situational awareness levels specified by [255]. We explore

the question:

• Q1: Can xAI techniques be used to support situational awareness (SA)? If

so, which levels of SA are enhanced by xAI?

We review the different levels of situational awareness, study conditions, design,

and procedures, and describe the measures employed.

8.3.1 Situational Awareness

Situation awareness (SA) represents a user’s internal model of the world around her

at any point in time [255], representing the user’s ability to perceive the elements

of the environment, comprehend their meaning, and project their status in the near

future. Situational awareness plays a significant role in mental model alignment

among teams and can largely impact performance [259]. Following [255, 260],

the three levels of situational awareness induced through xAI techniques are as

follows:

171

• Level 1: Perception - Explanation of the current state of the world.

• Level 2: Comprehension - Explanation of the agent’s current decision-

making.

• Level 3: Projection - Explanation enabling user to predict future behavior.

The degree to which SA is maintained is typically assessed through the Situation

Awareness Global Assessment Technique (SAGAT). The SAGAT prompts a user

at a random point within a simulation with a series of fact-based questions to

determine her knowledge while blanking out the simulation display.

Situational Awareness Assessment – We conduct a SAGAT questionnaire fol-

lowing the recommendations of [260, 261] that provide considerations for adapting

the SAGAT towards evaluating situational awareness in human-machine teaming.

Questions for Level 1,2 and 3 consisted of those that determine the current state and

action of the human and the cobot, determine the human’s understanding of the

cobot’s current capabilities and features considered in the cobot’s decision-making

policy, and assess the user’s ability to predict the cobot’s next action, cobot ac-

tion given modified inputs, and input requirements to produce a favorable action.

Similar to [255], we maintain a sample of questions for each level of situational

awareness. We provide the user three questions per situational awareness level,

restricting each question to multiple choice with 2-4 answer choices. We provide

the complete list of questions for each SA level within the supplementary material.

While the SAGAT can provide insight into a user’s SA, this test is highly in-

trusive as it requires task interruption. These interruptions can be distracting,

interfering with performance [262], increasing stress [263], and likelihood of fail-

ure [264]. Accordingly, we choose to assess user SA and the effect of SA separately

to reduce intrusiveness in the team fluency study and contribute a novel, targeted

SA study across xAI techniques.

172

8.3.2 Experiment Conditions and Procedures

In this study, we seek to determine how different abstractions of the AI’s policy

induce different levels of situational awareness. As such, we utilize a 1×3 within-

subjects design varying across three abstractions: 1) No explanation of the robot’s

hierarchical policy, 2) A status explanation of the cobot’s hierarchical policy, and 3)

A decision-tree explanation of cobot’s hierarchical policy.

• No Explanation – In this condition, the human is given no information about

the cobot’s policy. We note that even within the no explanation condition,

the human still has access to the first-person displays of both the robot and

human.

• Status Explanation – In the status explanation, the human is given informa-

tion about the cobot’s policy relating the cobot’s hierarchical policy outputs.

The information is given in the form of a short phrase representing the infor-

mation within the leaf node of the decision-tree explanation.

• Decision-Tree Explanation – In the decision-tree explanation, the human is

given a decision tree representing the cobot’s policy with active edges and

decision nodes highlighted. The decision trees displays complete information

about the state features that the cobot uses to make decisions and the choice

of action. We display the sample game display of this condition in Figure 8.2.

The experiment was conducted through an online platform where the first page

provided the participants with introductory information regarding the human-

machine teaming task. Participants are informed that the survey will take approxi-

mately one hour, the experiment is completely voluntary, and that the participants

will be compensated $20 for the study. Users will then conduct three episodes

in which each episode corresponds to a different factor. Each episode consists of

173

≈10 minutes of gameplay that users must view interrupted by the SAGAT at two-

minute intervals (five trials within each episode). The factor/episode ordering was

randomized to mitigate confounds.

8.3.3 Results

We recruited 48 participants in an IRB-approved experiment, whose ages range

from 18 to 58 (Mean age: 21.69; Standard deviation: 5.61; 18.75% Female). We

analyze our data using a repeated-measures ANOVA for the omnibus significance

and a Tukey HSD for pairwise comparisons, which includes Bonferroni corrections.

Assumptions of normality and homoscedasticity are tested with Shapiro-Wilke and

Levene’s test respectively. We found that only our Level 2 data failed to meet these

parametric assumptions, and thus a Friedman’s test with Nemenyi post-hoc (with

corrections) was employed instead. We display our findings in Figure 8.3a. We

provide additional analysis details within the supplementary material.

Q1: Overall, we find that xAI techniques support higher levels of situational

awareness. No significant difference was found in the ability for users to perceive

their environment (Level 1) with and without xAI-based support. This indicates

that access to a first-person view of teammate gameplay and one’s own gameplay

is sufficient for perception of the environment. For Level 2 SA, a Friedman’s test

found significance (χ2(2) = 34.2; p < 0.001) with the pairwise results showing both

status xAI-based support (p < 0.05) and decision-tree xAI-based support (p < 0.001)

significantly increases the ability for the user to comprehend her environment

compared to cobots without xAI-based support. Lastly, we also observe an omnibus

significance in the Level 3 (F(2, 94) = 4.01; p < 0.05), and find that the decision-tree

xAI-based support enhances the user’s ability to project cobot’s behavior into the

near future (p < 0.05). These results support the hypothesis that xAI techniques

enhance SA in human-machine teaming.

174

8.4 Study 2: Situational Awareness in Ad Hoc Human-Machine Teaming

In this section, we present the details of our second human-subjects experiment

exploring:

• Q2: How does xAI-based support affect ad hoc human-machine teaming

performance?

• Q3: How does the amount of information regarding the cobot’s policy affect

ad hoc human-machine teaming performance?

In Study 2, a participant and a cobot are asked to complete the human-machine

collaborative task defined in subsection 8.2.1. We set an exclusion criteria to allow

only those with a minimum of 20 hours of lifetime experience in Minecraft to

participate. The exclusion criteria removes participants who are unfamiliar with

the gameplay controls and ensures that participants are not actively learning to play

Minecraft while attempting to collaborate with a cobot they are unfamiliar with. We

note that the collaboration between the human and cobot is highly unstructured,

and the human’s behavior can range from choosing to ignore the cobot to actively

perturbing the cobot to understand its behavior more clearly. Below, we review the

experimental conditions, design, procedure, and describe the measures employed.

8.4.1 Experiment Conditions

We conduct a 2×3 mixed between-/within-subject design with two factors: IV1:

Induced SA (subsection 8.4.1) and IV2: Policy Information (Figure 8.4.1).

IV1: Induced Situational Awareness Levels – The situational awareness levels

are aligned via our first study detailed in section 8.3. We vary across 1) SA1: No

Explanation, in which the human is able to perceive the environment, 2) SA1-2:

Status Explanation, in which the human is able to perceive and comprehend the

175

(a) Study 1 Findings (b) Study 2 Novice Findings

(c) Study 2 Expert Findings

Figure 8.3: This figure represents the findings of Study 1 (a) and Study 2 (b-
c). Figure 8.3a displays the SAGAT scores across SA levels and xAI abstractions.
Figure 8.3b and Figure 8.3c display the performance residuals (inverse scale: lower
is better) with xAI-based support across policy information levels with respect to
the no-explanation condition for novices (Figure 8.3b) and experts (Figure 8.3c).

environment, and 3) SA1-2-3: Decision Tree Explanation, in which the human is

able to perceive, comprehend, and project the environment.

IV2: Policy Information Level – Here, we describe the policy information

levels that vary between subjects. Specifically, complete information provides

users assistance with Theory of Mind (ToM) [265], reasoning to strategically reason

about one’s actions in the context of the cobot’s decision-making. However, the

additional information provided for supporting ToM reasoning may come at the

cost of increased complexity and risk of information overload.

• Condition 1: Display Cobot Inference of Human Policy and Cobot Policy

– The cobot displays both its low-level and high-level policy, providing the

176

user with increased information regarding its decision-making strategy.

• Condition 2: Display Cobot Policy – The cobot displays only its low-level

cobot policy. This condition provides partial information of how the cobot

makes decisions, leaving out the cobot’s inference of the human policy.

8.4.2 Procedure

Participants are first informed that the experiment will take approximately 1.75

hours, the experiment is completely voluntary, and that the participants will be

compensated $10 per hour of the study. The participant is first briefed on the

objective of the experiment, to investigate the impact of online explanations in

human-machine teaming. The participant is told that she will be playing with

three different autonomous agents (use of deception). The participant starts with a

pre-experiment survey collecting demographic information, gaming background

(experience with video games and Minecraft), and the Big Five Personality Ques-

tionnaire [266]. Afterwards, the participant is handed a instructional document

regarding specifications for the house and some notes regarding the cobot’s behav-

ior. Next, the participant conducts a brief hand-crafted tutorial in Minecraft. Once

completed, the participant is tasked with individually building the entire house.

The individual house build helps the human gain familiarity with the house spec-

ifications, which benefits in the user’s task understanding. Once completed, the

primary experimentation begins. Users will conduct three episodes in which she

will play with three cobots, each of which are programmed the same but with

varying xAI-based support and a randomly selected level of policy information.

The ordering across xAI-based support levels is randomized to mitigate potential

experimental confounds, such as learning effect, fatigue, etc. In each episode, the

participant will first be given a sample ≈30-second video that describes the up-

coming visualization (Figure 8.2). Following the video, the participant is given a

177

written tutorial describing the xAI-based support. Once completed, the participant

will build the specified house in Minecraft with the cobot, a timed task. To conclude

the episode, we administer several post-study scales to support our quantitative

findings including the Human-Robot Collaborative Fluency Assessment [267], In-

clusion of Other in the Self scale [268], Godspeed Questionnaire [269], NASA-TLX

Workload Survey [270]. Each scale has been verified for validity in prior work

and is used to assess the quality of the human-machine teaming interaction. The

Human-Robot Collaborative Fluency Assessment [267] measures team fluency,

cobot contribution, trust, positive teammate traits, and perceived improvement

through several sub-scales. The Inclusion of Other in the Self [268] scale measures

the perceived closeness between teammates. The Godspeed Questionnaire [269] is

used to measure perceived likability and perceived intelligence. The NASA-TLX

[270] measures the task workload. We provide additional details regarding our

procedure in the supplementary material.

8.4.3 Results

We recruited 30 participants under an IRB-approved protocol, whose ages range 18

to 23 (Mean age: 19.97; Standard deviation: 1.30; 16.67% female), with participants

randomly assigned to each of the factor levels of IV2 (the between-subjects vari-

able) with 15 subjects per level. We evaluate participant performance by using the

time taken for the human-machine team to finish building the house. Our data was

modeled as a mixed-effects ANOVA to capture any possible relation between inde-

pendent variables across IV1 and IV2. We test for normality and homoschedascity

in our data, and employed a corresponding non-parametric test if the data failed

to meet these assumptions. We provide details regarding our analysis within the

supplementary. We display our objective findings in Figure 8.3b and Figure 8.3c.

Q2: We conduct a preliminary meta-analysis on our participant data and find

178

two distinctive clusters in participants’ individual build times (the separate, pre-

test calibration task), implying two distinct categories of participants that vary in

gameplay speed. We dichotomize our subject data with an additional categorical

variable within our analysis representing each cluster, the first referring to “experts”

(i.e., those with higher proficiency in the game of Minecraft) and “novices” (i.e.,

those with lower proficiency in the game of Minecraft). We find that there are 17

experts and 13 novices within this dataset. While 13 are characterized as novice,

it should be noted that our exclusion criteria serves to ensure that all participants

are familiar with the gameplay controls of Minecraft and should thus be able to

accomplish all key components of the teaming task. With respect to our separate

calibration task, we find a significant effect between a participant’s teaming ability

with the cobot and the participant’s individual build speed (F(1, 26) = 23.5; p <

0.001).

Novice performance significantly differs across levels of xAI-based support

(F(2, 22) = 4.67; p < 0.05). We find that novices working with cobots augmented

with status xAI-based support (SA1-2) are able to complete the human-machine

teaming task significantly quicker than users that did not have xAI-based support

(i.e., the baseline condition) (p < 0.05). While we see that xAI-based support in

the form of a short phrase is beneficial, more cognitively intense xAI-based sup-

port (decision-tree based support SA1-2-3) does not provide novices with benefits

in performance. Status xAI-based support SA1-2 led to significantly improved

performance compared to decision-tree xAI-based support (SA1-2-3) for novices

(p < 0.05). Conversely, we find experts given xAI-based support have significantly

increased time to build compared to those without xAI-based support, indicating

a performance decrease (t(33) = 2.09; p < 0.05). We provide further discussion in

section 8.5.

Q3: Expert performance significantly differs across policy information levels

179

Figure 8.4: This figure represents the normalized subjective findings of Study 2. We
see that all users find cobots with decision-tree xAI-based support to maintain more
positive teammate traits, maintain a better working alliance, and are perceived
as more intelligent than cobots without xAI-based support. Users also perceive
both cobots with status xAI-based support and those with decision-tree xAI-based
support as more close than cobots without xAI-based support.

(F(1, 15) = 5.27; p < 0.05). We find that experts working with cobots augmented

with partial information (only the cobot’s low-level policy) were able to complete

the human-machine teaming task significantly quicker than users with complete

information of the cobot’s hierarchical policy (p < 0.05). We find no significant

difference in novice performance across information levels (IV2).

Subjective Findings: While experts and novices interacted differently with

cobots, the subjective findings were similar and are presented as an aggregate.

Here, we report on subjective measures that yielded statistical significance. We

provide a full analysis within the supplementary material.

Q2: We find that users assess positive teammate traits, team working alliance,

closeness, and perceived intelligence significantly differently across xAI-based sup-

port (F(2, 56) = [3.16, 4.08, 7.29, 5.31]; [p < 0.05, p < 0.05, p < 0.01, p < 0.01]). Users

rate a cobot with decision-tree xAI-based support as significantly more positive

than a cobot with no explanation (p < 0.05) and rate human-machine teams with

180

decision-tree xAI-based support with higher working alliance scores than human-

machine teams without xAI-based support (p < 0.05). We also find that users

perceive cobots with decision-tree xAI-based support as significantly more close

than cobots without xAI-based support (p < 0.01) and cobots with status xAI-

based support as significantly more close than cobots with no xAI-based support

(p < 0.05). In assessing the perceived intelligence of the cobot, we conduct a Fried-

man’s test and find that users perceive cobots with decision-tree xAI-based support

as significantly more intelligent than cobots with no explanation (p < 0.01). We

provide a depiction of our results for Q2 in Figure 8.4.

Q3: When displaying partial information IV2: Condition 2, we find that users

trust cobots and rate cobots with higher improvement scores across xAI-based

support (F(2, 28) = [3.55, 5.14]; [p < 0.05, p < 0.05]). We find users trust cobots aug-

mented with decision-tree xAI-based support in comparison to a cobot augmented

with no xAI-based support (p < 0.05) and human-machine teams consisting of a

cobot with decision-tree xAI-based support are rated with higher improvement

scores than human-machine teams consisting of cobots with no xAI-based support

(p < 0.05).

8.5 Discussion

In Study 1 (section 8.3), we start by exploring if xAI techniques can support situ-

ational awareness in human-machine teaming. We find objectively that xAI tech-

niques can support SA. Specifically, we see that providing users with status expla-

nations supports the ability to comprehend AI behavior (Level 2, p < 0.05). More

so, decision-tree based support provides users with the ability to both comprehend

AI behavior (Level 2, p < 0.001) and project the cobot’s behavior into the near

future (Level 3, p < 0.05). These results provide promising evidence supporting

the deployment of xAI-based support in human-machine teaming.

181

In Study 2 (section 8.4), we assess how cobots augmented with xAI-based

support subjectively and objectively affect ad hoc human-machine teaming perfor-

mance. Novices benefit from a cobot augmented with status xAI-based support

(p < 0.05) but do not benefit similarly from a cobot augmented with decision-tree

xAI-based support. The benefit achieved through status explanations (SA1-2) indi-

cates that novices are able to use the support to develop a shared mental model that

benefits them. However, the more cognitively intense decision-tree xAI-based sup-

port does not provide any benefit, noting that such an xAI technique is not suitable

for novices. Expert performance, on the other hand, degrades with the addition of

xAI-based support, suggesting that the support serves as a distraction. As experts

are more experienced with the game of Minecraft, we hypothesize that the cost of

paying attention to the xAI-based support outweighs the benefits obtained from

generating an accurate shared mental model. As the cobot is programmed to be

collaborative, the cobot behavior may already fall reasonably within the expert’s

shared mental model, and the support, while providing an accurate description of

the cobot’s policy, may reduce the user performance. This hypothesis is supported

by the further reduction in performance when experts are presented with complete

xAI-based support as opposed to partial (IV2, p < 0.05). Thus, xAI-based support

may not be universally beneficial and depends on the composition of the team.

