
LEARNING DYNAMIC PRIORITY SCHEDULING POLICIES WITH GRAPH
ATTENTION NETWORKS

A Dissertation
Presented to

The Academic Faculty

By

Zheyuan Wang

In Partial Fulfillment
of the Requirements for the Degree

Doctor of Philosophy in the
School of Electrical and Computer Engineering

Georgia Institute of Technology

December 2022

© Zheyuan Wang 2022



LEARNING DYNAMIC PRIORITY SCHEDULING POLICIES WITH GRAPH
ATTENTION NETWORKS

Thesis committee:

Dr. Matthew Gombolay, Advisor
School of Interactive Computing
Georgia Institute of Technology

Dr. Matthieu Bloch, Co-Advisor
School of Electrical and Computer
Engineering
Georgia Institute of Technology

Dr. Harish Ravichandar
School of Interactive Computing
Georgia Institute of Technology

Dr. Sonia Chernova
School of Interactive Computing
Georgia Institute of Technology

Dr. Magnus Egerstedt
Department of Electrical Engineering and
Computer Science
University of California, Irvine

Dr. Elias Khalil
Department of Mechanical and Industrial
Engineering
University of Toronto

Date approved: December 7, 2022



ACKNOWLEDGMENTS

First, I would like to express my sincere gratitude and appreciation to my wonderful

advisor, Dr. Matthew Gombolay. My research would not have been possible without his

valuable advice, insightful guidance, and strong support. I really have learned a lot from

him about not only research but also enthusiasm, dedication, and professionalism in his

work. Besides, I would like to greatly thank my co-advisor, Dr. Matthieu Bloch, for his

never-ending help, patience, understanding, and encouragement through hard times. I feel

extremely lucky to have worked with them during my Ph.D. studies. Their advisorship had

a significant and positive impact on my future career and even life.

I would like to extend my appreciation to the committee members, Dr. Sonica Cher-

nova, Dr. Magnus Egerstedt, Dr. Harish Ravichandar and Dr. Elias Khalil, for their time

and consideration in reviewing my Ph.D. thesis, and for being generous in sharing their

expertise and advice. Their valuable comments and feedback have been really helpful to

improve my research.

I am grateful to be a member of the Klaus 1306 squad with Rohan Paleja, Esmaeil Seraj,

and Letian Chen, for the stimulating discussions, for the late nights we worked together,

and for all the fun we have had at Georgia Tech. Indeed, they were sincere friends and

great collaborators who fully motivated me. My sincere thanks also go to my colleagues in

Georgia Teach and the CORE robotics lab members, especially Batuhan Altundas, Joshua

Bishop, Manisha Natarajan, and Dr. Nakul Gopalan. Sharing thoughts with them is always

fun and refreshing, which offers many inspirations for my own research.

Last but not least, I would like to especially thank my girlfriend, Xiaoyu Liu, and my

parents. Their endless love and support made me complete this long trip. I am grateful to

them for pulling me through difficult times with their unconditional love. I would never

have completed my Ph.D. thesis without their support, encouragement, and love.

iii



TABLE OF CONTENTS

Acknowledgments . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . iii

List of Tables . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . ix

List of Figures . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . x

Summary . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . xiv

Chapter 1: Introduction . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 1

1.1 Scheduling Robots with Graph Attention Networks . . . . . . . . . . . . . 6

1.2 Heterogeneous Graph Attention Networks for Scalable Multi-Robot Schedul-
ing . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 9

1.3 Recurrent Schedule Propagation for Coordinating Human-Robot Teams . . 10

1.4 Failure-Predictive Maintenance Scheduling using Heterogeneous Graph-
Based Policy Optimization . . . . . . . . . . . . . . . . . . . . . . . . . . 13

Chapter 2: Related Work . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 15

2.1 Multi-Agent Task Scheduling . . . . . . . . . . . . . . . . . . . . . . . . . 15

2.1.1 Multi-Robot Task Allocation and Scheduling . . . . . . . . . . . . 15

2.1.2 Scheduling Mixed Human-Robot Teams . . . . . . . . . . . . . . . 17

2.1.3 Aircraft Maintenance Scheduling . . . . . . . . . . . . . . . . . . . 19

2.2 Uncertainty in Stochastic Scheduling . . . . . . . . . . . . . . . . . . . . . 21

iv



2.3 Policy Learning for Combinatorial Optimization . . . . . . . . . . . . . . . 23

2.4 Graph Neural Networks . . . . . . . . . . . . . . . . . . . . . . . . . . . . 24

2.5 Recurrent Neural Networks for Sequence Prediction . . . . . . . . . . . . . 25

2.6 Summary . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 25

Chapter 3: Scheduling Robots with Graph Attention Networks . . . . . . . . . . 27

3.1 Introduction . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 27

3.2 Problem Statement . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 29

3.3 Representation: Graph Attention Networks . . . . . . . . . . . . . . . . . . 31

3.4 Learning Scheduling Policies from Expert Demonstrations . . . . . . . . . 34

3.4.1 MDP Formulation . . . . . . . . . . . . . . . . . . . . . . . . . . . 34

3.4.2 Imitation Learning . . . . . . . . . . . . . . . . . . . . . . . . . . 36

3.5 Experimental Results . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 38

3.5.1 Proportion of Problems Solved . . . . . . . . . . . . . . . . . . . . 39

3.5.2 Normalized Makespan . . . . . . . . . . . . . . . . . . . . . . . . 41

3.5.3 Ablation Study . . . . . . . . . . . . . . . . . . . . . . . . . . . . 41

3.6 Robot Demonstration . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 42

3.7 RoboGNN Discussion . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 42

3.8 Summary . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 44

Chapter 4: Heterogeneous Graph Attention Networks for Scalable Multi-Robot
Scheduling . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 45

4.1 Introduction . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 45

4.2 Problem Overview . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 47

v



4.2.1 Problem Statement . . . . . . . . . . . . . . . . . . . . . . . . . . 47

4.2.2 Schedule Generation . . . . . . . . . . . . . . . . . . . . . . . . . 48

4.3 Heterogeneous Graph Attention Network . . . . . . . . . . . . . . . . . . . 50

4.3.1 Heterogeneous Graph Representation . . . . . . . . . . . . . . . . 51

4.3.2 Heterogeneous Graph Attention Layer . . . . . . . . . . . . . . . . 58

4.4 Experimental Results on Homogeneous Robots . . . . . . . . . . . . . . . 63

4.4.1 Dataset . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 63

4.4.2 Benchmark . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 64

4.4.3 Evaluation Results . . . . . . . . . . . . . . . . . . . . . . . . . . 65

4.4.4 Application-Specific Objective Function . . . . . . . . . . . . . . . 69

4.5 Experimental Results on Heterogeneous Task Completion . . . . . . . . . . 70

4.5.1 Dataset and benchmark . . . . . . . . . . . . . . . . . . . . . . . . 70

4.5.2 Evaluation Results . . . . . . . . . . . . . . . . . . . . . . . . . . 70

4.6 Robot Demonstration . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 75

4.7 ScheduleNet Discussion . . . . . . . . . . . . . . . . . . . . . . . . . . . . 75

4.8 Summary . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 76

Chapter 5: Recurrent Schedule Propagation for Coordinating Stochastic Human-
Robot Teams . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 78

5.1 Introduction . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 78

5.2 Human-Robot Team Scheduling Problem . . . . . . . . . . . . . . . . . . 81

5.2.1 Problem Statement . . . . . . . . . . . . . . . . . . . . . . . . . . 81

5.2.2 Multi-Round Scheduling Environment . . . . . . . . . . . . . . . . 82

5.2.3 Agent Modeling . . . . . . . . . . . . . . . . . . . . . . . . . . . . 83

vi



5.2.4 Learning Curve Estimator . . . . . . . . . . . . . . . . . . . . . . 84

5.2.5 Reward Design . . . . . . . . . . . . . . . . . . . . . . . . . . . . 85

5.3 HybridNet Scheduling Policy . . . . . . . . . . . . . . . . . . . . . . . . . 86

5.4 Heterogeneous Graph Encoder . . . . . . . . . . . . . . . . . . . . . . . . 86

5.4.1 HetGAT Layer for Stochastic Human-Robot Teams . . . . . . . . . 87

5.4.2 Encoder Network . . . . . . . . . . . . . . . . . . . . . . . . . . . 88

5.5 Recurrent Schedule Propagator . . . . . . . . . . . . . . . . . . . . . . . . 88

5.5.1 Agent Selector . . . . . . . . . . . . . . . . . . . . . . . . . . . . 92

5.5.2 Task Selector . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 92

5.5.3 Ensemble-Based Schedule Boosting . . . . . . . . . . . . . . . . . 93

5.6 Learning Stochastic Scheduling Polices . . . . . . . . . . . . . . . . . . . 95

5.7 Experimental Results . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 97

5.7.1 Data Generation . . . . . . . . . . . . . . . . . . . . . . . . . . . . 97

5.7.2 Benchmark . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 99

5.7.3 Model Details . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 100

5.7.4 Evaluation with Deterministic Task Proficiency . . . . . . . . . . . 100

5.7.5 Evaluation with Stochastic Task Proficiency . . . . . . . . . . . . . 104

5.8 HybridNet Discussion . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 106

5.9 Summary . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 107

Chapter 6: Failure-Predictive Maintenance Scheduling using Heterogeneous Graph-
Based Policy Optimization . . . . . . . . . . . . . . . . . . . . . . . . 108

6.1 Introduction . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 108

6.2 Aircraft Maintenance Environment . . . . . . . . . . . . . . . . . . . . . . 110

vii



6.2.1 Aircraft Failure Model . . . . . . . . . . . . . . . . . . . . . . . . 111

6.2.2 Maintenance Task and Flying Operation . . . . . . . . . . . . . . . 112

6.2.3 Scheduling Objectives . . . . . . . . . . . . . . . . . . . . . . . . 113

6.2.4 POMDP Formulation . . . . . . . . . . . . . . . . . . . . . . . . . 113

6.3 Stochastic Scheduling with Graphs . . . . . . . . . . . . . . . . . . . . . . 114

6.3.1 Scheduling Policy Network . . . . . . . . . . . . . . . . . . . . . . 115

6.3.2 Heterogeneous Graph Representation . . . . . . . . . . . . . . . . 116

6.3.3 Computation Flow of Graph Layers . . . . . . . . . . . . . . . . . 118

6.4 Stochastic Policy Learning Methods . . . . . . . . . . . . . . . . . . . . . 121

6.5 Experimental Results . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 122

6.5.1 Baseline Methods . . . . . . . . . . . . . . . . . . . . . . . . . . . 122

6.5.2 Evaluation Settings . . . . . . . . . . . . . . . . . . . . . . . . . . 126

6.5.3 Evaluation Results . . . . . . . . . . . . . . . . . . . . . . . . . . 130

6.5.4 Ablation Studies . . . . . . . . . . . . . . . . . . . . . . . . . . . 131

6.6 Summary . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 132

Chapter 7: Conclusion and Future work . . . . . . . . . . . . . . . . . . . . . . 133

7.1 Conclusion . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 133

7.2 Limitations and Future Work . . . . . . . . . . . . . . . . . . . . . . . . . 135

References . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 138

viii



LIST OF TABLES

5.1 Evaluation Results: Adjusted Makespan and Feasibility with Deterministic
Human Task Proficiency for the Final (10th) Round . . . . . . . . . . . . . 101