While the performance benefits vary across experts and non-experts, we see that

all users find cobots with decision-tree xAI-based support to be more trustworthy,

capable of learning, maintain more positive teammate traits, maintain a better

working alliance, and be perceived as more intelligent than cobots without xAI-

based support. Given the results of our study, we wish to provide some key

takeaways for future research in xAI and Human-Machine Teaming (HMT): 1) The

addition of xAI techniques can induce SA, an important element of the OODA loop,

2) It is important to account for heterogeneity within both the cobot design [199]

182

and the xAI-based support, and 3) Information overload can exist as an impedance

in human-machine teaming and support strategies should consider the cognitive

bandwidth of humans.

Limitations – In our teaming scenario, the cobot has specific capabilities and

does not have equal capability to the human. Our findings are limited to team-

ing scenarios with similar heterogeneous agents. Our experiment is limited to

two broad classes of interpretable models, representing xAI approaches that can

generate decision trees and those that can generate a short phrase representing

policy information. These abstractions can be generated via a number of methods,

including [9, 258]. We also did not explicitly vary the explanation size (e.g., depth

of the decision tree, specificity of cobot status, etc.) in our experiment. Increasing

the size/complexity of xAI-based support and accordingly modifying the training

time is an important future direction to explore, as there is a tradeoff between the

utility of xAI-based support and its complexity.

8.6 Conclusion

In this paper, we present findings relating xAI and situational awareness in human-

machine teaming. Within our first study, we find that cobots with xAI-based

support can provide human teammates a higher level of SA, benefiting a human

teammate’s ability to perform situational analysis and understand the human-

machine teaming scenario. Within our second study, we find that novices working

with cobots augmented with status xAI-based support gain significant performance

benefits (p < 0.05) within the ad hoc human-machine teaming scenario compared

to cobots without xAI-based support. Expert performance, on the other hand,

degrades with the addition of xAI-based support (p < 0.05), indicating that the cost

of paying attention to the xAI-based support outweighs the benefits obtained from

generating an accurate shared mental model. These results display the benefits

and drawbacks of deploying xAI in ad hoc human-machine teaming and provide

183

interesting future directions for xAI-based support in human-machine teaming.

Broader Impact – Our work has the potential to benefit future research in

deploying xAI in human-machine teaming and advance the envisage of democ-

ratizing cobots, focusing on developing higher levels of understanding between

humans and cobots. We note that it is important to account for the differences

across humans, such as expertise. In other scenarios, it may be important to take

into account other demographic information.

184

CHAPTER 9

TEAM DEVELOPMENT IN HUMAN-MACHINE TEAMING

9.1 Introduction

Successful human-machine teaming (HMT) has long been sought after for its wide

variety of potential benefits, ranging from applications such as robotic healthcare

aides that can provide doctors with a helping hand [21], to collaborative robots

assisting humans with object assembly (i.e., co-assembly) [271]. While promis-

ing, achieving fluent HMT is challenging because interactions with humans can

be incredibly complex due to the diversity across users [272], human teammates

require explainable systems to support the development of mental models [11],

and the lack of bidirectional communication (i.e., unclear how humans can “tell” a

machine online to perform a desired collaborative behavior) [273]. In this work, we

provide a potential solution to these challenges by allowing humans to modify a

collaborative AI’s interpretable policy representation across repeated iterations of

teaming, enabling end-users to create personalized AI teammates to support them.

Recently, data-driven techniques (e.g., reinforcement learning) have become

popular in HMT, allowing for the generation of collaborative agent behavior with-

out cumbersome manual programming [74, 73]. In one approach, training with

diverse simulated partners resulted in robust agents capable of cooperating with

humans without prior human data [74]. However, a drawback of this prior work

is the use of opaque (black-box) models, limiting human’s ability to develop a

shared mental model online and maintain situational awareness [176, 274], crucial

for high-performance teaming [24, 260].

Furthermore, collaborative interactions with machines have often been rigid,

185

lacking the ability to effectively learn with and adapt to human teammates in

real-time [43]. In ad hoc human-human teams (i.e., those without prior training),

effective teaming is often developed through an iterative process, going through

several stages before the team arrives at a fluent collaboration [44]. Bi-directional

communication is often a key component of this process, enabling the development

of successful coordination strategies [28]. In our work, we build towards adaptive,

effective HMT by creating a pathway of bi-directional communication, utilizing

interpretable policy representations as a mechanism to allow users to understand

their machine teammates and allowing for explicit teammate policy modification

through an interface (users can modify the machine’s policy via a Graphical User

Interface).

In this work, we first characterize prior work in HMT [73, 74], finding that

machine behavior is unable to adapt to human-preferred strategies, and that high

performance is typically driven by independent machine actions rather than collab-

oration, which can ultimately result in a higher team score. Next, we create a novel

InterpretableML architecture to support the creation of interpretable cooperative

agent policies via reinforcement learning (RL) and a GUI to allow users to modify

the AI’s behavior to their specifications. This capability is promising, enabling

end-users to “go under-the-hood” of machine learning models and tune affor-

dances or interactively and iteratively reprogram behavior. Finally, we conduct a

50-participant between-subjects user study assessing the effects of interpretability

and policy modification across repeated interactions with an AI. Objectively, we

find that white-box models underperformed black-box models from prior work

in teaming with humans. This is confounded by black-box models being easier

to train, and thus producing higher-performance agents. Furthermore, we find

that 1) users found low-performance black-box models incredibly frustrating, 2)

white-box teaming supported with interactive modification outperforms white-box

186

approaches alone, and 3) users that were extroverted, had familiarity with decision

trees, and were experienced in gaming were better able to create high-performing

personalized AI teammates. Lastly, as teaming can develop across different stages

of Tuckman’s Model [44], we relate trends in HMT performance variation across

repeated gameplay to this model. Given these findings, in the future, to absolve

the gap in performance between individualized coordination and successful HMT

collaboration, researchers must focus on developing better interpretableML ap-

proaches to support the generation of high-performance white-box teammates, the

modality of communication between agents and humans (tree policies may be dif-

ficult to understand for some users), and effective mixed-initiative interfaces that

allow users, who may vary in ability and experience, to interact and improve team

behavior.

9.2 Preliminaries

In this section, we introduce relevant work in HMT and Explainable AI (xAI), our

HMT testbed, Overcooked-AI, Tuckman’s Model, and the modeling framework we

use to create collaborative AI agents, Markov Games.

Human-Machine Teaming – The field of HMT is concerned with understand-

ing, designing, and evaluating machines for use by or with humans [140]. This

growing field has recently attracted much attention from researchers, aiming to

facilitate better collaborative performance between humans and machines. A com-

mon technique that has been used to produce collaborative AI agents is Deep

Reinforcement Learning [275], where researchers have concentrated efforts on re-

ducing the dissimilarity between synthetic human training partners and testing

with human end-users. Approaches that have achieved success in the past include

utilizing human gameplay data to finetune simulated training partners to behave

more human-like [73], which can be expensive, and training with a diverse-skilled

187

population of synthetic partners to create an agent that can better generalize to non-

expert end-users [74]. However, as we find in later sections, this training scheme

may be biased towards training AI teammates to exhibit individualized strate-

gies. As approximately a third of the diverse-skilled population of agents used in

training are completely random agents, the teammate agent must compensate and

exhibit individualized behavior.

In our work, we explore a paradigm where a user can directly modify and

visualize a tree-based AI teammate she is interacting with. While prior work

[276, 277, 278, 279] has explored similar paradigms, creating a system that allows

end-users to modify robot policy trees, none have attempted to utilize tree-based

models in an HMT setting and deployed these models within a repeated teaming

scenario.

Overcooked-AI – Overcooked-AI [73] has become a common testbed to evalu-

ate human-AI interaction. Here, two agents are tasked with creating and delivering

as many soups as possible within a given time. Achieving a high score within this

collaborative domain requires agents to navigate a kitchen and repeatedly complete

a set of sequential high-level actions, including collecting ingredients, placing in-

gredients in pots, cooking the ingredients, collecting a dish, getting the soup, and

delivering it. Both players receive the same score increase upon delivering the

soup. We modify the original Overcooked-AI game to be a simultaneous-move game as

opposed to the original formulation of allowing agents to perform actions asynchronously

as done in previous work. This modification prevents the collaborative score metric

from being dominated by super-human AI speed, causing the overall score to be

more reliant upon effective collaboration and strategy. We provide further details

about the domain in the supplementary material.

State-Space: Our interpretable agent policies reason over a semantically meaningful

feature space as opposed to pixel space. Our feature space details the objects each

188

agent is holding, pot statuses, and counter objects.

Action-Space: Instead of using the lower-level actions utilized in Overcooked-AI,

we allow the AI agent to utilize macro-actions that can accomplish high-level

objectives such as ingredient collection, ingredient placement, and soup serving.

Macro-actions are planned at the low-level using an A* planner, and we perform

dynamic replanning at each timestep. Prior work has shown macro-actions en-

hance interpretability [280].

Tuckman’s Model – [44] describes the different stages that a team goes through

before reaching high performance, including “Forming”, “Storming”, “Norming”

and “Performing.” The Norming stage is associated with a drop in performance

as team members are unfamiliar with each other and still understanding how they

should collaborate. In the Storming stage, team members continue to understand

each other and begin to establish roles and strategies. In the Norming stage, the

team performance begins to improve as agents learn to collaborate harmoniously.

Finally, in the Performing stage, the team is achieving its full potential, exhibiting

the highest level of cooperation and score. We provide a depiction of these stages

as part of Figure 9.2. We note that all teams may not follow these stages linearly,

as literature has suggested stages can be skipped or experience a back-and-forth.

Markov Game – We formulate our two-player simultaneous-move environment

as a Markov Game [157]. A Markov game for 2 agents is defined by a set of global

states, S1,S2 ∈ S, a set of actions for each agent, A1,A2 ∈ A, and the transition

function, T : S × A1 × A2 7→ S. In each time step, agent i chooses action, ai ∈ Ai,

obtains reward as a function of state, S, and its action ri : S ×Ai 7→ R. Agent i aims

to maximize its discounted reward Ri =
∑T

t=0 γ
trt

i , where γ ∈ [0, 1] is a discounted

factor. For training teammates, we utilize agent-agent collaborative training, which

trains two separate agents jointly via single-agent Proximal Policy Optimization

189

(PPO) [119] 1.

9.3 Teaming with Real Humans

In this section, we present two examples to display a gap in the quality of AIs in

HMT. Specifically, we look at two recent approaches to produce collaborative AI

agents [74, 73]. We argue and display that the AIs trained via these approaches are

rigid and exhibit individualized behaviors, missing out on collaborative teaming

strategies that can ultimately result in higher team scores.

We require collaborative AI agents that can effectively reach a consensus with

humans on a teaming strategy that ultimately results in high performance. In

cases where the human has a preferred strategy, the AI teammate should be able to

support said strategy. Furthermore, across repeated gameplay, team performance

within an HMT should improve until the HMT reaches maximum performance

associated with a specific human partner’s capability. As our domains are rela-

tively low-dimensional, we expect that with a collaborative AI maintaining these

attributes, HMT performance should reach maximal values.

Within many Overcooked-AI scenarios, it is possible to design heuristic high-

performance collaboration strategies. For our first example, in Figure 9.1, we dis-

play the Coordination Ring scenario. A simple collaboration strategy in this domain

is to utilize the counter to continuously pass objects, minimizing agent movement

through efficient handoffs (displayed in Figure 9.1a). To test this collaboration

strategy, we utilize agents publicly available from [73] In Figure 9.1, we display

a frame-by-frame of the human-preferred coordination strategy (top column) and

AI-preferred coordination strategy (bottom column), which was a strategy where

agents individually collect ingredients and place them in pots, moving clockwise.

This behavior was inferred through trial and error. With the human-preferred

1We utilize PantheonRL [281], a library built upon StableBaselines3 for training our agents,

190

(a) Here, we display the human-preferred collaboration behavior that focuses on min-
imizing agent movement and efficient handoffs using the middle counter. We see that
the human (green agent) picks up an ingredient and places it on the counter at the start
of the game. The AI agent (blue) is unsure how to handle this strategy and freezes for
approximately 80% of the remaining episode before finally placing an onion in the pot.
This is a display of unsuccessful collaboration that receives a total score of 0.

(b) Here, we display a human adapting to an AI-preferred suboptimal teaming strategy,
where agents act individually. We see that agents are able to successfully retrieve ingredi-
ents, and create and serve soups. This individualized coordination results in some success,
achieving a score of 40.

Figure 9.1: Case Study in Human-Machine Teaming with Gameplay Images with
Different Teaming Strategies. It is clear that the models produced are not robust to
multiple strategies of play and can result in agents performing nonsensical behavior
(stuck in place).

strategy, the AI agent freezes for the majority of the game, creating an extremely

frustrating and low-performing AI teammate. With the AI-preferred strategy, the

human is able to successfully team with the AI, but the strategy is not optimal or

what the human prefers. We provide videos and further details in the supplemen-

tary.

In a second example, we utilize the Optional Collaboration domain, displayed in

Figure 9.4b, which is also utilized in our human-subjects experiment. This domain

was designed to incentivize collaboration, where mixing ingredients will result in a

incorporating our novel architecture into the codebase.

191

higher score per dish. Here, we program two intelligent heuristics: In the first, each

agent acts completely individually, cooking single-ingredient dishes and serving.

In the second, agents share ingredients (which costs additional timesteps) but are

able to successfully cook mixed ingredient dishes. We find that the collaboration

strategy achieves a 408 team score, approximately 30% more score compared to

the individual strategy of 306. Later in the paper, we find that trained policies

under [74] exhibit similar team score to that of the individual agent and through

observation, find that these agents exhibit mostly independent behaviors. Further,

real human end-users collaborating with these agents are unable to far surpass the

individual strategy score.

Thus, in the rest of the paper, we look to explore xAI techniques as a mechanism

for closing this gap and allowing agents within a human-machine team to facili-

tate collaborative strategies that outperform the individualized behaviors agents

assume.

9.4 Methodology

In this section, we first present our architecture for training interpretable AI team-

mates in Overcooked-AI. We then present a contextual pruning algorithm, noting

parallels to the broader “lottery ticket hypothesis” [282] for neural network models.

We display a depiction of our training procedure as part of Figure 9.2.

9.4.1 Interpretable Discrete Control Trees

We create an interpretable machine learning architecture, Interpretable Discrete

Control Trees (IDCTs), that can be used directly with RL to produce interpretable

teammate policies. Below, we briefly detail our architecture, as well as advance-

ments to enhance ease-of-training and interpretability.

192

Architecture

Our IDCTs are based off of differentiable decision trees (DDTs) [67, 131] – a neural

network architecture that takes the topology of a decision tree (DT). DDTs con-

tain decision nodes and leaf nodes; however, each decision node within the DDT

utilizes a sigmoid activation function (i.e., a “soft” decision) instead of a Boolean

decision (i.e., a “hard” decision). Each decision node, i, is represented by a sigmoid

function, displayed as yi =
1

1+exp(−α(w⃗T
i x⃗−bi))

. As this representation is difficult to inter-

pret, [10] presented differentiable crispification, consisting of two components: 1)

Decision node crispification, which recasts each decision node to split upon a sin-

gle dimension of our input feature, and 2) Decision outcome crispification, which

translates the outcome of a decision node so that the outcome is a Boolean decision

rather than a set of probabilities. Both operations utilize the straight-through trick

[68] to maintain gradients, allowing for both an interpretable forward propagation

through the model that traces down a single branch of a tree as well as gradient

flow to update parameters of the neural tree model.

We initialize our IDCTs to be symmetric complete decision trees with Nl decision

leaves and Nl − 1 decision nodes. Each decision leaf is represented by a sparse cat-

egorical probability distribution over actions. At each timestep, a state variable is

propagated through each decision node, split on a single decision rule, with the out-

put being a Boolean causing the decision to proceed via the left or right branch until

arrival at a leaf node. At each leaf node, we sample from the respective probability

distribution to produce a macro-action (e.g., in Overcooked-AI, “get an onion” or

“place held ingredient on counter”). As we are training interpretable stochastic

tree models that reason over macro-actions, we improve model predictability by

applying an L1 norm loss over leaf node distributions to ensure sparsity. This

penalizes high entropy action distributions at a leaf, increasing predictability and

interpretability. While utilizing deterministic AI policies (IDCT with a single action

193

at each leaf node) may be easier to understand for users, we found these models

could not converge to similar performance as our stochastic interpretable policies.

We provide an ablation displaying this finding in the supplementary.

Contextual Pruning

As we focus on creating agents that cooperate with humans, we must limit the

size of our interpretable tree-based models to a certain depth to promote user

understanding. This follows prior work, finding trees of arbitrarily large depths

can be difficult to understand [227] and simulate [134], and that a sufficiently

sparse DT is desirable and considered interpretable [228]. However, this can make

training difficult, as a small tree may not have the representational power to learn

a high-performing policy.

[282] present the idea of a ”lottery ticket hypothesis” in neural network training.

This hypothesis suggests that initializing a large neural network with numerous

sub-networks (referred to as lottery tickets) and conducting training can unveil a

sub-network (a winning ticket) that, when isolated, retains the same performance

as the original larger network. This finding supports the practicality of employing

large models. Accordingly, a small tree with a limited number of sub-trees may fail

to learn a good policy. Thus, the ability to effectively train IDCTs is at odds with

maintaining user readability and simulatability.

There is much literature that effectively prunes neural networks [283], detecting

sub-networks and increasing computational efficiency. Following this thread of

literature, we design a contextual pruning algorithm that allows us to simplify large

IDCT models post-hoc by accounting for the following:

1. Boundaries of a variable’s state distribution: We utilize the minimum and

maximum of each variable’s range to parse impossible subspaces of a tree.

2. Node hierarchy: Ancestor nodes for a specific decision node may have al-

194

Figure 9.2: In this figure, we provide a high-level overview of the steps to produce
a collaborative AI teammate with an interpretable policy representation and the
proposed policy modification scheme evaluated in our user study.

ready captured a specific splitting criterion and, thus, may lead to redundancy.

By detecting redundancies, we can prune subspaces of the tree.

Formally, both operations can be accomplished by computing a corresponding

hyperspace for each decision node, representing the input variable space leading

to that specific node. Initially, all input variables reach the root node, defining

a root node box, denoted by the Cartesian product B = [−∞,∞] × · · · [−∞,∞], of

cardinality d (where d is the dimensionality of the state space). However, since

each state variable has a predefined range, B can be simplified by considering the

upper and lower bounds of each variable’s range. Additionally, by evaluating

the splitting rule within a child node, we can further reduce B to represent an

additional constraint. Applying this process to the entire tree through a complete

tree traversal allows us to compute bounding boxes for each node. In cases where

certain nodes do not yield a reduction in B, we can apply pruning to specific

subtrees. We provide an algorithm for contextual pruning in the supplementary

195

material. 2 This, in turn, allows us the benefit of training large tree-based models, greatly

improving ease-of-training, while still being able to simplify the resultant model to an

equivalent representation. Empirically, we find that we can train tree sizes with over

200 leaves and often reduce the size 8-16x in tree depth.

9.4.2 Teammate Policy Modification

While the above architecture can be used alongside RL to produce a collaborative

AI policy, the result may not actually be helpful or what the human wants. Humans,

when teaming with machines, should be able to intuitively update what the robot has learned

or change it based upon preferences that may evolve over time. Such is critical in the

development of coordination strategies [44], and is associated with the calibration

of trust, assignment of roles, and development of a shared mental model. As such,

we propose a policy modification scheme that allows the user to repeatedly team

with an AI and modify its AI’s behavior, allowing for team development over

repeated teaming episodes.

Figure 9.3: General Overview of the Human-Led Policy Modification GUI

We term our modification scheme human-led policy modification. Here, we pro-

vide humans with an explicit pathway to “communicate” with an AI after each

teaming interaction through a GUI, displayed in Figure 9.3. Within this interface,

users start with the pre-trained collaborative AI IDCT policy and can modify the

2In future, it would be interesting to instill such constraints directly into the learning process
instead of applying post-hoc pruning.

196

AI’s behavior by creating a new tree structure that may vary in what state fea-

tures appear in the decision nodes, actions taken in leaf nodes, and the respective

probabilities of actions within the leaf node. While cognitively challenging, such

an interface provides users with the ability to modify teammate policies to their

specifications.

9.5 Human-Subjects Study

In this section, we discuss our novel between-subjects user study that seeks to

understand how users interact with an AI across repeated play under different

factors. Below, we introduce our research questions, provide a description of the

independent variables and procedure, include brief descriptions of the behaviors

learned by collaborative AI, and finally discuss our findings.

Research Questions:

1. RQ1:How does team coordination performance vary across different factors?

2. RQ2:How does team development vary across different factors?

Independent Variables

We have two independent variables, IV1: the teaming method, and IV2: the

domain. For IV1, we consider the following conditions (abbreviated by IV1-C), as

follows:

1. IV1-C1: Human-Led Policy Modification: User teams with an AI maintain-

ing an IDCT policy. After interacting with the agent (one teaming episode),

the user can modify the policy via the modification GUI, allowing the user to

update decision nodes and action nodes in the tree as well as tune affordances.

Upon completion of user modification, the user can visualize the updated AI

policy in its interpretable tree form prior to the next interaction.

197

2. IV1-C2: AI-Led Policy Modification: User teams with an AI maintaining an

IDCT policy. After interacting with the agent, the AI utilizes recent gameplay

to fine-tune a human gameplay model via Behavioral Cloning and performs

RL for five minutes to optimize its own policy to better support the human

teammate. Upon completion of policy optimization, the user can visualize the

updated AI policy in its interpretable tree form prior to the next interaction.

This is similar to Human-Aware PPO [73], adapted to an online setting.

3. IV1-C3: Static Policy - Interpretability: User teams with an AI maintaining

an IDCT policy. After interacting with the agent, the user can visualize the AI’s

policy in its interpretable tree form prior to the next interaction. Throughout

this condition, the AI’s policy is static.

4. IV1-C4: Static Policy - Black-Box: User teams with an AI maintaining an

IDCT policy. However, after interacting with the agent, the user does not see

the AI’s policy. Here, the AI policy is the same as IV1-C3, but the human has lost

access to direct insight into the model.

5. IV1-C5: Static Policy - Fictitious Co-Play: [74]: User teams with an AI

maintaining a static neural network (NN) policy trained across a diverse

partner set. As this is a baseline, we utilize an NN rather than the IDCT

policy model used in IV1-C1-4.

We display a brief table displaying the different characteristics across conditions in

Table 9.1. Across the varying factors in IV1 (in reverse order), there is an additional

capability added to each condition. As we compare against two prior works

[73, 74], it is important to note that when interpreting the results, readers should

keep in mind that Human-Led Policy Modification has an additional capability

beyond model training (i.e., users have the ability to change the policy). As such,

198

readers should consider 1) training performance, 2) HMT performance, and 3)

HMT development in evaluating the pros and cons across conditions.

Table 9.1: An overview of the characteristics across different IV1 factors.

Explicit Policy Changes Base
Approaches Interaction Across Iterations White-Box Policy

IV1-C1 ✓ ✓ ✓ IDCT
IV1-C2 ✗ ✓ ✓ IDCT
IV1-C3 ✗ ✗ ✓ IDCT
IV1-C4 ✗ ✗ ✗ IDCT
IV1-C5 ✗ ✗ ✗ NN

For IV2, we consider the following domains (abbreviated by D), displayed in

Figure 9.4:

1. IV2-D1: Forced Coordination: Users team with an AI that is separated by

a barrier and must pass over onions and plates in a timely manner. In this

domain, agents are forced to collaborate.

2. IV2-D2: Two-Rooms Narrow: In this domain, the team can operate indi-

vidually or collaboratively, and members are not forced to coordinate. This

domain has increased complexity, both with respect to the size of the domain

and the types of soups that can be cooked. Furthermore, in this domain,

collaboration is incentivized through a higher reward for mixed-ingredient

dishes (combining onions and tomatoes) over single-ingredient dishes.

Each domain was chosen so that collaborating with the teammate would result

in a higher score than working individually. For each domain, we train an IDCT

policy via agent-agent collaborative training and a NN policy following the training

scheme in [74]. As the total score is a combination of the behavior across both agents

within the human-machine team, it is important to note the collaborative policies

produced via training. In IV2-D1, the IDCT policy (utilized in C1-4) converged to

199

a policy with an average reward of 315.22 ± 14.59, and the neural network policy

converged to an average reward of 403.16 ± 16.08 over 50 teaming simulations

with the synthetic human teammate the policy was trained with. In IV2-D2, the

IDCT policy converged to a policy with an average reward of 171.46 ± 18.89, and

the neural network policy converged to an average reward of 295.02 ± 1.86. Thus,

a consequent confound due to the current difference in performance capabilities

between interpretable vs. black-box models is that the NN policy outperforms the

IDCT policy in both domains. This displays a gap in We can also compare to the

heuristic policies presented previously, observing that both IDCT and NN policies

in IV2-D2 underperform high-performance collaboration between the two agents.

We provide depictions of the interpretable policies in the supplementary material.

(a) Forced Collaboration (b) Optional Collaboration

Figure 9.4: This figure depicts each domain that we will be using in our experiment.

Procedure

A participant is first randomly placed into one of the five conditions in IV1. The par-

ticipant starts with a pre-experiment survey collecting demographic information,

experience with video games and decision trees, and the Big Five Personality Ques-

tionnaire [266]. Afterward, a participant conducts a brief tutorial in Overcooked

with a random AI agent, improving the user’s understanding of game controls and

the assigned task. Once completed, the primary experimentation begins. Users

200

will team with an AI four times in each domain (randomly ordered), and are told

that their goal is to maximize their score in the last teaming interaction, the “per-

formance round”. After each teaming interaction, in the first three factors, the user

will modify the AI’s policy (IV1-C1), the AI will optimize its own policy (IV1-C2),

or the user will view the policy (IV1-C3). In IV1-C4 and IV1-C5, as the AI is black-

box, transitionary pages are shown to the participant, providing them a pause

before they team with the agent again. Upon completion of the condition-specific

(or lack of) actions, users complete a NASA-TLX Workload Survey [270]. After

users have completed a domain, providing us with four episodes of teaming data

and workload assessments, we administer several post-study scales to support our

quantitative findings, including the Human-Robot Collaborative Fluency Assess-

ment [267], Inclusion of Other in the Self scale [268], and Godspeed Questionnaire

[269] as well as essay-like questions asking users to describe their experience with

the AI. Each respective scale has been verified for validity in prior work and is used

to assess the quality of the HMT interaction. Upon completion of the two domains,

the experiment concludes. We provide additional details regarding our procedure

in the supplementary material. By comparing different conditions, we can gain

valuable insights into the advantages of AI interpretability and interaction.

9.5.1 Results

We recruited 50 participants under an IRB-approved protocol, whose ages range

from 18 to 32 (Mean age: 24.14; Standard deviation: 4.10; 46% Female, 2% Non-

Binary), with participants randomly assigned to each of the factor levels, with ten

total subjects per level. Our data was modeled as a full-factorial, between-subjects

ANOVA. We test for normality and homoschedascity in our data and employed

a corresponding non-parametric test if the data failed to meet these assumptions.

We provide complete details regarding our analysis within the supplementary. We

201

display our objective findings in Figure 9.5.

RQ1: Team Coordination Performance

In analyzing team reward, we find interesting trends with respect to the maxi-

mum reward participants obtained within a domain across all teaming iterations

(Figure 9.5b) and reward participants obtained within a domain within the per-

formance round (Figure 9.5d). Utilizing a Friedman’s test, we find that there is a

significant difference across domains (χ2(1) = 46.08, p < 0.001). Accordingly, we

analyze the two domains separately.3

In IV2-D1, a Kruskal-Wallis Test was conducted to analyze differences in maxi-

mum performance obtained across teaming paradigms, finding a significant effect

(χ2(4) = 20.146, p < 0.001). We conduct post-hoc pairwise comparisons, utilizing

Dunn’s test with the Bejamini-Hochberg adjustment, and find that IV1-C5 is sig-

nificantly better than IV1-C1 (p < 0.001), IV1-C2 (p < 0.01), IV1-C3 (p < 0.01), and

IV1-C4 (p < 0.05). While IV1-C5 should outperform the tree-based models as it

converged to a higher-performance teaming policy, it is interesting that IV1-C1 has

several participants that outperform the maximum performance of IV1-C5.

In IV2-D2, trends while observing maximum reward and rewards during the

performance round are similar. Thus, we present the abbreviated results here for the

maximum reward attained by participants across iterations. A Kruskal-Wallis Test

was conducted to analyze differences in participant teaming performance across

conditions, finding a significant effect (χ2(4) = 29.922, p < 0.001). We conduct

post-hoc pairwise comparisons, utilizing Dunn’s test with the Bejamini-Hochberg

adjustment, and find that IV1-C5 is significantly better than IV1-C2 (p < 0.001),

IV1-C3 (p < 0.001), and IV1-C4 (p < 0.001), and IV1-C1 is significantly better than

IV1-C2 (p < 0.05), IV1-C3 (p < 0.05), and IV1-C4 (p < 0.05).

3We provide the complete test statistics in the supplementary material.

202

These findings display that black-box models can outperform white-box ap-

proaches in HMT. This can be attributed to black-box models being easier to train,

and decision trees being difficult to interpret for some users. Furthermore, we find

that white-box approaches supported with policy modification can outperform

white-box approaches alone in the second domain. Third, by comparing IV1-C3

to IV1-C4, we see that interpretability did not provide any direct benefits in HMT

performance. Lastly, in IV2-D2, we see that users do not attain team scores near

that of a collaborative heuristic strategy, displaying a gap in HMT performance.

RQ2: Team Development

In analyzing team development, we look at the change in reward across itera-

tions and relate our findings to Tuckman’s model [44]. Specifically, we analyze

the trends across iterations (did agents improve from iteration one to four) and

identify characteristics of users that performed well in team development. Utiliz-

ing a Friedman’s test, we find that there is a significant difference across domains

(χ2(1)=20.48, p < 0.001). Accordingly, we analyze the two domains separately.

We first conduct an analysis to see which conditions facilitate team develop-

ment. In IV2-D1, we see only IV1-C5 (p < 0.05) improves significantly over

repeated iterations. In IV2-D2, we see the only IV1-C1 (p < 0.01) and IV1-C2

(p < 0.01) significantly improve over repeated teaming interactions. The improv-

ing interactions can be related to the Norming stage in team development, where

teams begin to establish a coordination strategy and shared mental models. In

IV2-D2, we see that both conditions that facilitate the Norming stage of teaming

had the attribute of policy adaptation (see Table 9.1).

Next, we analyze whether different factors allow HMT to improve more quickly

than others. In IV2-D1, we find that there is no significant difference across condi-

tions in how much participants improve from the first teaming iteration. However,

203

we do find that conscientiousness is trending in its correlation with faster improve-

ment (0.05 < p < 0.1). In IV2-D2, similarly, we find that there is no significant dif-

ference across conditions in how much participants improve from the first teaming

iteration. However, we do find that there is a significant effect in how much par-

ticipants improve and their familiarity with Decision Trees (F(1) = 7.448, p < 0.01).

Finally, as we detect an interesting trend in IV2-D1 under the IV1-C1 condition,

we analyze this data further. We see a drop in performance between the first team-

ing iteration and later iterations, followed by a rising trend. We believe this relates

to the Forming and Storming stages in team development, where team members

are still developing effective strategies to coordinate. As the last iteration begins to

see an improvement in performance, we hypothesize that the team development

process was beginning to shift into the Norming stage. In future work, it would

be interesting to evaluate a larger number of iterations to see if the behavior in this

domain would continue to trend upward.

Subjective Findings

In IV2-D1, we find that users did not find any subjective differences toward the

teaming interaction across conditions. In IV2-D2, we find that users find collab-

oration with AIs under condition IV1-C2 and IV1-C4, on average as less fluent

than IV1-C1 (p < 0.01, p < 0.01), and IV1-C3 as less fluent than IV1-C5 (p < 0.05).

Users trusted the AI and perceived the AI contributed more in IV1-C5 than in

IV1-C2 (p < 0.05, p < 0.05) and IV1-C4 (p < 0.05, p < 0.05). Furthermore, the

users viewed the AI more positively in IV1-C1 and IV1-C5 than in both IV1-C2

(p < 0.05, p < 0.05) and IV1-C4 (p < 0.05, p < 0.01). Also, the users viewed the AI

more positively in IV1-C3 than IV1-C4 (p < 0.05). From the last finding, we can

see that given the same policy, users view an AI with an interpretable policy more

positively. Furthermore, we see approaches that perform better (i.e., IV1-C1 and

204

IV1-C5) are often rated with higher subjective ratings.

Qualitative Findings

End-users provided qualitative feedback by describing 1) the AI with character-

istics and 2) their teaming strategy with the AI. While users were not asked to

provide commentary during the experiment, experimenters noted down general

frustration and quotes. One specific quote said by a participant was “I can’t get it

[the AI] to do what I want it to do, so I’ll do what it wants me to do,” accurately

describing the rigidity of HMT. In Table 9.2, we display a sentiment analysis con-

ducted for words used to describe AI teammates within each domain. We see a

positive correlation between sentiment and HMT performance. A wide variety of

characteristics were used to describe the AI. Notably, under white-box conditions,

the most common words to describe the AI were “helpful” and “predictable” in IV-

D1, and “unintelligent” in IV-D2. Under black-box conditions, descriptors widely

differed with “slow” and “unhelpful” being the most common word for IV1-C3

and “intelligent” and “individual” for IV1-C5.