5.2 Evaluation Results: Adjusted Makespan and Feasibility with Stochastic
Human Task Proficiency for the Final (10th) Round . . . . . . . . . . . . . 102

5.3 Evaluation Results: Runtime (s) Performance on Single Problem . . . . . . 103

6.1 Hyper-parameters of Plane Failure Models . . . . . . . . . . . . . . . . . . 112

6.2 Evaluation results on O1: profit. . . . . . . . . . . . . . . . . . . . . . . . 127

6.3 Evaluation results on O2: total revenue. Note that for each 1% of improve-
ment for O2, we would get a $0.6578 Billion revenue increase. e.g., for
Large-O2, HetGPO-Full would achieve a $9.27 Billion increase in revenue. 128

6.4 Evaluation results on O3: fleet availability. . . . . . . . . . . . . . . . . . . 129

ix



LIST OF FIGURES

1.1 Diverse application domains of resource optimization problems that require
coordinating a finite number of resources to accomplish a set of tasks as
efficiently as possible: (a) Industrial manufacturing; (b) Patient appoint-
ment scheduling in healthcare; (c) Logistics in e-commerce; (d) Airline and
crew scheduling. (Images from web. Courtesy: KUKA Robotics, Peerbits,
Hartsfield - Jackson Atlanta International Airport) . . . . . . . . . . . . . . 2

1.2 The figure depicts the aim of my thesis: building a unified framework of
learning scalable scheduling policies for effectively solving resource opti-
mization problems. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 5

3.1 The figure depicts the proposed framework, which incorporates graph at-
tention networks and imitation learning for multi-robot scheduling. The
RoboGNN scheduler uses a graph attention network, with robot-specific
input node features constructed from partial schedules, to extract high level
robot embeddings, and a separate Q network to evaluate discounted future
rewards of state-action pairs for greedy schedule generation. The sched-
uler is trained with transitions generated from expert schedules using an
imitation loss. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 29

3.2 (a) An STN with start and finish nodes for three tasks, as well as placeholder
start and finish nodes, s0 and f0. Task 1 has a deadline constraint and
there is a wait constraint between task 3 and task 2. (b) The left-hand
side depicts the forward pass of the adapted graph attention layer, which
consists of two phases: 1) Message passing: each node receives features of
its neighbor nodes and the corresponding edge weights; 2) Feature update:
neighbor features are aggregated using attention coefficients; the right-hand
side illustrates how attention coefficients are calculated. . . . . . . . . . . . 32

3.3 Proportion of problems solved for multi-robot scheduling: (a) small prob-
lems (16–20 tasks); (b) medium problems (40–50 tasks); (c) large problems
(80–100 tasks). Results are grouped in number of robots. Mean and stan-
dard deviation of computation times (in parenthesis) for each method is
shown above each group’s bar. . . . . . . . . . . . . . . . . . . . . . . . . 40

x



3.4 Normalized makespan score for multi-robot scheduling: (a) small prob-
lems (16–20 tasks); (b) medium problems (40–50 tasks); (c) large prob-
lems (80–100 tasks). Results are grouped in number of robots. A smaller
(normalized) makespan is better. . . . . . . . . . . . . . . . . . . . . . . . 41

3.5 This figure depicts our demonstration of a 5-robot team completing tasks
for airplane fuselage assembly. . . . . . . . . . . . . . . . . . . . . . . . . 43

4.1 Overview of the proposed ScheduleNet, which operates on the heteroge-
neous graph constructed by augmenting the STN of the problem, and pre-
dicts Q-values for scheduling. Courtesy: KUKA Robotics . . . . . . . . . . 46

4.2 An example STN consisting of 3 tasks: (a) the original STN with place-
holder start and finish nodes, s0 and f0; (b) The shortest distances between
all pairs of source (src) and destination (dst) nodes found by an all pairs
shortest path (APSP) algorithm, with blue denoting the nodes/edges that
are maintained in the simplified graph and orange denoting nodes/edges
that are pruned; (c) the simplified minimum distance graph with fi removed
for each task, with the duration of each task encoded in the input node features 53

4.3 Metagraph of the heterogeneous graph built from the STN by adding robot,
location, state, and value nodes: (a) team of homogeneous robots; (b) team
of heterogeneous robots . . . . . . . . . . . . . . . . . . . . . . . . . . . . 56

4.4 Evaluation results on problems of two-robot teams of homogeneous robots:
(a) Small problems; (b) Medium problems; (c) Large problems . . . . . . . 65

4.5 Evaluation results on problems of five-robot teams of homogeneous robots:
(a) Small problems; (b) Medium problems; (c) Large problems. For 40%
of the large problems, ScheduleNet’s solutions outperform Gurobi within
cutoff time as denoted by data points left of the 1.0 optimality ratio . . . . . 66

4.6 Evaluation results on problems of ten-robot teams of homogeneous robots:
(a) Small problems; (b) Medium problems; (c) Large problems; (d) Ex-
Large problems. In the Large and Ex-Large problems cases, ScheduleNet
is able to find solutions that outperform Gurobi as denoted by data points
left of a 1.0 optimality ratio . . . . . . . . . . . . . . . . . . . . . . . . . . 67

4.7 Running time statistics on different problems of homogeneous robots: (a)
Two-robot teams; (b) Five-robot teams; (c) Ten-robot teams. Error bars
denote the 25th and 75th percentile. Results for EDF, Tercio, and HomGNN
are not shown in cases when no solutions are found within the allowed
cutoff time . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 67

xi



4.8 Evaluation results of minimizing the weighted sum of completion times on
five-robot teams of homogeneous robots: (a) Small problems; (b) Medium
problems . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 69

4.9 Evaluation results on problems of two-robot teams of heterogeneous robots:
(a) Small problems; (b) Medium problems; (c) Large problems . . . . . . . 71

4.10 Evaluation results on problems of five-robot teams of heterogeneous robots:
(a) Small problems; (b) Medium problems; (c) Large problems . . . . . . . 71

4.11 Evaluation results on problems of ten-robot teams of heterogeneous robots:
(a) Small problems; (b) Medium problems; (c) Large problems; (d) Ex-
Large problems . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 72

4.12 Running time statistics on different problems of heterogeneous robots: (a)
Two-robot teams; (b) Five-robot teams; (c) Ten-robot teams. Error bars
denote the 25th and 75th percentile . . . . . . . . . . . . . . . . . . . . . . 73

4.13 Demonstration of a 5-robot team completing tasks for airplane fuselage
assembly. The ScheduleNet outputs for each step are plotted at the bot-
tom, with the selected task assignment highlighted in red. (a) homogeneous
robots with 1D task locations; (b) heterogeneous robots with 2D task locations 74

5.1 Overview of Multi-Round Scheduling Environment with HybridNet Sched-
uler. Left: MuRSE is developed to simulate a human-robot scheduling
problem over multiple iterative rounds of execution, accounting for changes
in human task performance. Right: HybridNet consists of a heterogeneous
graph-based encoder to extract high-level embeddings of the problem and
a recurrent schedule propagator for fast schedule generation. . . . . . . . . 80

5.2 Metagraph of the heterogeneous graph built from the STN by adding agent
and state summary nodes. . . . . . . . . . . . . . . . . . . . . . . . . . . . 89

5.3 LSTM based Schedule Propagator Model taking initial input from the En-
coder or the picked Task-Agent Assignment for Agent and State Encoding. . 89

5.4 Agent Selector Model using Softmax based Sampling. . . . . . . . . . . . . 92

5.5 Task Selector Model using Softmax Sampling after filtering out the Previ-
ously Assigned Tasks. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 93

xii



5.6 Feasibility percentage results with stochastic human model over 10 rounds.
The shaded regions represents 1 standard deviation of the mean values cal-
culated over 10 repetitions of the evaluation. (a) Small-scale; (b) Medium-
scale; (c) Large-scale. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 105

5.7 Total makespan results with stochastic human model over 10 rounds. (a)
Small-scale; (b) Medium-scale; (c) Large-scale. . . . . . . . . . . . . . . . 105

6.1 The figure depicts AirME, a virtual predictive-maintenance scheduling en-
vironment (Left), and our proposed scheduling policy network (Right).
Left: AirME consisits of a team of maintenance crews and a heteroge-
neous fleet of aircraft and operates under hour-based simulation. Right:
The scheduling policy network uses several heterogeneous graph layers
(edges omitted for simplicity) stacked in series to extract high level em-
beddings from the graph built with environment observations. Different
schemes are proposed and tested for generating dynamic scheduling deci-
sions. We train our policy network via heterogeneous graph-based policy
optimization, which we call HetGPO. HetGPO receives a reward signal
from AirME and updates via gradient descent. . . . . . . . . . . . . . . . . 109

6.2 Metagraph of the heterogeneous graph built given an environment state in
AirME. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 117

6.3 HetGPO-Single training on O1 with a step-based baseline vs. state-based
value function. Numbers in the legend denote the random seeds used. . . . 131

7.1 Metagraph of the heterogeneous graph built for patient admission schedul-
ing problems. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 137

xiii



SUMMARY

Resource optimization plays an important role in many real-world scenarios, including

health care, manufacturing and services industries, and more. In those resource-constrained

environments, effective sequencing and scheduling of workers and jobs has become a ne-

cessity for success. Activities must be scheduled to meet various temporal constraints

while using the resources available in an efficient manner. Traditional methods for solv-

ing scheduling problems are based on dynamic programming and integer programming

formulations of the problems, which can be approached with either exact methods that

are computationally expensive and hard to scale, or hand-crafted heuristics that can give

high-quality solutions but require a combined, herculean effort from computer scientists,

operations researchers, and industrial engineers to develop.

The aim of this thesis is to develop novel graph attention network-based models to auto-

matically learn scheduling policies for effectively solving resource optimization problems,

covering both deterministic and stochastic environments. The policy learning methods uti-

lize both imitation learning, when expert demonstrations are accessible at low cost, and

reinforcement learning, when otherwise reward engineering is feasible. By parameterizing

the learner with graph attention networks, the framework is computationally efficient and

results in scalable resource optimization schedulers that adapt to various problem struc-

tures.

This thesis addresses the problem of multi-robot task allocation (MRTA) under tem-

porospatial constraints. Initially, robots with deterministic and homogeneous task perfor-

mance are considered with the development of the RoboGNN scheduler. Then, I develop

ScheduleNet, a novel heterogeneous graph attention network model, to efficiently reason

about coordinating teams of heterogeneous robots. Next, I address problems under the

more challenging stochastic setting in two parts. Part 1) Scheduling with stochastic and

dynamic task completion times. The MRTA problem is extended by introducing human co-

xiv



workers with dynamic learning curves and stochastic task execution. HybridNet, a hybrid

network structure, has been developed that utilizes a heterogeneous graph-based encoder

and a recurrent schedule propagator, to carry out fast schedule generation in multi-round

settings. Part 2) Scheduling with stochastic and dynamic task arrival and completion times.

With an application in failure-predictive plane maintenance, I develop a heterogeneous

graph-based policy optimization (HetGPO) approach to enable learning robust scheduling

policies in highly stochastic environments.

My research fills the current gap between representation learning and policy learning

for solving resource optimization problems by building a unified framework. I further

advances the idea of learning to schedule by refining and applying it in more complex and

challenging scenarios. Through extensive experiments, the proposed framework has been

shown to outperform prior state-of-the-art algorithms in different applications. My research

contributes several key innovations regarding designing graph-based learning algorithms in

operations research.

xv



CHAPTER 1

INTRODUCTION

Resource optimization plays an important role in many real-world scenarios, including

health care, manufacturing and services industries, and more [1], as shown in Figure 1.1. In

those resource-constrained environments, effective sequencing and scheduling of workers

and jobs has become a necessity for success. Activities must be scheduled to meet various

temporal constraints while using the resources available in an efficient manner.