In looking at descriptions of teaming strategies, in IV1-C1, many users noted

how they attempted to modify the AI, what they learned across repeated interac-

tions, and whether they were successful in improving the AI collaborator. With

other conditions, participants noted how they could act preemptively to best sup-

port the AI’s strategy. Furthermore, in black-box conditions, several participants

mentioned a trial-and-error process in understanding the AI teammate.

9.6 Call-to-Action

Achieving successful collaboration between humans and machines is incredibly

challenging. Toward this goal, we specify two directions that must be addressed

to achieve fluent HMT.

205

IV1-C1 IV1-C2 IV1-C3 IV1-C4 IV1-C5

Forced Coordination
Pos 0.25 0.49 0.56 0.22 0.49
Neu 0.34 0.42 0.39 0.61 0.36
Neg 0.41 0.09 0.06 0.17 0.15

Optional Coordination
Pos 0.11 0.07 0.24 0.06 0.52
Neu 0.39 0.24 0.36 0.46 0.29
Neg 0.49 0.69 0.39 0.48 0.19

Table 9.2: Sentiment Analysis over User-Specified AI Characteristics, presenting
positive, neutral, and negative sentiment. We see a positive correlation between
sentiment and performance.

1. Researchers must focus on the development of white-box approaches that

can achieve competitive initial performance to that of black-box models and

learning techniques to support the generation of collaborative AI behaviors

rather than individual coordination.

2. The creation of mixed-initiative interfaces that facilitate users, who may vary

widely in ability and experience, to improve team collaboration across and

within interactions.

Furthermore, developing AI teammates that must function over longer-term in-

teractions may require pivoting from episodic measures of teaming, such as mini-

mizing workload or maximizing performance, to longer-term measures that may

provide overarching benefits, such as team development.

9.7 Conclusion

This work delves into the realm of repeated interactions with machine learning

models within a sequential decision-making HMT paradigm. Importantly, we

present a key gap in HMT, displaying that current methods do not facilitate human-

machine collaboration to the fullest. We deploy a possible solution, human-led pol-

icy modification, providing the human with the ability to go under-the-hood” of

his/her AI teammate and iteratively reprogram behavior. We find that human-led

206

policy modification allows for a human-machine team to achieve higher perfor-

mance than white-box models without this capability. However, as interpretable

models are more difficult to generate, Fictitious Co-Play is able to better support

high-performance HMT. Given these mixed findings, in future, researchers must

focus on developing better interpretableML approaches to support the generation

of white-box teammates, study the modality of communication between agents

and humans, and explore mechanisms to allow HMT to scale beyond individual

coordination and toward effective collaboration.

Future Work: In future, it would be interesting to conduct the experiment to

a higher number of iterations, or until the team converges to a set of coordination

strategies (the “performing” stage) and distribution of roles. Further, the possi-

bility of adding in feedback from the AI regarding human-led policy modification

(checking for logic inconsistencies, etc.) may be used to facilitate speedier team

development. It would also be interesting to utilize different paradigms in com-

municating with the human as language may be an easier medium than a decision

tree interface. An interesting additional baseline that would be beneficial in further

assessing the quality of HMT (both quantitatively and qualitatively) is comparing

human-machine collaboration to human-human collaboration. Lastly, future work

should be done to optimize the accessibility of GUIs for policy modification via

xAI techniques.

Limitations: This study was conducted at a university campus during a summer

semester. While the population was diverse in age, gender, and university major,

most students were based in engineering, presenting a population bias. This study

is also cross-sectional and thus, it is difficult to determine the cause of different

stages of team development. Finally, we evaluate the paradigm of human-led

policy modification in a collaborative game, where good collaboration outperforms

individualized coordination, but poor collaboration underperforms individualized

207

coordination. The findings may not generalize to other types of games or different

reward schemas. In the future, further testing over different layouts and reward

schemes alongside a deeper analysis of agent roles would provide insights into the

benefits and effects of interactive programming for neural tree models.

208

(a) Performance Data Across Iterations in IV2-D1: Forced Co-
ordination

(b) Aggregate Maximum Rewards Across
Each Condition

(c) Performance Data Across Iterations in IV2-D2: Optional
Collaboration

(d) Aggregate Performance Round Rewards
Across Each Condition

Figure 9.5: This figure displays gameplay scores from participants over different
iterations (Left) and aggregate findings (Right).

209

CHAPTER 10

LIMITATIONS AND FUTURE WORK

While much of my work has been successful in creating architectures and algo-

rithms to support human-robot collaboration, this field is relatively new, and there

is much that can be explored as well as limitations that can be addressed. Below, I

discuss limitations to my work as well as some possible avenues for future work.

10.1 Limitations

Each of the different works presented throughout this thesis has limitations. Below,

we present several limitations, grouped by high-level descriptions or techniques.

10.1.1 Multi-Agent Reinforcement Learning

In chapter 4 and chapter 5, we utilize MARL to infer coordination and communica-

tion policies for decentralized agents under partial observability. These techniques,

even for small-scale domains that have been discretized to 20x20 grids, require large

amounts of compute and can take several days to run on high-performance com-

puting machines. While there has been success in the past with training MARL

with simulated agents and substituting a human user online [284, 74], we have not

tested our coordination-communication protocols with humans. The key limita-

tion that stops these frameworks from readily being deployed with humans is the

use of black-box agent-to-agent communication. For a human to participate as a

member of the team and communicate with other agents, black-box communica-

tion messages must be first related to semantic information prior to communication.

Further, if the human would like to communicate back to agents, a similar mapping

would have to be created, translating semantic information to black-box messages

210

that an agent can then receive.

10.1.2 Interpretability of Tree-Based Models

Interpretability is a subjective concept that is person-specific, and the utility of in-

terpretability can be functionally grounded within a certain domain or for a certain

task. In our work, we consider interpretable policies that can represent a robot’s

decision-making policy or a robot’s representation of a human’s behavior. For a

robot’s decision-making policy, it is unclear whether continuous control outputs

(e.g., predicting a steering angle) are useful for end-users, as this is an extremely

short-term prediction presented at a low-level. For engineers, such a tree may

provide more benefit, allowing them to verify models for safety and perform de-

bugging. However, this has not been tested and is left to future work. Even in

higher-level spaces (such as reasoning over macro-actions), online, we see that trees

may not be the correct modality for communicating during human-robot collabora-

tion. These complex models require time to understand, presenting a large cost that

can reduce collaboration performance. Further, as robots may maintain a second

model that represents a teammate’s decision-making (and other components), we

found that presenting multiple trees results in information overload and a decrease

in performance. Here, it may be important to consider “when to communicate,”

reducing communication when a robot behaves as expected, or the human is busy.

Finally, large trees may be required in complex domains, limiting the simulatability

of such a model. In these cases, we still may be able to find utility with white-box

methods by interpreting the tree in sub-spaces or creating programs to post-process

the tree into a closed-form natural language description.

211

10.1.3 Evaluating the Utility of Our Systems

In many of our tasks, we evaluate collaboration in simulated domains with par-

ticipants that mostly consist of university students. Simulated agents have been

shown to be perceived differently than embodied agents [285]. As such, in fu-

ture studies, we would like to deploy our models on actual robot systems with

users. Further, as our human-subjects studies have mainly consisted of univer-

sity students, our studies maintain a population bias. In the future, it would be

beneficial to deploy our studies with a broader set of end-users, more closely asso-

ciated with our target population. Further, as we utilize explanations in sequential

decision-making settings or across repeated games, it is important to characterize

the short-term and long-term benefits of xAI-based support. Evaluating across a

larger number of repeated iterations may help to ensure that we effectively capture

long-term benefits of xAI (i.e., by allowing for sufficient time for the development

of a shared mental model and the creation of a collaboration plan). Evaluating at

too short a scale may result in incorrectly finding that certain xAI is not beneficial.

10.2 Future Work

Below, I present several directions of future work that would provide valuable

advancements to the field of human-robot collaboration.

10.2.1 Communicating with Humans

Throughout my thesis, I have explored interpretable tree-based models as the pri-

mary form of communication with humans. While trees can be understood by

users, they can prove cognitively intense, especially at larger scales. Exploring

methodologies to allow users to digest tree information more easily may provide

a path for users to more quickly develop a shared mental model. Furthermore, as

212

tree-based models have properties that allow for fast computation and verification,

users may also be able to query the tree to better understand a model. Questions

such as “what behaviors should I expect under the following states?” can be quickly

answered by such models and may facilitate a speedier development of a shared

mental model. It is important to continue to develop techniques that provide

agents with mechanisms to communicate objectives and important information to

humans, and develop human-machine interfaces, evaluated via user studies, to

allow humans to communicate with robots at scale. Finally, it would be beneficial

to utilize context-based communication, similar to that used in chapter 4 and chap-

ter 5. Here, the modality of communication would vary based upon state variables.

An example of a case where context-based communication would be beneficial is

modulating the modality and frequency of communication while considering the

human teammate’s current workload, allowing for reduced and/or abstracted com-

munication during stress and increased and/or transparent communication during

idling.

10.2.2 Interacting with Interpretable Models

We have seen some instances where users can improve interpretable teammate

policies via an interface. This capability is promising, enabling end-users to “go

under-the-hood” of machine learning models and tune affordances or interactively

and iteratively reprogram behavior. However, humans may incorrectly modify the

model, leading to unsafe or unwanted behavior. It would be beneficial to combine

the AI’s abilities in facilitating a sense of supervision over the tree policy while

maintaining the user’s preferences. Further, in future, it would be beneficial to

explore other use-cases for such an interface, such as allowing engineers to quickly

detect and remove unwanted model characteristics. For example, such a technique

may allow for removing unsafe behavior or unintended model biases, ensuring

213

that only positive-impact models are being deployed in our world.

214

CHAPTER 11

CONCLUSION

I envision a future with seamless collaboration between humans and robots. Human-

robot collaboration has the potential to increase productivity, enhance safety, and

improve the quality of our lives. My aim is to develop new computational methods

to support robots dynamically interacting with a wide variety of people in dynamic

and novel contexts, ultimately moving towards facilitating human-robot collabo-

ration in applications spanning from healthcare and manufacturing to household

assistance.

Today, most industries utilizing robots keep them in caged setups or human-

free environments to avoid accidents. Current interactions between humans and

robots are incredibly limited, only allowing the robot to perform rigid, predefined

behaviors. In this thesis, I have contributed several techniques and findings to push

the frontier of real-world robotics systems toward those that understand human

behavior, maintain interpretability, develop over time, and coordinate with high

performance. I provide a summary of each contribution as follows:

11.1 The Importance of Communication in Multi-Agent Systems

In this work, we create a multi-agent coordination framework augmented with

communication to address coordinating multiple decentralized agents under par-

tial observability. We emulate human-human teams, where personnel judiciously

choose when to communicate and whom to communicate with, communicating

only when beneficial, and propose a novel multi-agent reinforcement learning

algorithm, Multi-Agent Graph-attentIon Communication (MAGIC), with a graph-

attention communication protocol in which we learn 1) a Scheduler to help with

215

the problems of when to communicate and whom to address messages to, and 2) a

Message Processor using Graph Attention Networks (GATs) with dynamic graphs

to deal with communication signals. We evaluate our method and baselines in sev-

eral environments. In our most challenging domain, an adversarial soccer domain,

we achieve a near-perfect success rate in scoring, while most baselines struggle to

reach 70%. Not only does MAGIC produce state-of-the-art results, MAGIC is able

to converge 52% faster than the next-quickest baseline, and communicates 27.4%

more efficiently than the average baseline. Further, we find that targeted communi-

cation results in better multi-agent coordination performance than communicating

all the time.

11.2 Modeling Heterogeneity in Multi-Agent Systems

In this work, we attempt to emulate the communication strategy of high-performing

human-human teams within a multi-agent coordination framework, where mem-

bers implicitly understand the different roles of other heterogeneous team members

and adapt their communication protocols accordingly. As such, we formulate a

MARL framework that supports heterogeneous teams with different state, action,

and observation spaces and allows for stylized communication between these dif-

ferent classes of agents. Specifically, we propose Heterogeneous Policy Networks

(HetNet) to learn efficient and diverse communication models for coordinating

cooperative heterogeneous teams. Here, we cast the cooperative MARL problem

into a heterogeneous graph structure, and propose a novel heterogeneous graph-

attention network capable of learning diverse communication strategies based on

agent classes. Our empirical evaluation shows that HetNet sets a new state of

the art in learning coordination and communication strategies for heterogeneous

multi-agent teams by achieving a 434.7% performance improvement over the next-

best baseline in a heterogeneous firefighting domain that requires sensing agents

216

(e.g., UAVs) to coordinate with action agents with poor sensors (e.g., fast-moving

fixed-wing aircraft). Importantly, in comparing HetNet to homogeneous MARL

baselines, we see modeling heterogeneity explicitly within a multi-agent system

can lead to performance benefits.

11.3 Inferring Personalized Behavioral Policies of Heterogeneous Human Decision-

Makers

The ubiquity of robotics will depend upon robots being able to team with and

understand a diverse set of users. Accounting for personalization is essential in

human-machine teaming as a robot inferring incorrect teammate behavior (i.e., by

assuming all users fit to the mean or mode) could lead to poor teaming perfor-

mance. In this section, I create a data-efficient technique to create personalized

models of user behavior directly from a dataset of unlabeled heterogeneous users,

enabling robots to gain a personalized, implicit understanding of their human

teammate’s decision-making behavior via an inferred, person-specific embedding,

non-parametric in the number of demonstrator types. We find our approach, Per-

sonalized Neural Trees (PNTs), achieve state-of-the-art performance in predicting

user behavior across two synthetic domains and one real-world dataset of users

providing routing preferences. Furthermore, in a user study, we find PNT is more

interpretable, easier to follow, and quicker to validate than neural network mod-

els. With this new architecture, machines can better learn from heterogeneous

users and detect person-specific behaviors, allowing for greater personalization in

robotic counterparts.

11.4 Generating Interpretable Robot Policies

Interpretable policies are extremely important in the creation of systems that are

ready for real-world deployment and interaction with humans. In this section, I

217

propose Interpretable Continuous Control Trees (ICCTs), a tree-based framework

for continuous control that allows for direct synthesization of robot behavior via

gradient-based techniques within an interpretable representation. We evaluate

our model in its ability to learn high-performance control behaviors across several

continuous control problems, including four autonomous driving (AD) scenarios.

We find extremely positive support for our ICCTs, displaying the ability to learn

interpretable policy representations that parity or outperform baselines by up to

33% in autonomous driving scenarios while achieving a 300x-600x reduction in

the number of policy parameters against deep learning baselines. Importantly,

this work provides a strong step toward solutions for two grand challenges in

interpretableML announced in 2021: (1) Optimizing sparse logical models such as

decision trees and (2) Interpretable Reinforcement Learning.

11.5 The Utility of Explainable AI in Human-Robot Collaboration

Recent advances in machine learning have led to growing interest in xAI to enable

humans to gain insight into the decision-making of machine learning models. In

this work, we deploy xAI techniques with humans while they are teaming with an

AI, presenting a novel analysis of xAI under sequential decision-making settings

for human-machine teams. Significantly, I utilized Minecraft as a human-machine

teaming platform, creating a complex collaboration task where humans and ma-

chines must make decisions in real-time and reason about the world in a continu-

ous space. The resultant interaction is much closer to the envisage of a real-world

human-robot interaction scenario compared to prior research that has focused on

point interactions and does not assess the preoccupation cost of online explana-

tions. Importantly, I found that 1) using interpretable models that can support

information sharing with humans can lead to increased situational awareness and

2) xAI-based support is not always beneficial, as there is a cost of paying attention

218

to the xAI and this may outweigh the benefits obtained from generating an accurate

shared mental model. These findings emphasize the importance of developing the

“right” xAI models for human-machine teaming and the optimization methods to

support learning these xAI models.

11.6 Team Development in Human-Robot Collaboration

The current state of human-robot collaboration requires human teammates to adapt

to machines as the programmed machine behaviors are rigid. In this work, we build

towards adaptive, effective teaming by creating a pathway of bi-directional com-

munication, utilizing interpretable policy representations as a mechanism to allow

users to understand their machine teammates and allowing for explicit teammate

policy modification through an interface (users can modify the machine’s policy

via a Graphical User Interface). In a large-scale user study provides several key

findings. First, we find black-box architectures are easier to train and result in

high HMT performance compared to white-box architectures. Second, we find

that white-box approaches supported by interactive modification can lead to sig-

nificant team development, outperforming white-box approaches alone. Together,

these findings present a call-to-action to 1) improve approaches for generating

collaborative agents with interpretable models and 2) generate effective mixed-

initiative interfaces that allow users, who may vary in ability and experience, to

interact and improve team behavior.

219

REFERENCES

[1] A. Gupta, A. Murali, D. P. Gandhi, and L. Pinto, “Robot learning in homes:
Improving generalization and reducing dataset bias,” in Advances in Neu-
ral Information Processing Systems, S. Bengio, H. Wallach, H. Larochelle, K.
Grauman, N. Cesa-Bianchi, and R. Garnett, Eds., vol. 31, Curran Associates,
Inc., 2018.

[2] D. Ferguson et al., “An autonomous robotic system for mapping abandoned
mines,” in Advances in Neural Information Processing Systems, S. Thrun, L.
Saul, and B. Schölkopf, Eds., vol. 16, MIT Press, 2004.

[3] L. Riek, “Healthcare robotics,” Communications of the ACM, vol. 60, pp. 68–
78, 2017.

[4] S. Nikolaidis, P. A. Lasota, G. F. Rossano, C. Martı́nez, T. Fuhlbrigge, and
J. Shah, “Human-robot collaboration in manufacturing: Quantitative evalu-
ation of predictable, convergent joint action,” IEEE ISR 2013, pp. 1–6, 2013.

[5] I. Nourbakhsh, K. Sycara, M. Koes, M. Yong, M. Lewis, and S. Burion,
“Human-robot teaming for search and rescue,” IEEE Pervasive Computing,
vol. 4, pp. 72–79, 2005.

[6] Y. Niu, R. Paleja, and M. Gombolay, “Multi-agent graph-attention commu-
nication and teaming,” in Proceedings of the 20th International Conference on
Autonomous Agents and MultiAgent Systems, ser. AAMAS ’21, Virtual Event,
United Kingdom: International Foundation for Autonomous Agents and
Multiagent Systems, 2021, pp. 964–973, isbn: 9781450383073.

[7] E. Seraj et al., “Learning efficient diverse communication for cooperative
heterogeneous teaming,” in AAMAS, 2021.

[8] R. Paleja and M. Gombolay, “Heterogeneous learning from demonstration,”
in Proceedings of the 14th ACM/IEEE International Conference on Human-Robot
Interaction, ser. HRI ’19, Daegu, Republic of Korea: IEEE Press, 2019, pp. 730–
732, isbn: 9781538685556.

[9] R. Paleja, A. Silva, L. Chen, and M. Gombolay, “Interpretable and personal-
ized apprenticeship scheduling: Learning interpretable scheduling policies
from heterogeneous user demonstrations,” in Advances in Neural Information
Processing Systems, H. Larochelle, M. Ranzato, R. Hadsell, M. Balcan, and
H. Lin, Eds., vol. 33, Curran Associates, Inc., 2020, pp. 6417–6428.

220

[10] R. R. Paleja, Y. Niu, A. Silva, C. Ritchie, S. Choi, and M. C. Gombolay,
“Learning interpretable, high-performing policies for autonomous driving,”
Robotics: Science and Systems XVIII, 2022.

[11] R. Paleja, M. Ghuy, N. Ranawaka Arachchige, R. Jensen, and M. Gombolay,
“The utility of explainable ai in ad hoc human-machine teaming,” in Ad-
vances in Neural Information Processing Systems, M. Ranzato, A. Beygelzimer,
Y. Dauphin, P. Liang, and J. W. Vaughan, Eds., vol. 34, Curran Associates,
Inc., 2021, pp. 610–623.

[12] A. Staff, “10 years of amazon robotics: How robots help sort packages, move
product, and improve safety,” Jun. 2022.

[13] G. D. Cubber et al., Search and Rescue Robotics - From Theory to Practice.
London, GBR: InTechOpen, 2017, isbn: 9535133756.

[14] L. M. Ma, T. Fong, M. J. Micire, Y. Kim, and K. M. Feigh, “Human-robot
teaming: Concepts and components for design,” in Field and Service Robotics,
Results of the 11th International Conference, FSR 2017, Zurich, Switzerland, 12-15
September 2017, M. Hutter and R. Siegwart, Eds., ser. Springer Proceedings
in Advanced Robotics, vol. 5, Springer, 2017, pp. 649–663.

[15] K. M. Lee et al., “The effect of robot skill level and communication in rapid,
proximate human-robot collaboration,” in Proceedings of the 2023 ACM/IEEE
International Conference on Human-Robot Interaction, HRI 2023, Stockholm, Swe-
den, March 13-16, 2023, G. Castellano, L. D. Riek, M. Cakmak, and I. Leite,
Eds., ACM, 2023, pp. 261–270.

[16] Q. Dai, D. Shen, J. Wang, S. Huang, and D. P. Filev, “Calibration of hu-
man driving behavior and preference using naturalistic traffic data,” CoRR,
vol. abs/2105.01820, 2021. arXiv: 2105.01820.

[17] L. Sanneman, C. K. Fourie, and J. A. Shah, “The state of industrial robotics:
Emerging technologies, challenges, and key research directions,” Found.
Trends Robotics, vol. 8, no. 3, pp. 225–306, 2021.

[18] J. Krüger, T. K. Lien, and A. Verl, “Cooperation of human and machines in
assembly lines,” CIRP annals, vol. 58, no. 2, pp. 628–646, 2009.

[19] W. Knight, “Smart robots can now work right next to auto workers,” MIT
Technology Review, vol. 17, 2013.

[20] C. Liu and M. Tomizuka, “Algorithmic safety measures for intelligent in-
dustrial co-robots,” in 2016 IEEE International Conference on Robotics and
Automation (ICRA), IEEE, 2016, pp. 3095–3102.

221

https://arxiv.org/abs/2105.01820

[21] Diligent robotics collects $3m seed funding, launches autonomous robot assistants
for hospitals, Oct. 2019.

[22] O. Iroju, O. A. Ojerinde, and R. Ikono, “State of the art: A study of human-
robot interaction in healthcare,” 2017.

[23] R. E. Giachetti, V. Marcelli, J. Cifuentes, and J. A. Rojas, “An agent-based
simulation model of human-robot team performance in military environ-
ments,” Systems Engineering, vol. 16, no. 1, pp. 15–28, 2013.

[24] E. Salas, T. Dickinson, S. A. Converse, and S. Tannenbaum, “Toward an
understanding of team performance and training.,” 1992.

[25] J. MacMillan, E. E. Entin, and D. Serfaty, “Communication overhead: The
hidden cost of team cognition.,” 2004.

[26] N. Cooke, J. Gorman, C. W. Myers, and J. Duran, “Interactive team cogni-
tion,” Cognitive science, vol. 37 2, pp. 255–85, 2013.

[27] G. Tokadli and M. C. Dorneich, “Interaction paradigms: From human-
human teaming to human-autonomy teaming,” 2019 IEEE/AIAA 38th Digital
Avionics Systems Conference (DASC), pp. 1–8, 2019.

[28] E. Salas, N. Cooke, and M. Rosen, “On teams, teamwork, and team per-
formance: Discoveries and developments,” Human Factors: The Journal of
Human Factors and Ergonomic Society, vol. 50, pp. 540–547, 2008.

[29] H. Taylor, “The effects of interpersonal communication style on task per-
formance and well being,” Ph.D. dissertation, University of Buckingham,
2007.

[30] A. Thomaz, G. Hoffman, and M. Çakmak, “Computational human-robot
interaction,” Found. Trends Robotics, vol. 4, no. 2-3, pp. 105–223, 2016.

[31] F. Gervits, T. W. Fong, and M. Scheutz, “Shared mental models to support
distributed human-robot teaming in space,” in 2018 aiaa space and astronautics
forum and exposition, 2018, p. 5340.

[32] S. Chernova and M. Veloso, “Confidence-based policy learning from demon-
stration using gaussian mixture models,” in Proceedings of the 6th international
joint conference on Autonomous agents and multiagent systems, ACM, 2007,
p. 233.

222

[33] R. D. Dias et al., “Using machine learning to predict perfusionists’ critical
decision-making during cardiac surgery,” Comput. methods Biomech. Biomed.
Eng. Imaging Vis., vol. 10, no. 3, pp. 308–312, 2022.

[34] F. Doshi-Velez and B. Kim, “Towards a rigorous science of interpretable
machine learning,” arXiv preprint arXiv:1702.08608, 2017.

[35] B. Letham, C. Rudin, T. H. McCormick, D. Madigan, et al., “Interpretable
classifiers using rules and bayesian analysis: Building a better stroke pre-
diction model,” The Annals of Applied Statistics, vol. 9, no. 3, pp. 1350–1371,
2015.

[36] U. Bhatt et al., Explainable machine learning in deployment, 2019. arXiv: 1909.
06342 [cs.LG].

[37] P. Voigt and A. Von dem Bussche, “The eu general data protection regulation
(gdpr),” A Practical Guide, 1st Ed., Cham: Springer International Publishing,
2017.

[38] W.-Y. Loh, “Classification and regression trees,” Wiley interdisciplinary re-
views: data mining and knowledge discovery, vol. 1, no. 1, pp. 14–23, 2011.

[39] P. Barbiero, G. Ciravegna, D. Georgiev, and F. Giannini, “Pytorch, explain! a
python library for logic explained networks,” arXiv preprint arXiv:2105.11697,
2021.

[40] J. de Greeff et al., “Workshop on longitudinal human-robot teaming,” Com-
panion of the 2018 ACM/IEEE International Conference on Human-Robot Inter-
action, 2018.

[41] M. A. Goodrich, “Using narrative to enable longitudinal human-robot in-
teractions,” 2018.

[42] A. Logacjov, M. Kerzel, and S. Wermter, “Learning then, learning now, and
every second in between: Lifelong learning with a simulated humanoid
robot,” Frontiers in Neurorobotics, vol. 15, 2021.

[43] B. M. Lake, T. D. Ullman, J. B. Tenenbaum, and S. J. Gershman, “Building
machines that learn and think like people,” CoRR, vol. abs/1604.00289, 2016.
arXiv: 1604.00289.

[44] B. W. Tuckman, “Developmental sequence in small groups.,” Psychological
bulletin, vol. 63, pp. 384–99, 1965.

223

https://arxiv.org/abs/1909.06342
https://arxiv.org/abs/1909.06342
https://arxiv.org/abs/1604.00289

[45] D. Adjodah et al., “Leveraging communication topologies between learning
agents in deep reinforcement learning,” A. E. F. Seghrouchni, G. Sukthankar,
B. An, and N. Yorke-Smith, Eds., pp. 1738–1740, 2020.

[46] M. Gombolay, R. Jensen, J. Stigile, S.-H. Son, and J. Shah, “Learning to tutor
from expert demonstration via apprenticeship scheduling,” in Proceedings
of the Association for the Advancement of Artificial Intelligence (AAAI) Workshop
on Human-Machine Collaborative Learning (HMCL), San Francisco, California,
Feb. 2017.

[47] M. Gombolay, R. Wilcox, and J. Shah, “Fast scheduling of robot teams
performing tasks with temporospatial constraints,” IEEE Transactions on
Robotics, vol. 34, pp. 220–239, 2018.

[48] M. Gombolay et al., “Human-machine collaborative optimization via ap-
prenticeship scheduling,” J. Artif. Int. Res., vol. 63, no. 1, pp. 1–49, Sep. 2018.

[49] D.-K. Kim et al., “A policy gradient algorithm for learning to learn in multi-
agent reinforcement learning,” ArXiv, vol. abs/2011.00382, 2020.

[50] E. Seraj and M. Gombolay, “Coordinated control of uavs for human-centered
active sensing of wildfires,” 2020 American Control Conference (ACC), pp. 1845–
1852, 2020.

[51] A. Singh, T. Jain, and S. Sukhbaatar, “Learning when to communicate at
scale in multiagent cooperative and competitive tasks,” in 7th International
Conference on Learning Representations, ICLR 2019, New Orleans, LA, USA,
May 6-9, 2019, OpenReview.net, 2019.

[52] S. Sukhbaatar, A. Szlam, and R. Fergus, “Learning multiagent communi-
cation with backpropagation,” in Advances in Neural Information Process-
ing Systems 29: Annual Conference on Neural Information Processing Systems
2016, December 5-10, 2016, Barcelona, Spain, D. D. Lee, M. Sugiyama, U. von
Luxburg, I. Guyon, and R. Garnett, Eds., 2016, pp. 2244–2252.

[53] K. Kurach et al., “Google research football: A novel reinforcement learning
environment,” in The Thirty-Fourth AAAI Conference on Artificial Intelligence,
AAAI 2020, The Thirty-Second Innovative Applications of Artificial Intelligence
Conference, IAAI 2020, The Tenth AAAI Symposium on Educational Advances
in Artificial Intelligence, EAAI 2020, New York, NY, USA, February 7-12, 2020,
AAAI Press, 2020, pp. 4501–4510.

[54] Y. Liu, W. Wang, Y. Hu, J. Hao, X. Chen, and Y. Gao, “Multi-agent game
abstraction via graph attention neural network,” in The Thirty-Fourth AAAI
Conference on Artificial Intelligence, AAAI 2020, The Thirty-Second Innovative

224

Applications of Artificial Intelligence Conference, IAAI 2020, The Tenth AAAI
Symposium on Educational Advances in Artificial Intelligence, EAAI 2020, New
York, NY, USA, February 7-12, 2020, AAAI Press, 2020, pp. 7211–7218.

[55] A. Das et al., “Tarmac: Targeted multi-agent communication,” in Proceedings
of the 36th International Conference on Machine Learning, ICML 2019, 9-15
June 2019, Long Beach, California, USA, K. Chaudhuri and R. Salakhutdinov,
Eds., ser. Proceedings of Machine Learning Research, vol. 97, PMLR, 2019,
pp. 1538–1546.

[56] H. A. Simon et al., Models of a man: Essays in memory of Herbert A. Simon. MIT
Press, 2004.

[57] G. A. Klein, “A recognition-primed decision (rpd) model of rapid decision
making,” Decision making in action: Models and methods, vol. 5, no. 4, pp. 138–
147, 1993.

[58] G. A. Korsah, “Exploring bounded optimal coordination for heterogeneous
teams with cross-schedule dependencies,” Ph.D. dissertation, Carnegie Mel-
lon University, Pittsburgh, PA, Jan. 2011.

[59] T. G. Dietterich, “Hierarchical reinforcement learning with the maxq value
function decomposition,” J. Artif. Int. Res., vol. 13, no. 1, pp. 227–303, Nov.
2000.

[60] C. Sammut, S. Hurst, D. Kedzier, and D. Michie, “Learning to fly,” in Imita-
tion in Animals and Artifacts. Cambridge, MA, USA: MIT Press, 2002, pp. 171–
189.

[61] S. Nikolaidis, R. Ramakrishnan, K. Gu, and J. Shah, “Efficient model learning
from joint-action demonstrations for human-robot collaborative tasks,” in
Proceedings of the Tenth Annual ACM/IEEE International Conference on Human-
Robot Interaction, ser. HRI ’15, Portland, Oregon, USA: ACM, 2015, pp. 189–
196.

[62] Y. Li, J. Song, and S. Ermon, “Infogail: Interpretable imitation learning from
visual demonstrations,” in Advances in Neural Information Processing Systems
30, I. Guyon et al., Eds., Curran Associates, Inc., 2017, pp. 3812–3822.

[63] A. Tamar et al., “Imitation learning from visual data with multiple inten-
tions,” in International Conference on Learning Representations, 2018.

[64] F.-I. Hsiao, J.-H. Kuo, and M. Sun, “Learning a multi-modal policy via im-
itating demonstrations with mixed behaviors,” ArXiv, vol. abs/1903.10304,
2019.

225

[65] M. Gombolay, R. Jensen, J. Stigile, S.-H. Son, and J. Shah, “Apprenticeship
scheduling: Learning to schedule from human experts,” in IJCAI, 2016.

[66] C. Rudin, C. Chen, Z. Chen, H. Huang, L. Semenova, and C. Zhong, “In-
terpretable machine learning: Fundamental principles and 10 grand chal-
lenges,” ArXiv, vol. abs/2103.11251, 2021.

[67] A. Suárez and J. F. Lutsko, “Globally optimal fuzzy decision trees for clas-
sification and regression,” IEEE Transactions on Pattern Analysis and Machine
Intelligence, vol. 21, no. 12, pp. 1297–1311, 1999.

[68] Y. Bengio, N. Léonard, and A. C. Courville, “Estimating or propagating
gradients through stochastic neurons for conditional computation,” ArXiv,
vol. abs/1308.3432, 2013.

[69] G. Brockman et al., “Openai gym,” arXiv preprint arXiv:1606.01540, 2016.

[70] E. Leurent, An environment for autonomous driving decision-making, https://github.com/eleurent/highway-
env, 2018.

[71] C. Wu, A. Kreidieh, K. Parvate, E. Vinitsky, and A. M. Bayen, “Flow: Ar-
chitecture and benchmarking for reinforcement learning in traffic control,”
ArXiv, vol. abs/1710.05465, 2017.