One popular application of resource optimization techniques lies in task planning of

multi-robot systems. Given the recent developments in robotic technologies and the in-

creasing availability of collaborative robots (cobots), multi-robot systems have been adopted

in various manufacturing and industrial environments [2]. Research in related areas (e.g.,

multi-robot communication [3], team formation and control [4], path planning [5, 6], task

scheduling and routing [7]) has also received significant attention [8]. Here, we focus on

the problem of multi-agent task allocation and scheduling [9] with both temporal and spa-

tial constraints, which captures the key challenges of final assembly manufacturing with

robot teams.

To achieve an optimal schedule for a user-specified objective, the robots must be al-

located with the appropriate tasks and process these tasks with optimal order, while sat-

isfying temporal constraints such as task deadlines and wait constraints. The addition of

spatial constraints (i.e., a specific work area can only be occupied by one robot at a time

and robots must maintain a minimum distance from other agents while performing a task)

makes scheduling even more difficult because one must reason through inter-coupled, dis-

junctive sequencing constraints that impact shared resource utilization.

One of the rising trends in multi-robot systems is the inclusion of human workers, which

typically have latent, dynamic, and task-specific proficiencies, alongside robots [10]. Ef-

1



(a) (b)

(c) (d)

Figure 1.1: Diverse application domains of resource optimization problems that require
coordinating a finite number of resources to accomplish a set of tasks as efficiently as
possible: (a) Industrial manufacturing; (b) Patient appointment scheduling in healthcare;
(c) Logistics in e-commerce; (d) Airline and crew scheduling. (Images from web. Courtesy:
KUKA Robotics, Peerbits, Hartsfield - Jackson Atlanta International Airport)

fective collaboration in human-robot teams must consider the ability of humans to learn

and improve in task performance over time [11]. However, it is non-trivial to infer hu-

man strengths and weaknesses while ensuring that the team satisfies requisite scheduling

constraints, due to the variability in task execution behavior across different individuals,

as well as their future task performance affected by human’s learning effects with practice

[12]. Moreover, a lack of consideration for human preferences and perceived equality may,

in the long run, put efficient behavior and fluent coordination at a contradiction [13]. There-

fore, enabling a robot to infer human strengths and weaknesses while ensuring that the team

satisfies requisite scheduling constraints is a challenging problem worth investigating.

Complicating the allocation and sequencing of workers and tasks in real-world envi-

ronments are the numerous sources of uncertainty or stochasticity, such as machine break-

downs, unexpected releases of high priority jobs, uncertainty in processing times, etc [14].

2



Besides the scheduling problem with stochastic human workers, another such example is

aircraft maintenance scheduling in which the inter-arrival times of part failures and the re-

sulting service times are latent random variables [15]. This stochasticity makes the schedul-

ing problem more difficult, as the scheduler needs to reason about whether to preemptively

service each aircraft. Optimizing aircraft maintenance has drawn keen interest, due to

the significant contribution of maintenance costs to overall operating expenses and aircraft

availability [16]. One of the most promising strategies of reducing cost is by scheduling

predictive maintenance, which entails deciding whether and when to preemptively service

one or more of an aircraft’s subsystems before the subsystem fails [17]. Research suggests

that predictive maintenance could reduce unscheduled work up to 33% [18], which would

result in an annual savings of $21.7 billion globally1.

Traditional methods for solving scheduling in resource optimization are based on dy-

namic programming and integer programming formulations of the problems [21], which

can be approached with either exact methods or hand-crafted heuristics [22, 23]. Exact

methods are computationally expensive and usually fail to scale to large-scale problems,

which is exacerbated by the need for near real-time solutions to prevent factory slow-

downs. On the other hand, application-specific heuristics can give high-quality solutions

quickly. However, developing such heuristics often involves a combined, herculean ef-

fort from computer scientists, operations researchers, and industrial engineers that leaves

much to be desired [24]. For example, predictive aircraft maintenance scheduling is usually

performed with ad hoc, hand-crafted heuristics and manual scheduling by human domain

experts, which is a time-consuming and laborious process that is hard to scale. Because

of these issues, researchers are becoming increasingly interested in developing automatic

scheduling solutions that can not only provide high-quality schedules on large scale but

also generalize to different application needs.

In recent years, deep neural networks (DNNs) have brought about breakthroughs in

1Based upon 2012 figures for worldwide airline revenue of $598 Billion [19] and 11% of revenue allocated
for maintenance [20].

3



many domains, including image classification, nature language understanding and drug

discovery, as they can discover intricate structures in high-dimensional data without hand-

crafted feature engineering [25]. The advancements have fostered the idea of leveraging

DNNs to solve a plethora of problems in operations research [26]. Particularly, promising

progress has been made in learning scalable solvers with graph neural networks (GNNs) via

imitation learning (IL) or reinforcement learning (RL), outperforming state-of-the-art, ap-

proximate methods [27, 28, 29]. Yet this research focuses on significantly easier problems

with a simpler graphical structure, e.g. the traveling salesman problem (TSP). Moreover,

the proposed approaches require static, deterministic setting which limits applicability for

stochastic resource optimization.

Bridging the gap between deep learning and resource optimization, in this dissertation

we build a unified framework of learning scalable scheduling policies for effectively solv-

ing resource optimization problems, as shown in Figure 1.2. We combine representation

learning and policy learning, while tailoring them for resource optimization problems. For

learning on the problem representation, we utilize the graph formulation of problem con-

straints/components to develop graph neural network-based models. By parameterizing the

learner with graph attention networks, our framework is computationally efficient and re-

sults in scalable resource optimization schedulers that adapt to various problem structures.

For learning on the sequential decision-making process, we consider both deterministic

and stochastic environments. We utilize both imitation learning, when expert demonstra-

tions are accessible in low cost, and reinforcement learning, when reward engineering are

feasible, to train our scheduling networks.

This chapter serves as a summary of the innovations and findings in this thesis. The

following sections mirror the structure of the thesis. We first apply our unified framework

to address the problem of multi-robot task allocation and scheduling. In Section 1.1, we

consider teams of robots with deterministic and homogeneous task performance (i.e., each

robot was equally proficient in completing a given task and the task duration is known be-

4



Figure 1.2: The figure depicts the aim of my thesis: building a unified framework of learn-
ing scalable scheduling policies for effectively solving resource optimization problems.

forehand). In this scenario, we demonstrate that we are able to train our graph attention

network-based model, called RoboGNN, to learn scalable scheduling policies that outper-

form the existing state-of-the-art methods in a variety of testing cases. Then, in Section

1.2, we build upon this work and propose ScheduleNet, a novel heterogeneous graph atten-

tion network model, to efficiently reason about coordinating teams of heterogeneous robots

(i.e., robots have varying proficiencies in completing each task).

Next, we adapt this promising framework to tackle problems under the more challeng-

ing stochastic setting in two parts: Part 1) Scheduling with stochastic and dynamic task

completion times; Part 2) Scheduling with stochastic and dynamic task arrival and comple-

tion times, with an application in failure-predictive plane maintenance. To address Part 1,

in Section 1.3, we extend the multi-robot task scheduling problem by introducing human

co-workers with dynamic learning curves and stochastic task execution. We aim to learn a

stochastic scheduling policy. We propose HybridNet, a hybrid network structure that uti-

lizes a heterogeneous graph-based encoder and a recurrent schedule propagator, to carry out

fast schedule generation for stochastic human-robot teams in multi-round settings. For Part

2, in Section 1.4, we develop heterogeneous graph based policy optimization (HetGPO)

approach to learn scalable scheduling policies for assigning maintenance crews to aircraft.

Several variance reduction techniques are developed to enable robust learning in highly

stochastic environments. Moreover, we build AirME, a virtual predictive-maintenance en-

vironment for a heterogeneous fleet of aircraft, as an open-source test bed.

5



My research further advances the idea of learning to schedule by refining and apply-

ing it in more complex and challenging scenarios, where a unified learning framework is

built. Through extensive experiments, the proposed framework has been shown to out-

perform prior state-of-the-art algorithms in different applications. My research contributes

several key innovations regarding designing graph-based learning algorithms in operations

research.

The remainder of dissertation is organized as follows. Chapter 2 gives the background

and summarizes prior work in related areas. Chapter 3 descripes the RoboGNN scheduler

for homogeneneous robot teams. Chapter 4 presents the ScheduleNet model for heteroge-

nous robot teams. Chapter 5 covers HybridNet for scheduling mixed human-robot teams.

In Chapter 6, we talk about the application of HetGPO in aircraft maintenance scheduling.

Chapter 7 concludes the whole research and discusses the future work.

1.1 Scheduling Robots with Graph Attention Networks

Given the recent developments in robotic technologies and the increasing availability of

collaborative robots (cobots), multi-robot systems are increasingly being adopted in var-

ious environments, including manufacturing, warehouses, and hospitals [2]. Research in

related areas (e.g., multi-robot communication, team formation and control, path planning,

task scheduling and routing) has also received significant attention. Our research focuses

on multi-robot task allocation and scheduling. As an example, consider coordinating a

team of robots to construct automotive parts, where different tasks are required at different

workstations and have various time requirements to be satisfied (e.g., a certain amount of

waiting time is needed between painting tasks to let the previous coat of paint fully dry).

The goal is to try to find an optimal schedule, detailing which robot each task is assigned to

and in which order the tasks are processed by each robot, while maximizing or minimizing

a user-specified objective (e.g., total time used, total resource consumption).

Conventional approaches to multi-robot scheduling involve formulating the problem as

6



a mathematical program and leveraging commercial solvers or developing custom-made

approximate and meta-heuristic techniques. However, multi-robot scheduling with both

temporal and spatial constraints is generally NP-hard [22]. This means that exact methods

always fail to scale to large-scale problems, which is exacerbated by the need for near

real-time solutions to prevent factory slowdowns. Alternatively, heuristic approaches are

lightweight and effective. Yet, designing good heuristics involves a combined, herculean

effort from computer scientists, operations researchers, and industrial engineers that leaves

much to be desired [30]. Moreover, the performance of heuristics is usually bound to

specific objective functions. Even with the same kinds of problems, when the optimization

objective changes, new efforts are needed to re-design the heuristics to perform well again.

In recent years, deep neural networks have brought about breakthroughs in many do-

mains, including image classification, natural language understanding, and drug discov-

ery, as neural nets can discover intricate structures in high-dimensional data without hand-

crafted feature engineering [25]. Can deep learning save us from the tedious work of de-

signing application-specific scheduling solutions? It would be desirable to let the computer

autonomously learn scheduling policies without the need for domain experts. Promising

progress has been made towards learning heuristics for combinatorial optimization prob-

lems. Yet previous research focuses on significantly easier problems than the multi-robot

scheduling problem [31]. To push this idea further, we try to develop a novel neural

network-based model that learns to reason through the complex constraints of multi-robot

scheduling for the purpose of constructing high-quality solutions.

Approach

To overcome the limitations of prior work, we build on promising developments in deep-

learning-based architectures (i.e., graph neural networks) to learn heuristics for combinato-

rial problems. In this chapter, we develop a novel model, called the RoboGNN scheduler,

which is based on the graph attention network (GAT) [32], to learn scheduling policies

7



that reason about the underlying simple temporal network (STN) structure [33] and aux-

iliary constraints for multi-robot allocation and sequencing. We formulate scheduling as

a sequential decision-making problem, in which individual robots’ schedules are collec-

tively and sequentially constructed in a rollout fashion. Our RoboGNN scheduler is non-

parametric in both the number of tasks and the number of robots, meaning that the model

can learn a policy from problem formulations of one size while still being able to construct

schedules for task sets much larger than those seen during training. This non-parametricity

is relatively unique in machine learning but is fundamental to scheduling problems as the

needs of the manufacturer evolve minute by minute. A valuable benefit is that our approach

can leverage imitation learning from small-scale problems in which supervised examples

can be generated with exact solution methods without the need for application-specific

warm-starts, and can still be applied to large-scale problems that are computationally in-

tractable for exact approaches. We combine imitation learning with graph neural networks

to learn a heuristic policy for scheduling, allowing for fast, near-optimal scheduling of

robot teams.

Results and Contributions

The proposed RoboGNN is the first scheduler to leverage graph neural networks in solving

STN-based scheduling problems with spatial constraints. We extend the graph attention

network to deal with directed, weighted graphs by incorporating edge weights during both

attention coefficient calculation and node feature aggregation, enabling GNNs to learn from

STN structures. We demonstrate that our approach is able to find high-quality solutions

for ∼90% of the testing problems involving two to five robots and up to 100 tasks with

proximity constraints, which significantly outperforms the prior state-of-the-art method.

Moreover, those results are achieved with affordable computation cost and up to 100×

faster computation time versus exact solvers.

8



1.2 Heterogeneous Graph Attention Networks for Scalable Multi-Robot Scheduling

In this chapter, we extend our work to allow scheduling robots with different capabilities.

We present a novel heterogeneous graph attention network model, called ScheduleNet, to

learn a scalable policy for multi-robot task allocation and scheduling problems.

Approach

ScheduleNet extends the simple temporal network (STN) that encodes the temporal con-

straints into a heterogeneous graph by adding nodes denoting various components, such

as workers (human or robot) and physical locations or other shared resources. By doing

so, ScheduleNet is nonparametric in the number of tasks, robots, and task resources and

directly estimates the Q-function of state-action pairs to be used for schedule generation.

The development of ScheduleNet extends from the RoboGNN scheduler which was limited

to modeling only teams of robots with homogeneous task performance (i.e., each robot was

equally proficient in completing a given task) and could only consider a more restricted set

of shared resource constraints. We build upon this prior work in three key ways. First, we

extend ScheduleNet to efficiently reason about coordinating teams of heterogeneous robots

(i.e., robots have varying proficiencies in completing each task). Second, we expand the

types of spatial constraints from 1-dimensional (1D) locations to 2D areas with minimum-

distance constraints. Third, to improve ScheduleNet’s ability to coordinate heterogeneous

teams with such spatial constraints, we further augment our approach by proposing novel

schedule synthesis strategies. These extensions and the accompanying empirical validation

and robot demonstration serve to provide a more holistic view of ScheduleNet’s capabilities

with emphases on its flexibility, scalability, and generalizability.

9



Results and Contributions

ScheduleNet is the first model to utilize heterogeneous GNNs for scheduling multi-robot

teams. We show that ScheduleNet is end-to-end trainable via imitation learning on small-

scale problems and generalizes to large, unseen problems with an affordable increase in

computation cost. This flexibility allows us to set a new state of the art for multi-robot coor-

dination and in autonomously learning domain-specific heuristics for robotic applications.

Our results show that ScheduleNet outperforms benchmark approaches when considering

both homogeneous and heterogeneous cases. Our extension even solves random problem

instances with up to 10 heterogeneous robots and 200 tasks when no other baseline can

solve even a single such instance. Given the high expressiveness of heterogeneous graphs,

the research opens up future opportunities in designing graph-based learning algorithms in

multi-robot research.

1.3 Recurrent Schedule Propagation for Coordinating Human-Robot Teams

In this chapter, we focus on the problem of multi-agent task allocation and scheduling [9]

with mixed human-robot teams over multiple iterations of the same coordination problem.

Our work accounts for and leverages stochastic, time-varying human task performance to

quickly solve task allocation problems among team members to achieve a high-quality

schedule with respect to the application-specific objective function while satisfying the

temporal constraints (i.e., upper and lower bound deadline, wait, and task duration con-

straints) and spatial constraints (i.e., safety distance constraints).

Compared to task scheduling within multi-robot systems, the inclusion of human work-

ers makes scheduling even more challenging because, while robots can be programmed to

carry out certain tasks at a fixed rate, human workers typically have latent, dynamic, and

task-specific proficiencies. Effective collaboration in human-robot teams requires utilizing

the distinct abilities of each team member to achieve safe, effective, and fluent execution.

10



For these problems, we must consider the ability of humans to learn and improve in task

performance over time. To exploit this property, a scheduling algorithm must reason about

a human’s latent performance characteristics in order to decide whether to assign the best

worker to a task now versus giving more task experience to a person who is slower but

has a greater potential for fluency at that particular task. However, it is non-trivial to infer

human strengths and weaknesses while ensuring that the team satisfies requisite schedul-

ing constraints, due to the uncertainty introduced by variability in task execution behavior

across different individuals, as well as uncertainty on future task performance affected by

human’s learning effects with practice [12].

Recent advances in scheduling methods for human-robot teams have shown a signif-

icant improvement in the ability to dynamically coordinate large-scale teams in final as-

sembly manufacturing [34, 22]. Prior approaches typically rely on an assumption of de-

terministic or static worker-task proficiencies to formulate the scheduling problem as a

mixed-integer linear program (MILP), which is generally NP-hard [35].

In previous chapters, we showed that graph neural networks can be combined with

imitation learning to efficiently solve multi-agent task allocation and scheduling. How-

ever, both RoboGNN and ScheduleNet require deterministic environments with known

agent performance, making them not suitable for stochastic human-robot teams. For deep

learning-based human-robot scheduling solution, better graph neural network structure and

improved policy learning algorithm must be developed.

Approach

In this chapter, we propose a deep learning-based framework, called HybridNet, for schedul-

ing stochastic human-robot teams under temporospatial constraints. HybridNet utilizes a

heterogeneous graph-based encoder and a recurrent schedule propagator. The encoder ex-

tracts high-level embeddings of the initial environment using a heterogeneous graph repre-

sentation extended from the STN. By formulating task scheduling as a sequential decision-

11



making process, the recurrent propagator uses Long Short Term Memory (LSTM) cells

to generate the consequential models of each task-agent assignment based on the initial

embeddings.

We present a novel policy learning framework that jointly learns how to pick agents

and tasks and only needs a single reward at the end of the schedule. By factoring in the

action space into an agent selector and a task selector, we enable conditional policy learning

with HybridNet. We account for the state and agent models when selecting the agents,

and combine the information regarding the tasks, the selected agent and the state for task

assignment.

Results and Contributions

HybridNet is the first deep learning-based framework for stochastic human-robot coordi-

nation under temporospatial constraints. The novel structure HybridNet uses allows for

fast schedule generation while removing the need to interact with the environment between

every task-agent pair selection. By factoring in the action space into an agent selector and a

task selector, HybridNet is end-to-end trainable via Policy Gradients algorithms that jointly

learn how to pick agents and tasks.

We develop a virtual Multi-Round Scheduling Environment (MuRSE) for mixed human-

robot teams, capable of modeling the stochastic learning behaviors of human workers.

MuRSE is OpenAI gym-compatible and open source, and we expect it to serve as a testbed

to facilitate the development of human-robot scheduling algorithms. Using MuRSE, we

conducted extensive experiments to benchmark the performance of HybridNet across var-

ious problem configurations. Results showed HybridNet consistently outperformed prior

human-robot scheduling solutions under both deterministic and stochastic settings.

12



1.4 Failure-Predictive Maintenance Scheduling using Heterogeneous Graph-Based

Policy Optimization

Optimizing aircraft maintenance has drawn keen interest due to the significant contribution

of maintenance costs to overall operating expenses and aircraft availability [16]. One of the

most promising strategies for reducing cost is by scheduling predictive maintenance, which

entails deciding whether and when to preemptively service one or more of an aircraft’s

subsystems before the subsystem fails [17]. Currently, predictive maintenance scheduling

is performed with ad hoc, hand-crafted heuristics and manual scheduling by human domain

experts, which is a time-consuming and laborious process that is hard to scale. Because

of these issues, researchers are becoming increasingly interested in developing automatic

scheduling solutions that can not only provide high-quality schedules on a large scale but

also generalize to different application needs.

Approach

In this chapter, we propose an innovative design of the scheduling policy network oper-

ating on a heterogeneous graph representation of the predictive-maintenance scheduling

environment. Two keys to our approach are: 1) we directly model the dynamic schedul-

ing decisions as nodes within a heterogeneous graph network, allowing for an end-to-end

trainable resource scheduling policy that is capable of reasoning over the various interac-

tions within the environment, computationally lightweight, and nonparametric to problem

scales; 2) we develop an RL-based policy optimization procedure to enable robust learning

in highly stochastic environments for which typical actor-critic RL methods are ill-suited.

We build and open source our simulation environments to facilitate the R&D cycle

of stochastic scheduling algorithms. We worked in consultation with aerospace industry

partners to develop a virtual predictive-maintenance environment for a heterogeneous fleet

of aircraft, which we call AirME. The challenges for scheduling in AirME come from the

13



stochasticity in maintenance tasks and the uncertainty of potential component failures that

greatly influence maintenance costs.

Results and Contributions

The proposed heterogeneous graph based policy optimization (HetGPO) approach utilizes

a heterogeneous graph neural network-based policy and several variance reduction meth-

ods towards robust learning in highly stochastic scheduling scenarios. Using AirME, we

empirically validate HetGPO across a set of problem sizes and when optimizing for mul-

tiple objective functions. Results across various problem scales and objective functions

show the effectiveness of HetGPO over conventional, hand-crafted heuristics and baseline

learning methods.

Moreover, HetGPO is designed with the mindset of a general, graph-based policy learn-

ing algorithm to solve a broader class of stochastic resource optimization problems that are

not restricted to aircraft maintenance scheduling. Both the heterogeneous graph formu-

lation techniques (e.g., the use of “state summary” and “decision value” nodes) and the

HetGPO training process can be used in similar stochastic scheduling domains as they

require little hand-engineering.

14



CHAPTER 2

RELATED WORK

Our research draws upon work in multi-agent task scheduling, uncertainty in stochastic

scheduling, policy learning for combinatorial optimization, and graph neural networks.

2.1 Multi-Agent Task Scheduling

Task scheduling—allocating agents to tasks and sequencing those tasks—has been one of

the key problems in multi-agent systems [36]. To maximize or minimize a given objective

depending on application needs, the agents must be allocated with the proper number of

tasks and process these tasks with optimal order, while satisfying various types of con-

straints. However, the problem of optimally scheduling n ≥ 3 tasks (each with a sequence

of ni operationss) on a set of m ≥ 3 machines is NP-hard [37]. Solving multi-agent task

scheduling problems in an optimal way is a great challenge, especially when heteroge-

neous agents, complex tasks, and dynamic environments should be considered. Proposed

approaches in literature for task scheduling are categorized into centralized and distributed

approaches [38]. In centralized approaches, there is only one decision-making unit which

is assumed to have full information of the system. This central unit computes the optimal or

near-optimal decisions. In distributed methods, each agent need to make its own decision.