[72] M. Johnson, K. Hofmann, T. Hutton, and D. Bignell, “The malmo platform
for artificial intelligence experimentation,” in IJCAI, 2016.

[73] M. Carroll et al., “On the utility of learning about humans for human-ai
coordination,” in NeurIPS, 2019.

[74] D. Strouse, K. R. McKee, M. M. Botvinick, E. Hughes, and R. Everett, “Col-
laborating with humans without human data,” M. Ranzato, A. Beygelzimer,
Y. N. Dauphin, P. Liang, and J. W. Vaughan, Eds., pp. 14 502–14 515, 2021.

[75] M. Gombolay, A. Bair, C. Huang, and J. Shah, “Computational design of
mixed-initiative human–robot teaming that considers human factors: Situ-
ational awareness, workload, and workflow preferences,” The International
journal of robotics research, vol. 36, no. 5-7, pp. 597–617, 2017.

[76] S. Konan, E. Seraj, and M. Gombolay, Iterated reasoning with mutual informa-
tion in cooperative and byzantine decentralized teaming, 2022. arXiv: 2201.08484
[cs.MA].

226

https://arxiv.org/abs/2201.08484
https://arxiv.org/abs/2201.08484

[77] L. Busoniu, R. Babuka, and B. D. Schutter, “A comprehensive survey of
multiagent reinforcement learning,” IEEE Transactions on Systems, Man, and
Cybernetics, Part C (Applications and Reviews), vol. 38, pp. 156–172, 2008.

[78] R. Lowe, Y. Wu, A. Tamar, J. Harb, P. Abbeel, and I. Mordatch, “Multi-agent
actor-critic for mixed cooperative-competitive environments,” in Advances
in Neural Information Processing Systems 30: Annual Conference on Neural In-
formation Processing Systems 2017, December 4-9, 2017, Long Beach, CA, USA,
I. Guyon et al., Eds., 2017, pp. 6379–6390.

[79] J. N. Foerster, G. Farquhar, T. Afouras, N. Nardelli, and S. Whiteson, Coun-
terfactual multi-agent policy gradients, S. A. McIlraith and K. Q. Weinberger,
Eds., 2018.

[80] S. Iqbal and F. Sha, “Actor-attention-critic for multi-agent reinforcement
learning,” in Proceedings of the 36th International Conference on Machine Learn-
ing, ICML 2019, 9-15 June 2019, Long Beach, California, USA, K. Chaudhuri
and R. Salakhutdinov, Eds., ser. Proceedings of Machine Learning Research,
vol. 97, PMLR, 2019, pp. 2961–2970.

[81] T. Haarnoja et al., “Soft actor-critic algorithms and applications,” CoRR,
vol. abs/1812.05905, 2018. arXiv: 1812.05905.

[82] K. Zhang, Z. Yang, and T. Başar, “Multi-agent reinforcement learning: A
selective overview of theories and algorithms,” Handbook of Reinforcement
Learning and Control, pp. 321–384, 2021.

[83] C. Zhang and V. R. Lesser, “Coordinating multi-agent reinforcement learn-
ing with limited communication.,” in International Conference on Autonomous
Agents and Multiagent Systems, 2013, pp. 1101–1108.

[84] T. Chu, S. Chinchali, and S. Katti, “Multi-agent reinforcement learning for
networked system control,” in 8th International Conference on Learning Rep-
resentations, ICLR 2020, Addis Ababa, Ethiopia, April 26-30, 2020, OpenRe-
view.net, 2020.

[85] E. Pesce and G. Montana, “Improving coordination in small-scale multi-
agent deep reinforcement learning through memory-driven communica-
tion,” Machine Learning, pp. 1–21, 2020.

[86] J. N. Foerster, Y. M. Assael, N. de Freitas, and S. Whiteson, “Learning to
communicate with deep multi-agent reinforcement learning,” in Advances
in Neural Information Processing Systems 29: Annual Conference on Neural In-
formation Processing Systems 2016, December 5-10, 2016, Barcelona, Spain, D. D.

227

https://arxiv.org/abs/1812.05905

Lee, M. Sugiyama, U. von Luxburg, I. Guyon, and R. Garnett, Eds., 2016,
pp. 2137–2145.

[87] J. Jiang and Z. Lu, “Learning attentional communication for multi-agent co-
operation,” in Advances in Neural Information Processing Systems 31: Annual
Conference on Neural Information Processing Systems 2018, NeurIPS 2018, De-
cember 3-8, 2018, Montréal, Canada, S. Bengio, H. M. Wallach, H. Larochelle,
K. Grauman, N. Cesa-Bianchi, and R. Garnett, Eds., 2018, pp. 7265–7275.

[88] D. Kim et al., “Learning to schedule communication in multi-agent rein-
forcement learning,” in 7th International Conference on Learning Representa-
tions, ICLR 2019, New Orleans, LA, USA, May 6-9, 2019, OpenReview.net,
2019.

[89] Z. Wang, C. Liu, and M. C. Gombolay, “Heterogeneous graph attention net-
works for scalable multi-robot scheduling with temporospatial constraints,”
1, vol. 46, 2022, pp. 249–268.

[90] Z. Wang and M. C. Gombolay, “Learning scheduling policies for multi-
robot coordination with graph attention networks,” IEEE Robotics Autom.
Lett., vol. 5, no. 3, pp. 4509–4516, 2020.

[91] J. Sheng et al., “Learning structured communication for multi-agent rein-
forcement learning,” N. Agmon, B. An, A. Ricci, and W. Yeoh, Eds., pp. 436–
438, 2023.

[92] J. Jiang, C. Dun, and Z. Lu, “Graph convolutional reinforcement learning
for multi-agent cooperation,” arXiv preprint arXiv:1810.09202, vol. 2, no. 3,
2018.

[93] A. Malysheva, T. T. Sung, C.-B. Sohn, D. Kudenko, and A. Shpilman, “Deep
multi-agent reinforcement learning with relevance graphs,” arXiv preprint
arXiv:1811.12557, 2018.

[94] S. Li, J. K. Gupta, P. Morales, R. E. Allen, and M. J. Kochenderfer, “Deep
implicit coordination graphs for multi-agent reinforcement learning,” F.
Dignum, A. Lomuscio, U. Endriss, and A. Nowé, Eds., pp. 764–772, 2021.

[95] J. Jiang, C. Dun, T. Huang, and Z. Lu, “Graph convolutional reinforcement
learning,” in 8th International Conference on Learning Representations, ICLR
2020, Addis Ababa, Ethiopia, April 26-30, 2020, OpenReview.net, 2020.

[96] M. Bravo, J. A. Reyes-Ortiz, J. Rodrı́guez, and B. Silva-López, “Multi-agent
communication heterogeneity,” in 2015 International Conference on Computa-
tional Science and Computational Intelligence (CSCI), 2015, pp. 583–588.

228

[97] S. Xiong, Q. Wu, and Y. Wang, “Distributed coordination of heterogeneous
multi-agent systems with output feedback control,” in 2019 IEEE Interna-
tional Conference on Unmanned Systems and Artificial Intelligence (ICUSAI),
IEEE, 2019, pp. 106–111.

[98] D. D. R. Meneghetti and R. A. d. C. Bianchi, “Towards heterogeneous multi-
agent reinforcement learning with graph neural networks,” arXiv preprint
arXiv:2009.13161, 2020.

[99] T. Mischel, “Psychology and explanations of human behavior,” Philosophy
and Phenomenological Research, vol. 23, no. 4, pp. 578–594, 1963.

[100] A. Tabrez, M. B. Luebbers, and B. Hayes, “A survey of mental modeling tech-
niques in human–robot teaming,” Current Robotics Reports, vol. 1, pp. 259–
267, 2020.

[101] S. Maghsudi and M. Davy, “Computational models of human decision-
making with application to the internet of everything,” IEEE Wirel. Commun.,
vol. 28, no. 1, pp. 152–159, 2021.

[102] S. Amershi, M. Cakmak, W. B. Knox, and T. Kulesza, “Power to the people:
The role of humans in interactive machine learning,” AI Magazine, vol. 35,
pp. 105–120, 2014.

[103] C.-M. Huang and B. Mutlu, “Learning-based modeling of multimodal be-
haviors for humanlike robots,” in Proceedings of the 2014 ACM/IEEE Interna-
tional Conference on Human-robot Interaction, ser. HRI ’14, Bielefeld, Germany:
ACM, 2014, pp. 57–64, isbn: 978-1-4503-2658-2.

[104] A. Coates, P. Abbeel, and A. Y. Ng, “Apprenticeship learning for helicopter
control,” Communications of the ACM, vol. 52, no. 7, pp. 97–105, 2009.

[105] L. Chen, R. Paleja, and M. Gombolay, “Learning from suboptimal demon-
stration via self-supervised reward regression,” in CoRL, 2020.

[106] L. Chen, S. Jayanthi, R. R. Paleja, D. Martin, V. Zakharov, and M. Gombo-
lay, “Fast lifelong adaptive inverse reinforcement learning from demonstra-
tions,” in Conference on Robot Learning, PMLR, 2023, pp. 2083–2094.

[107] H. Ravichandar, A. S. Polydoros, S. Chernova, and A. Billard, “Recent ad-
vances in robot learning from demonstration,” Annu. Rev. Control. Robotics
Auton. Syst., vol. 3, pp. 297–330, 2020.

229

[108] M. Chen, S. Nikolaidis, H. Soh, D. Hsu, and S. Srinivasa, “Planning with
trust for human-robot collaboration,” in Proceedings of the 2018 ACM/IEEE
international conference on human-robot interaction, 2018, pp. 307–315.

[109] R. Gervasi, K. Aliev, L. Mastrogiacomo, and F. Franceschini, “User experi-
ence and physiological response in human-robot collaboration: A prelimi-
nary investigation,” Journal of Intelligent & Robotic Systems, vol. 106, no. 2,
p. 36, 2022.

[110] A. Ramachandran, S. S. Sebo, and B. Scassellati, “Personalized robot tutoring
using the assistive tutor pomdp (at-pomdp),” in Proceedings of the AAAI
Conference on Artificial Intelligence, vol. 33, 2019, pp. 8050–8057.

[111] J. P. Vasconez, D. Carvajal, and F. A. Cheein, “On the design of a human–
robot interaction strategy for commercial vehicle driving based on human
cognitive parameters,” Advances in Mechanical Engineering, vol. 11, no. 7,
p. 1 687 814 019 862 715, 2019.

[112] M. Gombolay, C. Huang, and J. Shah, “Coordination of human-robot team-
ing with human task preferences,” in AAAI Fall Symposium Series on Artificial
Intelligence for Human-Robot Interaction, 2015.

[113] M. C. Gombolay, R. Jensen, and S.-H. Son, “Machine learning techniques
for analyzing training behavior in serious gaming,” IEEE Transactions on
Computational Intelligence and AI in Games, 2017.

[114] C. Rudin, “Stop explaining black box machine learning models for high
stakes decisions and use interpretable models instead,” Nature Machine In-
telligence, vol. 1, pp. 206–215, 2018.

[115] P. M. Berry, M. Gervasio, B. Peintner, and N. Yorke-Smith, “Ptime: Person-
alized assistance for calendaring,” ACM Transactions on Intelligent Systems
and Technology, vol. 2, no. 4, 40:1–40:22, Jul. 2011.

[116] E. Yurtsever, J. Lambert, A. Carballo, and K. Takeda, “A survey of au-
tonomous driving: Common practices and emerging technologies,” IEEE
Access, vol. 8, pp. 58 443–58 469, 2020.

[117] P. Linardatos, V. Papastefanopoulos, and S. Kotsiantis, “Explainable ai: A
review of machine learning interpretability methods,” Entropy, vol. 23, 2021.

[118] J. Kim and J. F. Canny, “Interpretable learning for self-driving cars by vi-
sualizing causal attention,” 2017 IEEE International Conference on Computer
Vision (ICCV), pp. 2961–2969, 2017.

230

[119] J. Schulman, F. Wolski, P. Dhariwal, A. Radford, and O. Klimov, “Proximal
policy optimization algorithms,” ArXiv, vol. abs/1707.06347, 2017.

[120] T. P. Lillicrap et al., “Continuous control with deep reinforcement learning,”
CoRR, vol. abs/1509.02971, 2016.

[121] S. Fujimoto, H. van Hoof, and D. Meger, “Addressing function approx-
imation error in actor-critic methods,” Proceedings of Machine Learning
Research, vol. 80, J. G. Dy and A. Krause, Eds., pp. 1582–1591, 2018.

[122] J. Basak, “Online adaptive decision trees,” Neural computation, vol. 16, no. 9,
pp. 1959–1981, 2004.

[123] C. Olaru and L. Wehenkel, “A complete fuzzy decision tree technique,”
Fuzzy sets and systems, vol. 138, no. 2, pp. 221–254, 2003.

[124] E. Angelino, N. Larus-Stone, D. Alabi, M. Seltzer, and C. Rudin, “Learning
certifiably optimal rule lists for categorical data,” The Journal of Machine
Learning Research, vol. 18, no. 1, pp. 8753–8830, 2017.

[125] S. M. Weiss and N. Indurkhya, “Rule-based machine learning methods
for functional prediction,” Journal of Artificial Intelligence Research, vol. 3,
pp. 383–403, 1995.

[126] C. Chen and C. Rudin, “An optimization approach to learning falling rule
lists,” Proceedings of Machine Learning Research, vol. 84, A. J. Storkey and
F. Pérez-Cruz, Eds., pp. 604–612, 2018.

[127] D. Laptev and J. M. Buhmann, “Convolutional decision trees for feature
learning and segmentation,” in German Conference on Pattern Recognition,
Springer, 2014, pp. 95–106.

[128] P. Kontschieder, M. Fiterau, A. Criminisi, and S. Rota Bulo, “Deep neural
decision forests,” in Proceedings of the IEEE international conference on computer
vision, 2015, pp. 1467–1475.

[129] R. Tanno, K. Arulkumaran, D. C. Alexander, A. Criminisi, and A. V. Nori,
“Adaptive neural trees,” Proceedings of Machine Learning Research, vol. 97,
K. Chaudhuri and R. Salakhutdinov, Eds., pp. 6166–6175, 2019.

[130] M. T. Correia Ribeiro, “Model-agnostic explanations and evaluation of ma-
chine learning,” Ph.D. dissertation, University of Washington, 2018.

[131] A. Silva and M. C. Gombolay, “Encoding human domain knowledge to
warm start reinforcement learning,” in AAAI, 2021.

231

[132] M. Wu et al., “Regional tree regularization for interpretability in deep neural
networks,” in Proceedings of the AAAI Conference on Artificial Intelligence,
vol. 34, 2020, pp. 6413–6421.

[133] O. Bastani, Y. Pu, and A. Solar-Lezama, “Verifiable reinforcement learn-
ing via policy extraction,” Advances in neural information processing systems,
vol. 31, 2018.

[134] Z. C. Lipton, “The mythos of model interpretability: In machine learning, the
concept of interpretability is both important and slippery.,” Queue, vol. 16,
no. 3, pp. 31–57, 2018.

[135] A. Adadi and M. Berrada, “Peeking inside the black-box: A survey on
explainable artificial intelligence (xai),” IEEE access, vol. 6, pp. 52 138–52 160,
2018.

[136] A. N. Sheth, K. Roy, and M. Gaur, “Neurosymbolic ai - why, what, and
how,” ArXiv, vol. abs/2305.00813, 2023.

[137] P. Hitzler, A. Eberhart, M. Ebrahimi, M. K. Sarker, and L. Zhou, “Neuro-
symbolic approaches in artificial intelligence,” National Science Review, vol. 9,
2022.

[138] A. G. Puranic, J. V. Deshmukh, and S. Nikolaidis, “Learning from demon-
strations using signal temporal logic,” in Conference on Robot Learning, 2021.

[139] G. D. Konidaris, L. P. Kaelbling, and T. Lozano-Perez, “From skills to sym-
bols: Learning symbolic representations for abstract high-level planning,”
J. Artif. Intell. Res., vol. 61, pp. 215–289, 2018.

[140] J. Y. Chen and M. Barnes, “Human–agent teaming for multirobot control:
A review of human factors issues,” IEEE Transactions on Human-Machine
Systems, vol. 44, pp. 13–29, 2014.

[141] M. L. Schrum et al., “Effects of social factors and team dynamics on adop-
tion of collaborative robot autonomy,” in Proceedings of the 2021 ACM/IEEE
International Conference on Human-Robot Interaction, 2021, pp. 149–157.

[142] R. Paleja, “Mutual understanding in human-machine teaming,” in Proceed-
ings of the AAAI Conference on Artificial Intelligence, vol. 36, 2022, pp. 12 896–
12 897.

[143] M. Natarajan et al., “Human-robot teaming: Grand challenges,” Current
Robotics Reports, pp. 1–20, 2023.

232

[144] V. Raman and H. Kress-Gazit, “Explaining impossible high-level robot be-
haviors,” IEEE Trans. Robotics, vol. 29, no. 1, pp. 94–104, 2013.