Several negotiation frameworks are developed for distributed agents to cooperate with each

other to maximize the efficiency of the system [39, 40].

2.1.1 Multi-Robot Task Allocation and Scheduling

Task assignment and scheduling for multi-robot teams has been studied with various real-

world applications, such as manufacturing, warehouse automation and delivery systems [9].

Gerkey and Mataric [41] devised a widely accepted taxonomy to categorize Multi-Robot

15



Task Allocation (MRTA) problem according to three criteria. First, they classified robots

according to their ability to perform single- or multi-tasks at a time. Second, they distin-

guished between tasks that require single robots to be performed, and tasks that require the

coordinated effort of a team of robots. Third, considering the time needed to complete a

task, they distinguished between instantaneous tasks and time-extended tasks. Korsah et

al. [42] improved Gerkey and Mataric’s taxonomy into iTax, by adding a new dimension

defining the degree of interdependence of agent–task utilities, with four possible values: No

Dependencies (ND), In-schedule Dependencies (ID), Cross-schedule Dependencies (XD),

and Complex Dependencies (CD). According to iTax, our research fits within the XD cat-

egory, with single-task robots [ST], single-robot tasks [SR], and the time-extended alloca-

tion [TA] problem (XD [ST-SR-TA]), while additionally taking into consideration human

agents with stochastic behavior. Cross-schedule dependencies exist when the utility of one

agent is directly affected by the scheduling commitment of another. Nunes et al. [9] further

categorized the extensive research present in this domain, with a focus on temporal and

ordering constraints, and summarized widely used models and methods.

MRTA problem is essentially an optimization problem, and the most common formal-

ism to capture its constraints is Mixed Integer Linear Programming (MILP). The com-

plexity of MILP-based solution techniques (e.g., branch-and-bound search) are exponen-

tial, leading to computational intractability for large-scale multi-robot teams. Therefore,

various hybrid approaches have been proposed that integrated heuristic schedulers within

the MILP solver to achieve better scalability characteristics [43]. Koes et al. [44] viewed

the problem as a constraint optimization problem and presented a centralized anytime al-

gorithm with error bounds by combining standard MILP solution techniques with domain

specific heuristics. Gombolay et al. [22] considered the interval temporal constraints among

tasks, along with spatial proximity restrictions on robots, while formulating a MILP model.

Their work blended real-time processor scheduling and MILP solvers to develop a fast task

sequencer named Tercio, which was tested on KUKA Youbots for assembling a mock air-

16



plane fuselage. Prorok et al. [45] looked into the problem of finding an optimal distribution

of multi-task robots’ capabilities among the set of multi-robot tasks.

Gerkey and Mataric [46] implemented and tested a distributed, auction-based, dynamic

task allocation technique called MURDOCH, which was built upon a principled, resource

centric, publish/subscribe communication model. Nunes and Gini [34] developed auction-

based algorithm, TeSSI, to allocate tasks with temporal constraints. TeSSI works both when

all the tasks are known upfront and when tasks arrive dynamically. Das et al. [47] presented

Consensus Based Parallel Auction and Execution (CBPAE), a distributed algorithm for

task allocation in a system of multiple heterogeneous autonomous robots deployed in a

healthcare facility. The robots continuously resolve any conflicts in the bids on tasks using

inter-robot communication and a consensus process in each robot. Messing et al. [48]

formalize a new class of problems named Simultaneous Task Allocation and Planning with

Spatiotemporal Constraints (STAP-STC) that takes a holistic view of heterogeneous multi-

robot coordination by simultaneously considering the problems associated with all four

questions (what, who, when, and how): task planning, allocation, scheduling, and motion

planning. A unified and interleaved framework named Graphically Recursive Simultaneous

Task Allocation, Planning, and Scheduling (GRSTAPS) is proposed to tackle STAP-STC

problems by effectively sharing information among system modules.

For situations where task execution is uncertain, Hanna [49] proposed a two-step pro-

cess that allows robots to take into account the uncertainty when negotiating the allocation

of tasks: task selection by Markov decision process (MDP) and allocation using auctions.

The MDP uses the notion of expected reward that provides a good trade-off between the

reward of selected tasks and the chances to completely execute these tasks.

2.1.2 Scheduling Mixed Human-Robot Teams

As advancements in robot capability progress, they become safer and effective to use in

conjunction with humans to complete specialized works, embodying human-robot teams.

17



Human-robot teams benefit from the distinctive features of these two resources [50]: Hu-

mans are efficient in a wide range of tasks and adaptive to changes, while robots are pre-

cise and not subject to fatigue. Therefore, these teams combine productivity and flexibility

while improving overall working conditions. The close cooperation between both opens up

new possibilities for the manufacturing process. Hence, they have been receiving a lot of

interest from practitioners in recent years [51].

In robotics, works refer to the need for improving collision detection [52] and the op-

timization of robots’ motion planning [53]. In some contexts, human-factors are critical

elements. Thus, several studies report an empirical examination of human-robot trust [54,

55]. Machine learning algorithms are being developed to enhance gesture recognition [56]

and human activity prediction [57, 58] so that the robot can identify and adapt to the op-

erators behaviour. There are also efforts put in designing tasks in a collaborative assembly

cell, considering the different capabilities of humans and robots [59]. An extensive review

of the technological advances and issues related to HRTs is found in [11].

Existing approaches adapted from multi-robot task planning mostly consider humans

as agents with assumed or known capabilities, which leads to sub-optimal performance

in realistic applications where human capabilities usually change [60, 61]. Based on the

furniture assembly process, Rizwan et al. studied the framework of the human-robot col-

laborative assembly planning, and the dynamic simulation was also conducted in Gazebo

using robot operating system (ROS) [62]. For homokinetic joint assembly process, a collab-

orative human-robot manufacturing cell was developed to reduce the human workload and

diminish the strain injury risk [63]. In the augmented environment, based on the real cam-

era images of the operators and the virtual 3D models of the robots, Wang et al. proposed

the real-time active collision avoidance method to safeguard the operators under human-

robot collaboration [64]. Ding et al. propose a heuristic for the assignment and sequencing

of assembly operations of a PLC I/O Module to avoid safety hazards [65]. Nikolakis et al.

design a tool that evaluates the assignment alternatives for each operation according to a

18



utility function composed of many criteria [66].

Recently, Casalino et al. [67] developed a Petri Net model and a scheduler algorithm

to simulate and optimise a human-robot team working cell, given the human uncertainty.

The scheduler performs an exhaustive search in the reachability graph to prioritise the next

task for the robot. They use a prediction algorithm to identify patterns in human activities

and adapt the robot schedule accordingly. Zhang et al. [68] proposed a real-time adap-

tive assembly scheduling approach for human-multi-robot collaboration by modeling and

incorporating changing human capability. Xu et al. [61] develop a Bee Algorithm to disas-

sembly tasks in a working cell composed of two operators, a human and a robot. Tasks are

classified according to the execution time and difficulty of each operator. The algorithm

is multi-objective, considering to minimise the completion time, costs and the difficulty in

the execution of tasks. In [12], a learning curve model of human task performance was

integrated with genetic algorithms that encode schedules as chromosomes by repeatedly

crossing over and mutating the solutions to find the optimal schedule. The results showed

that prediction of human performance enhances the ability of the scheduling systems to-

ward better makespan.

2.1.3 Aircraft Maintenance Scheduling

Maintenance as a crucial activity in industry, with its significant impact on costs and relia-

bility, is immensely influential to a company’s ability to be competitive in low price, high

quality and performance. Any unplanned downtime of machinery equipment or devices

would degrade or interrupt a company’s core business, potentially resulting in significant

penalties and unmeasurable reputation loss [69]. The evolution of modern techniques (e.g.,

Internet of things, sensing technology, artificial intelligence, etc.) reflects a transition of

maintenance strategies from Reactive Maintenance (RM) to Preventive Maintenance (PM)

to Predictive Maintenance (PdM).

RM is only executed to restore the operating state of the equipment after failure occurs,

19



and thus tends to cause serious lag and results in high reactive repair costs [70]. PM is

carried out according to a planned schedule based on time or process iterations to prevent

breakdown, and thus may perform unnecessary maintenance and result in high prevention

costs [71, 72]. In order to achieve the best trade-off between the two, PdM is performed

based on an online estimate of the “health” and can achieve timely pre-failure interven-

tions [73, 74]. PdM allows the maintenance frequency to be as low as possible to prevent

unplanned RM, without incurring costs associated with doing too much PM. The concept

of PdM has existed for many years, but only recently emerging technologies become both

seemingly capable and inexpensive enough to make PdM widely accessible [75]. PdM

typically involves condition monitoring, fault diagnosis, fault prognosis, and maintenance

plans [76]. The enabling technologies have the enhanced potential to detect, isolate, and

identify the precursor and incipient faults of machinery equipment and components, mon-

itor and predict the progression of faults, and provide decision-support or automation to

develop maintenance schedules.

Aircraft maintenance is performed to prevent or reduce the adverse effect of failures [77].

The aircraft maintenance scheduling is one among the major decisions an airline has to

make during its operation. It involves determining which aircraft should fly which seg-

ment and when and where each aircraft should undergo different levels of maintenance and

checks. and has been a popular application area for operations research studies. Early on, a

large-scale mixed integer programming formulation was given in [78], without considering

cyclic constraints, heterogeneity in fleet and routine maintenance constraints. Brio et al.

[79] introduced a human interaction system to solve the maintenance scheduling problem,

with more emphasis placed in human judgment. Hane et al. [80] formulated a basic fleet

assignment problem that considered maintenance and crew constraints. However, in [80],

only maintenance checks of short duration were considered, with the time frame fixed to

one day.

Dekker and Scarf [81] stated that the problem underlying aircraft maintenance schedul-

20



ing is a job scheduling problem on parallel machines (i.e. maintenance technicians) with

precedence, deadline, and machine utilization and availability constraints. Sriram et al.

[82] considered the problem faced by an airline needing to construct a 7-day planning hori-

zon cyclic schedule with maintenance constraints for a heterogeneous fleet of aircraft. A

hybrid heuristic method combining random search and depth first search was proposed to

solve the problem efficiently and quickly. Cho [83] addressed the maintenance scheduling

process that is unique to low-observable (LO) aircraft. The LO capabilities of an aircraft

degrade over time according to a stochastic process and require continuous maintenance at-

tention. Gavranis and Kozanidis [84] proposed an exact solution method to maximize fleet

availability by deciding which aircraft to assign to each fight while meeting certain mainte-

nance requirements. Liu et al. [85] designed and implemented an autonomous system that

fuses aircraft’s condition, strategy, planning and cost to improve the operational support for

aircraft maintenance scheduling. Dinis et al. [15] proposed a framework for the qualitative

and quantitative characterization of maintenance work to support Maintenance, Repair, and

Overhaul (MRO) organizations in performing capacity planning and scheduling.

2.2 Uncertainty in Stochastic Scheduling

Production environments in the real world are subject to many sources of uncertainty or

randomness [86], such as machine breakdowns, unexpected releases of high priority jobs,

uncertainty in the processing times, etc. Pinedo [87] first considered tractable stochastic

scheduling problems of which the deterministic counterparts are NP-hard and developed

policies that minimize the expected weighted sum of job completion times. An overview

of methodologies that have been developed to address the problem of uncertainty in pro-

duction scheduling can be found in [88]. In computation of project activities, most often

the uncertainties are quantified by using selected probability distribution functions, which

help to convert stochastic values to deterministic ones [89].

Cai et al. [90] studied stochastic scheduling on m parallel identical machines with ran-

21



dom processing times and investigated the usability of the Shortest Expected Processing

Time (SEPT) policy and the Longest Expected Processing Time (LEPT) policy. Ramirez

et al. [91] developed an execution delay model for runtime prediction, and designed an

adaptive stochastic allocation strategy, named Pareto Fractal Flow Predictor (PFFP). Donti

et al. [92] proposed to learn probabilistic machine learning models in a manner that di-

rectly captures the ultimate task-based objective for which they will be used, within the

context of stochastic programming. Their approach was verified on a real-world elec-

trical grid scheduling task, and a real-world energy storage arbitrage task. Sallam et al.

[93] proposed a multi-method approach for solving stochastic resource constrained project

scheduling problems. Multi-operator differential evolution (MODE) and discrete cuckoo

search (DCS) meta-heuristic approaches are utilized in a single framework with an integra-

tion of reinforcement learning to select the best one at each evolutionary process.

In this thesis, two sources of uncertainty are considered: 1) agent-centric: uncertainty

in the proficiencies of agents and 2) task-centric: uncertainty in the start time, duration, and

cost of tasks. The first form is explored in coordinating human-robot teams. For human-

robot teams, the major source of uncertainty comes from the human workers with stochastic

behavior and internal learning curves hidden from the scheduler. Therefore, we learn a

stochastic policy using policy gradient methods instead of training a deterministic greedy

Q-function [94]. Moreover, we utilize Kalman filters [12] to provide the scheduler with

robust predictions on future human task proficiency. The second form is explored in aircraft

maintenance scheduling. In aircraft maintenance scheduling, both the maintenance task and

the event of plane failure are stochastic, leading to stochastic and dynamic task arrival and

completion times. To learn a robust scheduler in such input-driven environments, we adopt

several variance reduction techniques [95, 96].

22



2.3 Policy Learning for Combinatorial Optimization

Recently, there have been growing efforts in leveraging machine learning (ML) to solve

combinatorial optimization problems [97]. In some works, researchers assume expert

knowledge about the optimization algorithm, but wants to alleviate the computational bur-

den by approximating some of those decisions with ML. In these cases, the policy is often

learned by imitation learning, thanks to demonstrations. On the other hand, expert knowl-

edge may not be satisfactory and researchers wish to find better policy of making decisions.

Thus, ML can come into play to train a model through reinforcement learning.

An active research area can be found in the context of branch-and-bound (B&B) in

solving MILPs, with a focus on learning branching policies by supervision or imitation of

strong branching (SB), a valid but expensive heuristic scheme. Alvarez et al. [98] used a

special type of decision tree to approximate strong branching decisions using supervised

learning. Khalil et al. [99] formulated branching variable selection (BVS) as a ranking

problem and learn instance-specific proxies of SB. In a different vein, Balcan et al. [100]

leveraged existing scoring rules by learning weights to combine them, and performed ex-

periments on special BVS as a classification problem on SB expert decisions. Zarpellon et

al. [101] aimed instead at learning a policy that generalizes across heterogeneous MILPs.

They proposed a novel imitation learning framework, and introduced new input features

and architectures to represent branching. An extensive survey on learning and branching in

MILPs can be found in [102].

In the case where one cares about discovering new policies, i.e., optimizing an algo-

rithmic decision function from the ground up, the policy may be learned by reinforcement

learning without expert inputs. Bello et al. [103] focus on the traveling salesman prob-

lem (TSP) and train a recurrent neural network that, given a set of city coordinates, pre-

dicts a distribution over different city permutations, via policy gradient methods. Khalil et

al. [27] input the node embeddings learned by a graph neural network (GNN) into a deep

23



Q-learning agent and achieved better performance than previous heuristics on solving min-

imum vertex cover, maximum cut and TSPs. Kool et al. [28] combined GNNs and policy

gradient methods to learn a efficient policy for TSP and two variants of the Vehicle Routing

Problem (VRP).

2.4 Graph Neural Networks

Graph neural networks (GNNs) which aim to extend the deep neural network to deal with

arbitrary graph-structured data are introduced in [104]. GNNs learn from unstructured data

by representing objects as nodes and relations as edges and aggregating information from

nearby nodes. GNNs have been widely applied in graph-based problems such as node

classification, link prediction and clustering, and show convincing performance [105].

Research in this area generally falls into two categories, namely spectral domain and

non-spectral domain. On one hand, spectral approaches work with a spectral representa-

tion of the graphs. Bruna et al. [106] extended convolution to general graphs by finding

the corresponding Fourier basis. Defferrard et al. [107] utilized K-order Chebyshev poly-

nomials to approximate smooth filters in the spectral domain. Kipf et al. [108] motivated

the choice of convolutional architecture via a localized first-order approximation of spec-

tral graph convolutions and presented a scalable approach for semi-supervised learning on

graph-structured data. On the other hand, we also have non-spectral approaches that de-

fine convolutions directly on the graph and operate on groups of spatially close neighbors.

Hamilton et al. [109] introduced GraphSAGE, a graph neural network that generates em-

beddings by sampling and aggregating features from a node’s local neighborhood. Inspired

by attention mechanism, Graph Attention Networks (GATs) [32] are proposed to learn the

importance between nodes and its neighbors and fuse the neighbors by normalized attention

coefficients. Wang et al. [110] applied graph convolutional networks to point cloud clas-

sification and segmentation by exploiting GNN’s capability to aggregate information from

local neighborhoods. A more comprehensive review of GNN approaches and applications

24



can be found in [111].

Besides homogeneous graphs, heterogeneous graphs containing different types of nodes

and links are also being considerded, yielding the development of heterogeneous GNNs [112].

Heterogeneous GNNs have shown good interpretability and model expressiveness com-

pared to traditional GNNs in scenarios such as graph mining tasks [113, 114], malicious

account detection [115] and multi-agent reinforcement learning [116, 117].

2.5 Recurrent Neural Networks for Sequence Prediction

Recurrent Neural Networks (RNNs) are a type of Neural Networks where the output from

previous step are fed as input to the current step. RNNs are used to accurately and ef-

ficiently train sequence prediction tasks, allowing for non-expert systems to reach high-

fidelity prediction [118]. Of different RNN structures, the impact of long short-term mem-

ory (LSTM) module has been notable in a wide range of applications including language

modeling [119], speech-to-text transcription [120, 121], machine translation [122], and

more [123, 124]. Long time lags in certain problems are bridged using LSTMs where they

also handle noise, distributed representations, and continuous values [125]. The gate struc-

ture of the LSTM cell can effectively slow down the gradient disappearance or explosion

that may occur in long sequence problems.

GNNs and RNNs can be used together for prediction of complex models based on time-

series data, such as traffic speed prediction [126], action recognition [127] and disease

prediction [128]. These applications are often deterministic and do not account for the

stochasticity associated with human behavior.

2.6 Summary

There has been a wealth of work in representation learning with graph neural networks. A

number of GNN-based approaches have been employed to learn policies for solving com-

binatorial optimization problems. However, these studies have primarily focused on de-

25



terministic situations with simple graph structures (e.g., traveling salesman problems). On

the other hand, much of the literature pertaining to multi-agent task scheduling still relies

on designing application-specific heuristics that utilize the problem structure for generating

effective solutions.

What I believe is that the resource optimization literature lacks a unified framework

that jointly learns on problem representation and on sequential decision-making process to

obtain scalable policies for scheduling under various constraints. My work fills this gap

in two ways. 1) We are the first to utilize heterogeneous GNNs for representation learn-

ing on complex scheduling problems. The use of heterogeneous GNNs brings a flexible

framework that can directly learn from the graph structure of the problem, which has been

difficult for other types of deep learning models such as CNNs. 2) We develop imitation

and reinforcement learning algorithms for robust learning adjusted to various deterministic

and stochastic settings.

26



CHAPTER 3

SCHEDULING ROBOTS WITH GRAPH ATTENTION NETWORKS

3.1 Introduction

Advances in robotic technology are enabling the introduction of mobile robots into man-

ufacturing environments alongside human workers. By removing the cage around tradi-

tional robot platforms and integrating dynamic, final assembly operations with human-

robot teams, manufacturers can see improvements in reducing a factory’s footprint and

environmental costs, as well as increased productivity [129]. For human workspaces asso-

ciated with final assembly, tasks need to be quickly allocated and sequenced (i.e., sched-

uled) among a set of robotic agents to achieve a high-quality schedule with respect to the

application-specific objective function while satisfying the temporal constraints (i.e., upper

and lower bound deadline, wait, and task duration constraints), as well as spatial constraints

on agent proximity for safe and efficient collaboration with human workers. The problem

of resource optimization is made difficult by the inter-coupled constraints requiring a joint

schedule rather than allowing each agent to compute their work plans independently. Fur-

thermore, scheduling decisions must be generated quickly and effectively in response to

dynamic disturbances.

Conventional approaches to scheduling typically involve formulating the problem as a

mathematical program and leveraging commercial solvers or developing custom-made ap-

proximate and meta-heuristic techniques. Exact algorithms aim to find the optimal schedule

based on enumeration or branch-and-bound, making them computationally expensive and

unable to scale to large, real-time scheduling. Exact methods often rely on hand-crafted,

“warm-start” heuristics unique to each application. Alternatively, heuristic approaches are

lightweight and often effective; however, designing application-specific heuristics requires

27



extracting and encoding domain-expert knowledge through interviews and trial-and-error-

based research, a process which leaves much to be desired. Furthermore, accurately and

efficiently extracting this knowledge remains an open problem [30].

To overcome the limitations of prior work, we build on promising developments in

deep-learning-based architectures (i.e., graph neural networks) to learn heuristics for com-

binatorial problems. Analogous to the convolutional neural networks for feature-learning

in images, graph neural networks are able to hierarchically learn high-level representations

of graph structures through convolutions and backpropagation. Yet, these approaches have

only been developed for simpler scheduling problems, e.g. the traveling salesman problem

(TSP) [27, 28], in which the graph is fully apparent and edges are undirected. Conversely,

multi-robot scheduling is a fundamentally different problem in which the graphical struc-

ture is a directed, acyclic graph with latent, disjointed temporal and spatial constraints that

must be inferred.

In this chapter, we develop a novel model, called RoboGNN scheduler, which is based

on graph attention network (GAT) [32], to learn scheduling policies that reason about the

underlying simple temporal network (STN) structure [33] and auxiliary constraints for

multi-robot allocation and sequencing. We formulate scheduling as a sequential decision-

making problem, in which individual robots’ schedules are collectively, sequentially con-

structed in a rollout fashion. Our RoboGNN scheduler is non-parametric in both the num-

ber of tasks and the number of robots, meaning that the model can learn a policy from

problem formulations of one size while still being able to construct schedules for task sets

much larger than those seen during training. This non-parametricity is relatively unique

in machine learning but is fundamental to scheduling problems as the needs of the man-

ufacturer evolve minute by minute. A valuable benefit is that our approach can leverage

imitation learning from small-scale problems in which supervised examples can be gen-

erated with exact solution methods, without the need for application-specific warm-starts,

and still be applied on large-scale problems that are computationally intractable for exact

28



Figure 3.1: The figure depicts the proposed framework, which incorporates graph attention
networks and imitation learning for multi-robot scheduling. The RoboGNN scheduler uses
a graph attention network, with robot-specific input node features constructed from partial
schedules, to extract high level robot embeddings, and a separate Q network to evaluate
discounted future rewards of state-action pairs for greedy schedule generation. The sched-
uler is trained with transitions generated from expert schedules using an imitation loss.

approaches. We combine imitation learning with graph neural networks to learn a heuris-

tic policy for scheduling, allowing for fast, near-optimal scheduling of robot teams. The

combined framework is illustrated in Figure 3.1. We demonstrate that our approach is able

to find high-quality solutions for ∼90% of the testing problems involving scheduling two

to five robots and up to 100 tasks with proximity constraints, which significantly outper-

forms prior state-of-the-art method. Moreover, those results are achieved with affordable

computation cost and up to 100× faster computation time versus exact solvers.