[145] S. Tellex, R. A. Knepper, A. Li, D. Rus, and N. Roy, “Asking for help using
inverse semantics,” in Robotics: Science and Systems, 2014.

[146] B. Hayes and J. Shah, “Improving robot controller transparency through au-
tonomous policy explanation,” 2017 12th ACM/IEEE International Conference
on Human-Robot Interaction (HRI, pp. 303–312, 2017.

[147] V. Unhelkar, S. Li, and J. Shah, “Decision-making for bidirectional communi-
cation in sequential human-robot collaborative tasks,” 2020 15th ACM/IEEE
International Conference on Human-Robot Interaction (HRI), pp. 329–341, 2020.

[148] S. Rosenthal, S. P. Selvaraj, and M. Veloso, “Verbalization: Narration of
autonomous robot experience,” in IJCAI, 2016.

[149] T. Chakraborti, K. Talamadupula, Y. Zhang, and S. Kambhampati, “Interac-
tion in human-robot societies,” 2015.

[150] V. Lai and C. Tan, “On human predictions with explanations and predictions
of machine learning models: A case study on deception detection,” Proceed-
ings of the Conference on Fairness, Accountability, and Transparency, 2019.

[151] G. Bansal et al., “Does the whole exceed its parts? the effect of ai expla-
nations on complementary team performance,” Proceedings of the 2021 CHI
Conference on Human Factors in Computing Systems, 2021.

[152] A. V. González, G. Bansal, A. Fan, R. Jia, Y. Mehdad, and S. Iyer, “Human
evaluation of spoken vs. visual explanations for open-domain qa,” ArXiv,
vol. abs/2012.15075, 2020.

[153] A. Bussone, S. Stumpf, and D. O’Sullivan, “The role of explanations on
trust and reliance in clinical decision support systems,” 2015 International
Conference on Healthcare Informatics, pp. 160–169, 2015.

[154] Z. Zhang, Y. Genc, D. Wang, M. Ahsen, and X. Fan, “Effect of ai explanations
on human perceptions of patient-facing ai-powered healthcare systems,”
Journal of Medical Systems, vol. 45, 2021.

[155] Y. Zhang, Q. Liao, and R. Bellamy, “Effect of confidence and explanation on
accuracy and trust calibration in ai-assisted decision making,” Proceedings
of the 2020 Conference on Fairness, Accountability, and Transparency, 2020.

233

[156] A. Anderson et al., “Mental models of mere mortals with explanations of
reinforcement learning,” ACM Transactions on Interactive Intelligent Systems
(TiiS), vol. 10, pp. 1–37, 2020.

[157] M. L. Littman, “Markov games as a framework for multi-agent reinforce-
ment learning,” in Machine learning proceedings 1994, Elsevier, 1994, pp. 157–
163.

[158] I. Grondman, L. Buşoniu, G. A. D. Lopes, and R. Babuska, “A survey of
actor-critic reinforcement learning: Standard and natural policy gradients,”
IEEE Transactions on Systems, Man, and Cybernetics, Part C (Applications and
Reviews), vol. 42, pp. 1291–1307, 2012.

[159] M. Babaeizadeh, I. Frosio, S. Tyree, J. Clemons, and J. Kautz, “Reinforcement
learning through asynchronous advantage actor-critic on a GPU,” in 5th
International Conference on Learning Representations, ICLR 2017, Toulon, France,
April 24-26, 2017, Conference Track Proceedings, OpenReview.net, 2017.

[160] G. Tesauro, “Temporal difference learning and td-gammon,” Communica-
tions of the ACM, vol. 38, no. 3, pp. 58–68, 1995.

[161] R. S. Sutton, “Temporal credit assignment in reinforcement learning,” Ph.D.
dissertation, University of Massachusetts Amherst, 1984.

[162] R. S. Sutton and A. G. Barto, Reinforcement learning: An introduction. MIT
press, 2018.

[163] J. Zhou et al., “Graph neural networks: A review of methods and applica-
tions,” AI Open, vol. 1, pp. 57–81, 2020.

[164] P. Velickovic, G. Cucurull, A. Casanova, A. Romero, P. Liò, and Y. Ben-
gio, “Graph attention networks,” in 6th International Conference on Learning
Representations, ICLR 2018, Vancouver, BC, Canada, April 30 - May 3, 2018,
Conference Track Proceedings, OpenReview.net, 2018.

[165] P. Tambwekar, A. Silva, N. Gopalan, and M. C. Gombolay, “Natural lan-
guage specification of reinforcement learning policies through differentiable
decision trees,” IEEE Robotics Autom. Lett., vol. 8, no. 6, pp. 3621–3628, 2023.

[166] A. Oroojlooy and D. Hajinezhad, “A review of cooperative multi-agent deep
reinforcement learning,” Appl. Intell., vol. 53, no. 11, pp. 13 677–13 722, 2023.

[167] O. Vinyals et al., “Grandmaster level in starcraft ii using multi-agent rein-
forcement learning,” Nature, vol. 575, no. 7782, pp. 350–354, 2019.

234

[168] C. Berner et al., “Dota 2 with large scale deep reinforcement learning,” CoRR,
vol. abs/1912.06680, 2019. arXiv: 1912.06680.

[169] I.-C. Baek and K.-J. Kim, “Efficient multi-agent reinforcement learning using
clustering for many agents,” 2019.

[170] P. Peng et al., “Multiagent bidirectionally-coordinated nets: Emergence of
human-level coordination in learning to play starcraft combat games,” arXiv
preprint arXiv:1703.10069, 2017.

[171] R. Wang, X. He, R. Yu, W. Qiu, B. An, and Z. Rabinovich, “Learning ef-
ficient multi-agent communication: An information bottleneck approach,”
in Proceedings of the 37th International Conference on Machine Learning, ICML
2020, 13-18 July 2020, Virtual Event, ser. Proceedings of Machine Learning
Research, vol. 119, PMLR, 2020, pp. 9908–9918.

[172] E. Jang, S. Gu, and B. Poole, “Categorical reparameterization with gumbel-
softmax,” in 5th International Conference on Learning Representations, ICLR
2017, Toulon, France, April 24-26, 2017, Conference Track Proceedings, OpenRe-
view.net, 2017.

[173] C. Nwankpa, W. Ijomah, A. Gachagan, and S. Marshall, “Activation func-
tions: Comparison of trends in practice and research for deep learning,”
ArXiv, vol. abs/1811.03378, 2018.

[174] D. Britz, A. Goldie, M.-T. Luong, and Q. Le, “Massive exploration of neural
machine translation architectures,” in Proceedings of the 2017 Conference on
Empirical Methods in Natural Language Processing, Copenhagen, Denmark:
Association for Computational Linguistics, Sep. 2017, pp. 1442–1451.

[175] S. Wilson et al., “The robotarium: Globally impactful opportunities, chal-
lenges, and lessons learned in remote-access, distributed control of multi-
robot systems,” IEEE Control Systems, vol. 40, pp. 26–44, 2020.

[176] J. E. Mathieu, T. S. Heffner, G. F. Goodwin, E. Salas, and J. A. Cannon-Bowers,
“The influence of shared mental models on team process and performance.,”
Journal of applied psychology, vol. 85, no. 2, p. 273, 2000.

[177] C. Yu, X. Wang, and Z. Feng, “Coordinated multiagent reinforcement learn-
ing for teams of mobile sensing robots,” in Proceedings of the 18th International
Conference on Autonomous Agents and MultiAgent Systems, 2019, pp. 2297–
2299.

[178] J. M. Catacora Ocana, F. Riccio, R. Capobianco, and D. Nardi, “Cooperative
multi-agent deep reinforcement learning in soccer domains,” in Proceedings

235

https://arxiv.org/abs/1912.06680

of the 18th International Conference on Autonomous Agents and MultiAgent
Systems, 2019, pp. 1865–1867.

[179] Y. Du et al., “Learning correlated communication topology in multi-agent
reinforcement learning,” in Proceedings of the 20th International Conference on
Autonomous Agents and MultiAgent Systems, 2021, pp. 456–464.

[180] H. Mao, Z. Gong, Y. Ni, and Z. Xiao, “Accnet: Actor-coordinator-critic net
for” learning-to-communicate” with deep multi-agent reinforcement learn-
ing,” arXiv preprint arXiv:1706.03235, 2017.

[181] H. Ravichandar, K. Shaw, and S. Chernova, “Strata: Unified framework
for task assignments in large teams of heterogeneous agents.,” (JAAMAS),
vol. 34, no. 2, p. 38, 2020.

[182] E. Seraj, L. Chen, and M. C. Gombolay, “A hierarchical coordination frame-
work for joint perception-action tasks in composite robot teams,” IEEE Trans-
actions on Robotics, 2021.

[183] E. Seraj, A. Silva, and M. Gombolay, “Safe coordination of human-robot
firefighting teams,” arXiv preprint arXiv:1903.06847, 2019.

[184] M. J. Bays and T. A. Wettergren, “A solution to the service agent transport
problem,” in 2015 IEEE/RSJ International Conference on Intelligent Robots and
Systems (IROS), IEEE, 2015, pp. 6443–6450.

[185] I. F. Akyildiz and I. H. Kasimoglu, “Wireless sensor and actor networks:
Research challenges,” Ad hoc networks, vol. 2, no. 4, pp. 351–367, 2004.

[186] L. P. Kaelbling, M. L. Littman, and A. R. Cassandra, “Planning and acting in
partially observable stochastic domains,” Artif. Intell., vol. 101, pp. 99–134,
1998.

[187] S. Levine, “Policy gradients,” CS 294-112: Deep Reinforcment Learning, 2018.

[188] E. Seraj, X. Wu, and M. Gombolay, “Firecommander: An interactive, prob-
abilistic multi-agent environment for joint perception-action tasks,” arXiv
e-prints, arXiv–2011, 2020.

[189] M. A. Finney, FARSITE, Fire Area Simulator–model development and evaluation.
US Department of Agriculture, Forest Service, Rocky Mountain Research
Station, 1998.

[190] S. W. Smith et al., “The scientist and engineer’s guide to digital signal pro-
cessing,” 1997.

236

[191] L. Pimentel, R. R. Paleja, Z. Wang, E. Seraj, J. Pagan, and M. C. Gombolay,
“Scaling multi-agent reinforcement learning via state upsampling,” 2010.

[192] C. Yu, A. Velu, E. Vinitsky, Y. Wang, A. Bayen, and Y. Wu, “The surpris-
ing effectiveness of ppo in cooperative, multi-agent games,” arXiv preprint
arXiv:2103.01955, 2021.

[193] B. Griffin, New report shows manufacturing output hit $35 trillion in 2017, Jul.
2019.

[194] Microsmallcap.com, Why tech could shakeup the $8.1 trillion global logistics
industry, Nov. 2018.

[195] D. Chapman, “Planning for conjunctive goals,” Artificial Intelligence, vol. 32,
no. 3, pp. 333–377, 1987.

[196] G. J. Peter, “Hands-on graduate courses in lean manufacturing (lm) em-
phasizing green and total productive maintenance (tpm),” in ASME 2010
International Mechanical Engineering Congress and Exposition, American Soci-
ety of Mechanical Engineers Digital Collection, 2010, pp. 357–365.

[197] P. M. Sanderson, “The human planning and scheduling role in advanced
manufacturing systems: An emerging human factors domain,” Human Fac-
tors, vol. 31, no. 6, pp. 635–666, 1989.

[198] B. L. MacCarthy, J. R. Wilson, and S. Crawford, “Human performance in
industrial scheduling: A framework for understanding,” Human Factors and
Ergonomics in Manufacturing & Service Industries, vol. 11, no. 4, pp. 299–320,
2001.

[199] L. Chen, R. R. Paleja, M. Ghuy, and M. C. Gombolay, “Joint goal and strategy
inference across heterogeneous demonstrators via reward network distilla-
tion,” 2020 15th ACM/IEEE International Conference on Human-Robot Interac-
tion (HRI), pp. 659–668, 2020.

[200] X. Chen, Y. Duan, R. Houthooft, J. Schulman, I. Sutskever, and P. Abbeel,
“Infogan: Interpretable representation learning by information maximizing
generative adversarial nets,” in NIPS, 2016.

[201] D. S. Brown, W. Goo, P. Nagarajan, and S. Niekum, “Extrapolating beyond
suboptimal demonstrations via inverse reinforcement learning from obser-
vations,” in ICML, 2019.

237

[202] L. Bottou et al., “Counterfactual reasoning and learning systems: The ex-
ample of computational advertising,” J. Mach. Learn. Res., vol. 14, no. 1,
pp. 3207–3260, Jan. 2013.

[203] L. Page, S. Brin, R. Motwani, and T. Winograd, “The pagerank citation
ranking: Bringing order to the web,” in Proceedings of the 7th International
World Wide Web Conference, Brisbane, Australia, 1998, pp. 161–172.

[204] R. Jin, H. Valizadegan, and H. Li, “Ranking refinement and its application
to information retrieval,” in Proceedings of the 17th International Conference
on World Wide Web, ser. WWW ’08, Beijing, China: ACM, 2008, pp. 397–406,
isbn: 978-1-60558-085-2.

[205] T. Pahikkala, E. Tsivtsivadze, A. Airola, J. Boberg, and T. Salakoski, “Learn-
ing to rank with pairwise regularized least-squares,” SIGIR 2007 Workshop
on Learning to Rank for Information Retrieval, Jan. 2007.

[206] H. E. Robbins, “A stochastic approximation method,” Annals of Mathematical
Statistics, vol. 22, pp. 400–407, 2007.

[207] S. Ross, G. Gordon, and D. Bagnell, “A reduction of imitation learning
and structured prediction to no-regret online learning,” in Proceedings of the
fourteenth international conference on artificial intelligence and statistics, JMLR
Workshop and Conference Proceedings, 2011, pp. 627–635.

[208] P. Tambwekar, A. Silva, N. Gopalan, and M. C. Gombolay, “Specifying and
interpreting reinforcement learning policies through simulatable machine
learning,” 2021.

[209] C. Olah et al., “The building blocks of interpretability,” Distill, vol. 3, no. 3,
e10, 2018.

[210] L. A. Hendricks, R. Hu, T. Darrell, and Z. Akata, “Generating counterfactual
explanations with natural language,” arXiv preprint arXiv:1806.09809, 2018.

[211] L. Anne Hendricks, R. Hu, T. Darrell, and Z. Akata, “Grounding visual
explanations,” in Proceedings of the European Conference on Computer Vision
(ECCV), 2018, pp. 264–279.

[212] S. Paepcke and L. Takayama, “Judging a bot by its cover: An experiment on
expectation setting for personal robots,” in Proceedings of the 5th ACM/IEEE
International Conference on Human-robot Interaction, ser. HRI ’10, Osaka, Japan:
IEEE Press, 2010, pp. 45–52, isbn: 978-1-4244-4893-7.

238

[213] A. Gawande, The Checklist Manifesto: How to Get Things Right. Henry Holt
and Company, 2010, isbn: 9781429953382.

[214] A. B. Haynes et al., “A surgical safety checklist to reduce morbidity and
mortality in a global population,” New England Journal of Medicine, vol. 360,
no. 5, pp. 491–499, 2009, PMID: 19144931. eprint: https://doi.org/10.1056/
NEJMsa0810119.

[215] M. Natarajan and M. Gombolay, “Effects of anthropomorphism and ac-
countability on trust in human robot interaction,” Proceedings of the 2020
ACM/IEEE International Conference on Human-Robot Interaction, 2020.

[216] J. M. Jumper et al., “Highly accurate protein structure prediction with al-
phafold,” Nature, vol. 596, pp. 583–589, 2021.

[217] J. Cui, W. Macke, H. Yedidsion, A. Goyal, D. Urielli, and P. Stone, “Scal-
able multiagent driving policies for reducing traffic congestion,” ArXiv,
vol. abs/2103.00058, 2021.

[218] C. Katrakazas, M. A. Quddus, W.-H. Chen, and L. Deka, “Real-time motion
planning methods for autonomous on-road driving: State-of-the-art and
future research directions,” Transportation Research Part C-emerging Technolo-
gies, vol. 60, pp. 416–442, 2015.

[219] R. Abe, “Introducing autonomous buses and taxis: Quantifying the potential
benefits in japanese transportation systems,” Transportation Research Part A:
Policy and Practice, 2019.

[220] A. Banerjee and R. Padhi, “Nonlinear guidance and autopilot design for lu-
nar soft landing,” in 2018 AIAA Guidance, Navigation, and Control Conference,
2018, p. 1872.

[221] B. Kim, “Interactive and interpretable machine learning models for human
machine collaboration,” 2015.

[222] G. Ciravegna et al., “Logic explained networks,” Artif. Intell., vol. 314,
p. 103 822, 2023.

[223] N. Frosst and G. E. Hinton, “Distilling a neural network into a soft decision
tree,” ArXiv, vol. abs/1711.09784, 2017.