3.2 Problem Statement

We consider the problem of coordinating a multi-robot team in the same space, with both

temporal and resource/location constraints. We describe its components, under the XD

(ST-SR-TA) category of the widely accepted taxonomy proposed in [42], as a six-tuple

<r, τ ,d,w,Loc, z>. r is the set of robot agents that we assume are homogeneous in task

completion. τ is the set of tasks to be performed. Each task τi takes a certain amount of

29



time duri for a robot to complete, and its scheduled start and finish time are denoted as si

and fi, respectively (e.g., “task τi starts at 00:30, ends at 00:40, requiring 10 minutes” can

be denoted as si = 30, fi = 40, duri = 10). We introduce s0 as the time origin and f0 as

the time point when all tasks are completed, so that the schedule has a common start and

end point. d is the set of deadline constraints. di ∈ d specifies the time point before which

task τi has to be completed. w is the set of wait constraints. wi,j ∈ w specifies the wait

time between task τi and task τj (e.g., “task τi should wait at least 25 minutes after task τj

finishes” means si ≥ fj +25). Loc is the set of all task locations. At most, one task can be

performed at each location at the same time. Finally, z is an objective function to minimize

that includes the makespan and possibly other application-specific terms.

A solution to the problem consists of an assignment of tasks to agents and a schedule

for each agent’s tasks such that all constraints are satisfied, and the objective function is

minimized. We also include the mathematical program (MP) formation of our problem

in Equation 3.1-Equation 3.9. We consider a generic objective function, as application-

specific goals vary. In this chapter, we consider minimizing the makespan (i.e., overall

process duration), which would be z = maxi fi.

Here we introduce two types of binary decision variables: 1) Ar,i = 1 for the assign-

ment of robot r to task τi and 2) Xi,j = 1 denotes task τi finishes before task τj starts.

Lsame is the set of task pairs (τi, τj) that use the same location and is derived from Loc.

We also have continuous decision variables si, fi ∈ [0,∞) corresponding to the start and

finish times of task τi, respectively. Equation 3.2 ensures that each task is assigned to

only one agent. Equation 3.3-Equation 3.5 ensure that all the temporal constraints are met.

Equation 3.6-Equation 3.7 ensure that robots can only perform one task at a time. Equa-

tion 3.8-Equation 3.9 account for task locations that can only be occupied by one robot at a

time. In section 3.5, we employ an exact benchmark (i.e., a mathematical program solver)

to solve a linearized, mixed-integer form of these equations on small-scale problems to

serve as expert demonstrations.

30



min(z) (3.1)∑
r∈r

Ar,i = 1,∀τi ∈ τ (3.2)

fi − si = duri,∀τi ∈ τ (3.3)

fi − s0 ≤ di,∀di ∈ d (3.4)

si − fj ≥ wi,j,∀wi,j ∈ w (3.5)

(sj − fi)Ar,iAr,jXi,j ≥ 0,∀τi, τj ∈ τ ,∀r ∈ r (3.6)

(si − fj)Ar,iAr,j(1−Xi,j) ≥ 0,∀τi, τj ∈ τ ,∀r ∈ r (3.7)

(sj − fi)Xi,j ≥ 0,∀(τi, τj) ∈ Lsame (3.8)

(si − fj)(1−Xi,j) ≥ 0,∀(τi, τj) ∈ Lsame (3.9)

Ar,i ∈ {0, 1}, Xi,j ∈ {0, 1}, si, fi ∈ [0,∞)

3.3 Representation: Graph Attention Networks

Multi-robot task allocation and scheduling problems have been commonly modeled as

STNs, because the consistency of the upper and lower bound temporal constraints can

be efficiently verified in polynomial time. However, as we develop multiple agents, phys-

ical constraints, etc., we also have latent disjunctive variables that augment the graph to

account for each agent being able to perform only one task at a time and for only one robot

to occupy a work location at a time. This scheduling scenario is known as the Disjunctive

Temporal Problem [130]. GNNs are an ideal choice for reasoning about STNs given their

graphical nature. However we must expand on prior work to handle both the directed na-

ture of these graphs, as well as the disjunctive component from multi-robot coordination in

time and space. These extensions are a key contribution of this work.

Modern GNNs capture the dependence of graphs via message-passing between the

31



(a) (b)

Figure 3.2: (a) An STN with start and finish nodes for three tasks, as well as placeholder
start and finish nodes, s0 and f0. Task 1 has a deadline constraint and there is a wait
constraint between task 3 and task 2. (b) The left-hand side depicts the forward pass of
the adapted graph attention layer, which consists of two phases: 1) Message passing: each
node receives features of its neighbor nodes and the corresponding edge weights; 2) Feature
update: neighbor features are aggregated using attention coefficients; the right-hand side
illustrates how attention coefficients are calculated.

nodes, in which each node aggregates feature vectors of its neighbors from previous layers

to compute its new feature vector. After k layers of aggregation, a node v’s representation

captures the structural information within the nodes that are reachable from v in k hops or

fewer. Systems based on GNNs have demonstrated ground-breaking performance on tasks

such as node classification, link prediction, and clustering [31]. Here, we make use of the

graph attention layer (GAT) proposed in [32], which is a variant of a graph convolutional

layer that introduces an attention mechanism to improve generalizability and modify its

structure to make it suitable for representing an STN.

STN Preprocessing – In an STN, each task τi is represented by two event nodes: its

start time node si and finish time node fi. An example of an STN consisting of 3 tasks

is shown in Figure 3.2a. For preprocessing purpose, we run Floyd Warshall’s all-pairs-

shortest-paths algorithm on the original STN to find the minimum distance graph [131].

Because in our problems, task duration is deterministic, it is possible to further remove

the finish nodes fi (except f0) from the distance graph without losing information on the

temporal constraints describing relations between each task. The resulted distance graph,

which consists of only half the nodes of the original STN, is used by the graph attention

32



network to learn high level robot embeddings.

Robot-Specific Node Features – While the graph attention network uses the same

simplified distance graph to calculate the embeddings of each robot given a problem state,

the difference lies in the set of input node features each robot uses, which we denote as

robot-specific node features. Given all the partial schedules at the current step, we generate

the initial input features of each node, with respect to a particular robot, as follows. The first

3 dimensions are the binary encoding denoting whether the corresponding task is scheduled

to this robot, to other robots, or not scheduled. For example, [1 0 0] indicates the task is

assigned to this robot, and [0 1 0] indicates the task is assgined to one of other robots. We

use [1 1 0] as the first 3 features for the placeholder start and finish nodes of the entire

schedule, so and fo, respectively. The next dimension is the task duration. The next M

dimensions are an one hot encoding of the location the task uses, where M is the number

of locations. Thus, the input feature for each node is an (M+4)-dimensional vector. This

set of input features is more expressive than that of prior approaches addressing the simpler

TSP [27, 28] that only considered the (x,y) position of each node.

Structure Adaptation – The original graph attention network [32] is only able to in-

corporate undirected, unweighted graphs, yielding that model insufficient for scheduling

problems in which temporal constraints are represented by the direction and weight of the

edge between the two corresponding event nodes. As such, we make two adaptations for

the message passing and feature update phases as shown in Figure 3.2b: 1) The message

passing follows the same direction of the edge (i.e., only the incoming neighbors of a node

are considered); 2) Edge information is also aggregated when updating the node feature,

which is done by adding a fully-connected layer inside each GAT layer that transforms the

edge weight edge into the same dimension as the node feature using We. The output node

feature h⃗′
i is updated by Equation 3.10, where N(i) is the set of neighbors of node i, W is

the weight matrix applied to every node, h⃗j is the node feature from the previous layer, and

αij are the attention coefficients. To stabilize the learning process, we utilize multi-head at-

33



tention [32], consisting of K independent GAT layers computing nodes features in parallel

and concatenating those features as the output.

h⃗′
i = ReLU

( ∑
j∈N(i)

αij(Wh⃗j +Weedgeji)
)

(3.10)

Attention Coefficients – The GAT layer computes the feature embedding for each

node by weighting neighbor features from the previous layer with feature-dependent and

structure-free normalization, which makes the network non-parametric in the number of

tasks. The pair-wise normalized attention coefficients are computed as shown in Fig-

ure 3.2b using Equation 3.11, where a⃗ is the learnable weight, || represents concatena-

tion, and σ() is the LeakyReLU nonlinearity (with a negative input slope of 0.2). Softmax

function is used to normalize the coefficients across all choices of j.

αij = softmaxj

(
σ
(
a⃗T

[
Wh⃗i

∥∥∥Wh⃗j

∥∥∥Weedgeji

]))
(3.11)

Given an STN and a set of robot-specific node features, the graph attention network,

constructed by stacking several GAT layers, outputs the embeddings of each node. Then the

embedding of the corresponding robot is obtained by averaging over all node embeddings.

3.4 Learning Scheduling Policies from Expert Demonstrations

3.4.1 MDP Formulation

We first formulate scheduling as a sequential decision-making problem, in which individual

robots’ schedules are collectively, sequentially constructed in a rollout fashion. At each

decision step, the policy picks a robot-unscheduled task pair and assigns that unscheduled

task to the end of that robot’s schedule. This step repeats until all tasks are scheduled.

Next, we formalize the problem of constructing the schedule as a Markov decision process

(MDP) using a five-tuple <xt, u, T, R, γ>that includes:

34



• States: As shown in Figure 3.1, the problem state xt at step t consists of the STN

encoding the temporal constraints, all robots’ partial schedules constructed so far,

and the task location list. As both location information and partial schedules are

included as robot-specific node features, we approximate state embedding, hx, by

averaging over all robot embeddings.

• Actions: Action u = <τi, rj> implies appending task τi into the partial schedule of

robot rj , where τi is from the set of unscheduled tasks. The action embedding, hu,

is approximated by the node embedding of start time node si of τi, calculated with

robot-specific node features with respect to rj .

• Transitions T : Transitions correspond to adding the edges associated with the action

into the STN and updating the partial schedules. In the MP formulation, when u =

<τi, rj> is taken, besides setting Ar,i = 1, we add the following two terms before

updating the equations: 1) si ≤ sk, ∀τk ∈ {unscheduled}; 2) Xi,m = 1, ∀τm ∈

{unscheduled|(τi, τm) ∈ Lsame}.

• Rewards R: The immediate reward of a state-action pair is defined as the change in

makespan of all the scheduled tasks after taking the action. As such, the cumulative

reward of the whole schedule generation process equals the final makespan of the

problem (when feasible solutions are found). We divide the change by a discount

factor D > 1 if the next state is not a termination state. The reward is multiplied

by -1.0, as we are minimizing the total makespan. A large negative reward Minf is

returned if the action results in an infeasible schedule in the next state. As a result,

the goal of the policy is learning to construct the optimal schedule.