[224] M. Wu, M. C. Hughes, S. Parbhoo, M. Zazzi, V. Roth, and F. Doshi-Velez,
“Beyond sparsity: Tree regularization of deep models for interpretability,”
in Proceedings of the Thirty-Second AAAI Conference on Artificial Intelligence
and Thirtieth Innovative Applications of Artificial Intelligence Conference and

239

https://doi.org/10.1056/NEJMsa0810119
https://doi.org/10.1056/NEJMsa0810119

Eighth AAAI Symposium on Educational Advances in Artificial Intelligence,
ser. AAAI’18/IAAI’18/EAAI’18, New Orleans, Louisiana, USA: AAAI Press,
2018, pp. 1670–1678, isbn: 978-1-57735-800-8.

[225] O. Bastani, Y. Pu, and A. Solar-Lezama, “Verifiable reinforcement learn-
ing via policy extraction,” Advances in neural information processing systems,
vol. 31, 2018.

[226] O. Nachum, S. S. Gu, H. Lee, and S. Levine, “Data-efficient hierarchical
reinforcement learning,” Advances in neural information processing systems,
vol. 31, 2018.

[227] A. Ghose and B. Ravindran, “Interpretability with accurate small models,”
Frontiers in Artificial Intelligence, vol. 3, 2020.

[228] H. Lakkaraju, S. H. Bach, and J. Leskovec, “Interpretable decision sets: A
joint framework for description and prediction,” in Proceedings of the 22nd
ACM SIGKDD International Conference on Knowledge Discovery and Data Min-
ing, ser. KDD ’16, San Francisco, California, USA: Association for Computing
Machinery, 2016, pp. 1675–1684, isbn: 9781450342322.

[229] D. Hein, S. Limmer, and T. A. Runkler, “Interpretable control by reinforce-
ment learning,” ArXiv, vol. abs/2007.09964, 2020.

[230] I. Goodfellow, Y. Bengio, and A. Courville, Deep Learning. MIT Press, 2016.

[231] D. Hafner, T. P. Lillicrap, M. Norouzi, and J. Ba, “Mastering atari with
discrete world models,” 2021.

[232] G. V. Cybenko, “Approximation by superpositions of a sigmoidal function,”
Mathematics of Control, Signals and Systems, vol. 2, pp. 303–314, 1989.

[233] R. R. Selmic and F. L. Lewis, “Neural-network approximation of piecewise
continuous functions: Application to friction compensation,” IEEE transac-
tions on neural networks, vol. 13 3, pp. 745–51, 2002.

[234] H. Chen, H. Zhang, S. Si, Y. Li, D. Boning, and C.-J. Hsieh, “Robustness
verification of tree-based models,” Advances in Neural Information Processing
Systems, vol. 32, 2019.

[235] C. Szegedy et al., “Intriguing properties of neural networks,” CoRR, vol. abs/1312.6199,
2013.

240

[236] N. Carlini and D. A. Wagner, “Towards evaluating the robustness of neural
networks,” 2017 IEEE Symposium on Security and Privacy (SP), pp. 39–57,
2016.

[237] G. Katz, C. W. Barrett, D. L. Dill, K. D. Julian, and M. J. Kochenderfer,
“Reluplex: An efficient smt solver for verifying deep neural networks,”
ArXiv, vol. abs/1702.01135, 2017.

[238] H. Salman, G. Yang, H. Zhang, C.-J. Hsieh, and P. Zhang, “A convex relax-
ation barrier to tight robustness verification of neural networks,” in Neural
Information Processing Systems, 2019.

[239] E. Todorov, T. Erez, and Y. Tassa, “Mujoco: A physics engine for model-
based control,” in 2012 IEEE/RSJ International Conference on Intelligent Robots
and Systems, IEEE, 2012, pp. 5026–5033.

[240] I. Parberry, Introduction to Game Physics with Box2D. CRC Press, 2017.

[241] W. Gibaut et al., “Neurosymbolic AI and its taxonomy: A survey,” CoRR,
vol. abs/2305.08876, 2023. arXiv: 2305.08876.

[242] P. A. Lopez et al., “Microscopic traffic simulation using sumo,” in 2018 21st
international conference on intelligent transportation systems (ITSC), IEEE, 2018,
pp. 2575–2582.

[243] J. A. Damico and D. A. Wolfe, “Extended tables of the exact distribution of
a rank statistic for all treatments multiple comparisons in one-way layout
designs,” Communications in Statistics-Theory and Methods, vol. 16, no. 8,
pp. 2343–2360, 1987.

[244] P. Stone, G. Kaminka, S. Kraus, and J. Rosenschein, “Ad hoc autonomous
agent teams: Collaboration without pre-coordination,” in AAAI, 2010.

[245] R. Mirsky, W. Macke, A. Wang, H. Yedidsion, and P. Stone, “A penny for
your thoughts: The value of communication in ad hoc teamwork,” in IJCAI,
2020.

[246] B. A. A. White, A. Eklund, T. Mcneal, A. Hochhalter, and A. Arroliga,
“Facilitators and barriers to ad hoc team performance,” Baylor University
Medical Center Proceedings, vol. 31, pp. 380–384, 2018.

[247] J. Shah, “Human-robot teaming using shared mental models,” 2012.

[248] S. Nikolaidis, P. A. Lasota, R. Ramakrishnan, and J. Shah, “Improved hu-
man–robot team performance through cross-training, an approach inspired

241

https://arxiv.org/abs/2305.08876

by human team training practices,” The International Journal of Robotics Re-
search, vol. 34, pp. 1711–1730, 2015.

[249] J. Boyd, “The essence of winning and losing,” 2012.

[250] N. Sebanz, H. Bekkering, and G. Knoblich, “Joint action: Bodies and minds
moving together,” Trends in Cognitive Sciences, vol. 10, pp. 70–76, Mar. 2006.

[251] D. Gunning, “Darpa’s explainable artificial intelligence (xai) program,” Pro-
ceedings of the 24th International Conference on Intelligent User Interfaces, 2019.

[252] S. Mohammed, K. Hamilton, M. Sánchez-Manzanares, and R. Rico, “Team
cognition,” in The Wiley Blackwell Handbook of the Psychology of Team Working
and Collaborative Processes. John Wiley & Sons, Ltd, 2017, ch. 16, pp. 369–392,
isbn: 9781118909997. eprint: https: / /onlinelibrary.wiley.com /doi /pdf /10.
1002/9781118909997.ch16.

[253] W. Samek, G. Montavon, A. Vedaldi, L. K. Hansen, and K. Müller, “Explain-
able ai: Interpreting, explaining and visualizing deep learning,” Explainable
AI: Interpreting, Explaining and Visualizing Deep Learning, 2019.

[254] Y. Wang, M. Huang, X. Zhu, and L. Zhao, “Attention-based lstm for aspect-
level sentiment classification,” in EMNLP, 2016.

[255] M. Endsley, “Situation awareness misconceptions and misunderstandings,”
Journal of Cognitive Engineering and Decision Making, vol. 9, pp. 32–4, 2015.

[256] M. Endsley, “Situation awareness global assessment technique (sagat),” in
Proceedings of the IEEE 1988 National Aerospace and Electronics Conference,
1988, 789–795 vol.3.

[257] C. Amato, G. Chowdhary, A. Geramifard, N. K. Ure, and M. J. Kochen-
derfer, “Decentralized control of partially observable markov decision pro-
cesses using belief space macro-actions,” 2015 IEEE International Conference
on Robotics and Automation (ICRA), pp. 5962–5969, 2015.

[258] A. Silva, M. Gombolay, T. W. Killian, I. D. J. Jimenez, and S.-H. Son, “Opti-
mization methods for interpretable differentiable decision trees applied to
reinforcement learning,” in AISTATS, 2020.

[259] S. Seo, L. R. Kennedy-Metz, M. Zenati, J. Shah, R. Dias, and V. Unhelkar,
“Towards an ai coach to infer team mental model alignment in healthcare,”
ArXiv, vol. abs/2102.08507, 2021.

242

https://onlinelibrary.wiley.com/doi/pdf/10.1002/9781118909997.ch16
https://onlinelibrary.wiley.com/doi/pdf/10.1002/9781118909997.ch16

[260] L. Sanneman and J. Shah, “A situation awareness-based framework for de-
sign and evaluation of explainable ai,” Explainable, Transparent Autonomous
Agents and Multi-Agent Systems, vol. 12175, pp. 94–110, 2020.

[261] D. Sirkin, N. Martelaro, M. Johns, and W. Ju, “Toward measurement of
situation awareness in autonomous vehicles,” Proceedings of the 2017 CHI
Conference on Human Factors in Computing Systems, 2017.

[262] D. McFarlane and K. Latorella, “The scope and importance of human inter-
ruption in human-computer interaction design,” Human–Computer Interac-
tion, vol. 17, pp. 1–61, 2002.

[263] G. Mark, D. Gudith, and U. Klocke, “The cost of interrupted work: More
speed and stress,” in CHI, 2008.

[264] J. Westbrook, M. Raban, S. Walter, and H. E. Douglas, “Task errors by emer-
gency physicians are associated with interruptions, multitasking, fatigue
and working memory capacity: A prospective, direct observation study,”
BMJ Quality & Safety, vol. 27, pp. 655–663, 2018.

[265] A. Goldman, “Theory of mind,” 2012.

[266] M. S. Chmielewski and T. A. Morgan, “Five-factor model of personality,”
in Encyclopedia of Behavioral Medicine. New York, NY: Springer New York,
2013, pp. 803–804, isbn: 978-1-4419-1005-9.

[267] G. Hoffman, “Evaluating fluency in human–robot collaboration,” IEEE Trans-
actions on Human-Machine Systems, vol. 49, pp. 209–218, 2019.

[268] A. Aron, E. Aron, M. Tudor, and G. Nelson, “Close relationships as including
other in the self,” Journal of Personality and Social Psychology, vol. 60, pp. 241–
253, 1991.

[269] C. Bartneck, D. Kulic, E. Croft, and S. Zoghbi, “Godspeed questionnaire
series,” 2019.

[270] S. Hart and L. Staveland, “Development of nasa-tlx (task load index): Re-
sults of empirical and theoretical research,” Advances in psychology, vol. 52,
pp. 139–183, 1988.

[271] C. Liu and M. Tomizuka, “Algorithmic safety measures for intelligent indus-
trial co-robots,” 2016 IEEE International Conference on Robotics and Automation
(ICRA), pp. 3095–3102, 2016.

243

[272] M. J. Mataric, “Robots for the people, by the people: Personalizing human-
machine interaction,” Sci. Robotics, vol. 3, no. 21, 2018.

[273] J. L. Wright, S. G. Lakhmani, and J. Y. C. Chen, “Bidirectional communica-
tions in human-agent teaming: The effects of communication style and feed-
back,” International Journal of Human–Computer Interaction, vol. 38, pp. 1972–
1985, 2022.

[274] A. Butchibabu, C. Sparano-Huiban, L. Sonenberg, and J. Shah, “Implicit
coordination strategies for effective team communication,” Human factors,
vol. 58, no. 4, pp. 595–610, 2016.

[275] V. Mnih et al., “Playing atari with deep reinforcement learning,” CoRR,
vol. abs/1312.5602, 2013. arXiv: 1312.5602.

[276] K. Guerin, C. S. Lea, C. Paxton, and G. Hager, “A framework for end-user
instruction of a robot assistant for manufacturing,” 2015 IEEE International
Conference on Robotics and Automation (ICRA), pp. 6167–6174, 2015.

[277] C. Paxton, A. T. Hundt, F. Jonathan, K. Guerin, and G. Hager, “Costar:
Instructing collaborative robots with behavior trees and vision,” 2017 IEEE
International Conference on Robotics and Automation (ICRA), pp. 564–571, 2017.

[278] C. Paxton, F. Jonathan, A. T. Hundt, B. Mutlu, and G. Hager, “Evaluating
methods for end-user creation of robot task plans,” 2018 IEEE/RSJ Inter-
national Conference on Intelligent Robots and Systems (IROS), pp. 6086–6092,
2018.

[279] D. Fogli, L. Gargioni, G. Guida, and F. Tampalini, “A hybrid approach to
user-oriented programming of collaborative robots,” Robotics Comput. Integr.
Manuf., vol. 73, p. 102 234, 2022.

[280] B. Beyret, A. Shafti, and A. Faisal, “Dot-to-dot: Explainable hierarchical re-
inforcement learning for robotic manipulation,” 2019 IEEE/RSJ International
Conference on Intelligent Robots and Systems (IROS), pp. 5014–5019, 2019.

[281] B. Sarkar, A. Talati, A. Shih, and S. Dorsa, “Pantheonrl: A marl library for
dynamic training interactions,” in Proceedings of the 36th AAAI Conference on
Artificial Intelligence (Demo Track), 2022.

[282] J. Frankle and M. Carbin, “The lottery ticket hypothesis: Finding sparse,
trainable neural networks,” arXiv: Learning, 2018.

244

https://arxiv.org/abs/1312.5602

[283] T. Liang, J. Glossner, L. Wang, S. Shi, and X. Zhang, “Pruning and quan-
tization for deep neural network acceleration: A survey,” Neurocomputing,
vol. 461, pp. 370–403, 2021.

[284] S. Karten, M. Tucker, H. Li, S. Kailas, M. Lewis, and K. P. Sycara, “Inter-
pretable learned emergent communication for human-agent teams,” IEEE
Transactions on Cognitive and Developmental Systems, 2022.

[285] J. Wainer, D. J. Feil-Seifer, D. A. Shell, and M. J. Mataric, “Embodiment and
human-robot interaction: A task-based perspective,” in RO-MAN 2007 - The
16th IEEE International Symposium on Robot and Human Interactive Communi-
cation, 2007, pp. 872–877.

245

	Title Page
	Acknowledgments
	Table of Contents
	List of Tables
	List of Figures
	Summary
	1 | Introduction
	Thesis Statement
	The Importance of Communication in Multi-Agent Systems
	Accounting for Heterogeneity in Multi-Agent Systems
	Inferring Behavioral Policies of Heterogeneous Human Decision-Makers
	Generating Interpretable Robot Policies
	The Utility of Explainable AI in Human-Robot Collaboration
	Reducing Rigidity in Human-Robot Collaboration

	2 | Related Work
	Multi-Agent Coordination
	Inferring a Model of Human Behavior
	Interpretable Policy Representations

	3 | Preliminaries
	Markov Decision Process
	Partially Observable Markov Game
	Reinforcement Learning: Policy Gradients
	Actor-Critic (AC) Methods
	Graph Neural Networks
	Differentiable Decision Trees (DDTs)

	4 | The Importance of Communication in Multi-Agent Coordination
	Introduction
	Method
	Evaluation Environments
	Results and Discussion
	Physical Robot Demonstration
	Conclusion

	5 | Multi-Agent Coordination for Heterogeneous Agents
	Introduction
	Problem Formulation
	Method
	Training and Execution
	Empirical Evaluation
	Conclusion

	6 | Inferring Decision-Making Behavior Across Heterogeneous Users
	Introduction
	Personalized and Interpretable Neural Trees
	Evaluation Environments
	Results and Discussion
	Hyperparameters and Architecture Details
	Interpretable Models
	Interpretability User Study
	Sensitivity Analysis of PNTs
	Conclusion
	Broader Impact

	7 | Generating Cobot Policies via Interpretable Reinforcement Learning
	Introduction
	Weaknesses of Prior Work with Differentiable Decision Trees
	Method
	Universal Function Approximation
	Model Robustness Verification
	Environments
	Results
	Qualitative Exposition of ICCT Interpretability
	Ablation: Interpretability-Performance Tradeoff
	Ablation: Differentiable Argument Max and Gumbel-Softmax
	Physical Robot Demonstration
	Case Studies on Complex Driving Domain Grounded in Realistic Lane Geometries
	Interpretability User Study
	Conclusion
	Limitations and Future Work:

	8 | The Utility of Explainable AI in Ad Hoc Human-Machine Teaming
	Introduction
	Human-Machine Teaming Domain
	Study 1: Relationship Between Explanations and Situational Awareness
	Study 2: Situational Awareness in Ad Hoc Human-Machine Teaming
	Discussion
	Conclusion

	9 | Team Development in Human-Machine Teaming
	Introduction
	Preliminaries
	Teaming with Real Humans
	Methodology
	Human-Subjects Study
	Call-to-Action
	Conclusion

	10 | Limitations and Future Work
	Limitations
	Future Work

	11 | Conclusion
	The Importance of Communication in Multi-Agent Systems
	Modeling Heterogeneity in Multi-Agent Systems
	Inferring Personalized Behavioral Policies of Heterogeneous Human Decision-Makers
	Generating Interpretable Robot Policies
	The Utility of Explainable AI in Human-Robot Collaboration
	Team Development in Human-Robot Collaboration

	References