• Discount factor γ

We aim to learn a policy that schedules tasks and agents following the decision-making

process. To enable imitation learning with expert demonstrations, we define an evaluation

35



function, Q(xt, ut), that calculates the total discounted reward of taking action ut at step t.

Then, our goal is to approximate the evaluation function with a neural network Q̂θ parame-

terized by weights θ. This function approximator, as show in Figure 3.1 under the name “Q

network”, consists of two fully-connected layers. It takes as input the concatenation of state

embedding hx and action embedding hu and outputs a score estimating the total rewards of

performing action u. As a result, we obtain a greedy policy π := argmaxuQ̂θ(hx, hu) that

selects a task τi and a robot rj at each step to maximize the Q value with corresponding

action.

Because we are dealing with homogeneous robots, and the objective is minimizing

makespan, we modify the schedule generation process in an opportunistic manner, which

uses time-based rollout, to avoid possible delay among different robots’ schedules. More

specifically, starting from t = 0 (here t refers to time points instead of decision steps), at

each time step, the policy first collects all the available robots not working on a task into

a set ravail = {rj|rj is available}. Then, ∀rj ∈ ravail, the policy tries to assign τi using

τ := argmaxτ Q̂θ(hx, hu)|r=rj . Such modification decomposes the scheduling decision

into a “picking robot” part followed by a “picking task” part. This allows us to simplify

the action space by utilizing a simple agent selector (i.e., selecting the first available robot)

and focusing our model on learning to schedule the right task for a given robot.

3.4.2 Imitation Learning

Under the MDP formulation, our goal is to learn a greedy policy for sequential decision

making. Thus, it is natural to consider reinforcement learning algorithms (e.g., Q-learning)

for training RoboGNN scheduler. However, reinforcement learning relies on finding feasi-

ble schedules from scratch to learn useful knowledge. In our problem, most permutations of

the schedule are infeasible. As a result, reinforcement learning policies spend much more

time than allowed before learning anything of value from exploring infeasible solutions.

Although obtaining optimal solutions of large-scale scheduling problems is compu-

36



tationally intractable, it is practical to optimally solve smaller-scale problems with ex-

act methods. Furthermore, we can use these exact methods to automatically generate

application-specific examples for training an imitation learning algorithm without the need

for the tedious, non-trivial task of developing application-specific heuristics to warm-start

the solver. Finally, we typically have access to high-quality, manually-generated schedules

from human experts that currently manage the logistics in manufacturing environments. We

believe that exploiting such expert data to train the scheduling policy can greatly accelerate

the learning process [132].

We aim to leverage such data by training the network on expert dataset Dex that contains

schedules either from exact solution methods or the domain experts. For each expert solu-

tion, we arrange the scheduled tasks by task start time in ascending order and decompose

them into state-action pairs following our schedule generation process. For each transition,

we directly calculate the total reward from current step t until termination step n using

R
(n)
t =

∑n−t
k=0 γ

kRt+k and regress Q̂θ towards this value as shown in Equation 3.12, where

the supervised learning loss, Lex, is defined as the Euclidean distance between the R(n)
t and

our current estimate based on state embedding hx and embedding of the action selected by

the expert hu,ex.

Lex =
∥∥∥Q̂θ(hx, hu,ex)−R

(n)
t

∥∥∥2

(3.12)

To fully exploit the expert data, we ground the Q values of actions that are not selected

by the expert to a value below R
(n)
t using the loss shown in Equation 3.13, where hu,alt

is the action embedding associated with alternate actions not chosen by the expert, qo is a

positive constant used as an offset, and Nalt is the number of alternate actions at step t.

Lalt =
1

Nalt

∑∥∥∥Q̂θ(hx, hu,alt)

−min(Q̂θ(hx, hu,alt), R
(n)
t − qo)

∥∥∥2

(3.13)

37



Consequently, the gradient propagates through all the unselected actions that have Q

values higher than R
(n)
t − qo. We select qo empirically during training. Note the difference

from [132] in that they only train on the unselected action with the max Q value. Combining

Equation 3.12 and Equation 3.13, we calculate the total loss via Equation 3.14, where L2

is the L2 regularization term on the network weights, and λ1, λ2 are weighting parameters

assigned to different loss terms empirically.

Lsup = Lex + λ1Lalt + λ2L2 (3.14)

3.5 Experimental Results

We evaluate the performance of our model on randomly-generated problems simulating

multi-agent construction of a large workpiece, e.g. an airplane fuselage. We generate prob-

lems involving a team of robots (team size ranging from two to five) in different scales:

small (16–20 tasks), medium (40–50 tasks) and large (80–100 tasks), with both temporal

constraints and proximity/location constraints (i.e., no two robots can be in the same lo-

cation at the same time). For each problem, team size is randomly selected from interval

[2, 5]. Task duration is generated from a uniform distribution in the interval [1, 10]. In

keeping with distributions typically found in manufacturing environments, approximately

25% of the tasks have absolute deadlines drawn from a uniform distribution in the interval

[1, 3T ], where T is the number of total tasks. Approximately 25% of the tasks have wait

constraints; the duration of non-zero wait constraints is drawn from a uniform distribution

in the interval [1, 10]. We set the number of locations to be 5, and each task’s location is

picked randomly. For small and medium problems, we generated 1,000 testing problems.

For large problems, we generated 100 testing problems. To train the RoboGNN scheduler,

we generated another 1,000 small problems. We ran Gurobi, a commercial optimization

solver widely used for mixed integer linear programming (v8.1), with a cutoff time of 15

minutes on those problems to serve as exact baselines for testing set and expert demonstra-

38



tions for training set. This resulted in a total of 17,657 transitions for training. For large

problems, Gurobi cutoff time was 1 hour.

Model Details – Our code implementation uses pyTorch [133], and the graph neural

networks are built upon Deep Graph Library (https://www.dgl.ai). We apply a three-layer

GAT to learn node features. Each layer uses 8 attention heads computing 64 features. The

last GAT layer uses averaging while the first two use concatenation to aggregate the features

from each head. The Q network uses two fully-connected layers with a hidden dimension

of 64. We set γ = 0.99 and use Adam optimizer [134] through training. Imitation learning

uses λ1 = 0.9, and λ2 = 0.1. We tested learning rates lr from {10−2, 10−3, 10−4}, qo from {1,

3, 5}, and found the combination of lr = 10−3 and qo = 3 achieved the best performance

on test set of small problems. Thus we picked them to report the evaluation results. Both

training and evaluation were conducted on a Quadro RTX 8000 GPU.

Benchmarks – We benchmark our trained RoboGNN scheduler against the following

methods.

• Earliest Deadline First (EDF) – a ubiquitous heuristic algorithm [135] that assigns

the available task with the earliest deadline to the first available worker.

• Tercio – the state-of-the-art scheduling algorithm for this problem domain [22]. Ter-

cio combines mathematical optimization for task allocation and analytical sequenc-

ing test for temporospatial feasibility.

• Gurobi – a commercial optimization solver from Gurobi Optimization. Results from

Gurobi v8.1 are the exact baseline.

3.5.1 Proportion of Problems Solved

The RoboGNN scheduler was trained on small problems and the same model was evaluated

on all problem scales. We evaluated our model in terms of proportion of problems solved

and compared it with other methods, as shown in Figure 3.3. We also reported mean and

39



(a) (b) (c)

Figure 3.3: Proportion of problems solved for multi-robot scheduling: (a) small problems
(16–20 tasks); (b) medium problems (40–50 tasks); (c) large problems (80–100 tasks).
Results are grouped in number of robots. Mean and standard deviation of computation
times (in parenthesis) for each method is shown above each group’s bar.

standard deviation of the computation time for different methods above corresponding bars,

based upon the problems solved by each method.

From this figure, we can see that the RoboGNN scheduler found considerably more

feasible solutions than both EDF and Tercio across all team sizes. Our trained policy

showed consistently high-performance across different problem sizes (91.5% solved for

small problems, 89.3% solved for medium problems, and 91.0% solved for large prob-

lems), while the performance of EDF and Tercio decreased precipitously when the number

of tasks increased (e.g., proportion of problems solved dropped from 62.0% on small prob-

lems to 27.7% on medium problems for Tercio). Moreover, EDF failed to solve any large

problems for 2-robot, 3-robot and 4-robot teams, as depicted by zero-height bars in Fig.

3(c). The same is true for Tercio in large 2-robot problems.

As two-robot team imposes a smaller number of robot-related constraints than other

team sizes, it took Gurobi longer to find solutions (Fig. 3(a)), and for large-scale problems,

this resulted in less feasible solutions within cutoff time (Fig. 4(c)). Overall, for large

problems, Gurobi only solved 77.0% problems, and was outperformed by RoboGNN on 2-

robot and 3-robot cases. As problem scale increased, the runtime of RoboGNN increased

in a faster manner than Tercio, but was still ∼ 10x faster than Gurobi, which is a favorable

trade-off considering Tercio’s poorer performance in the number of problems solved, as

shown in Fig. 3.

40



(a) (b) (c)

Figure 3.4: Normalized makespan score for multi-robot scheduling: (a) small problems
(16–20 tasks); (b) medium problems (40–50 tasks); (c) large problems (80–100 tasks).
Results are grouped in number of robots. A smaller (normalized) makespan is better.

Considering that we only used expert data on small problems during training, this

positive result provides strong evidence that our framework is able to transfer knowledge

learned on small problems to help solve larger problems.

3.5.2 Normalized Makespan

To compare the quality of solutions found by different methods, we reported results evalu-

ated on another metric: normalized makespan, where the makespan was normalized to the

one found by the exact method, Gurobi.

Figure 3.4 showed the average makespan score, normalized to the value found by

Gurobi, of our approach and other baseline methods. Error bar denoted standard deviation.

To make fair comparison, we only counted problems for which all four methods found

solutions in Figure 3.4a and Figure 3.4b. In Figure 3.4c, EDF and Tercio were excluded

for the problem groups where they found zero feasible solutions. Overall, RoboGNN and

Tercio achieved similar makespan score, with EDF being the worst. For large problems,

both RoboGNN and Tercio were able to find better solutions than Gurobi.

3.5.3 Ablation Study

To show the necessity and benefit of incorporating edge information into the GAT layer, we

also trained and evaluated a similar policy based on the original GAT models, using small

41



problems involving 2-robot teams. As a result, the trained policy only solved 5.7% of the

testing problems. This showed the effectiveness of our adaptation in order to leverage graph

attention networks to automatically learn to coordinate robot teams in complex scheduling

environments.

3.6 Robot Demonstration

We demonstrate our trained RoboGNN scheduler to coordinate the work of a five-robot

team in a simulated environment for airplane fuselage construction, as shown in Figure 3.5.

The problem consists of eighteen tasks located randomly among 5 locations. Besides re-

specting the temporal constraints that exist among the tasks, the scheduler has to make

sure that the same physical location can only be occupied by at most one robot at any time

to prevent collisions. The execution makes use of the Robotarium, a remotely accessible

swarm robotics research testbed with GRITSBot X robots [136]. A video with a detailed

breakdown of the demonstration can be found at http://tiny.cc/y3vgkz.

3.7 RoboGNN Discussion

Combining the results presented in previous section, we showed that the RoboGNN sched-

uler not only found significantly more solutions than other heuristics but also achieved high

solution quality. Impressively, our network-based scheduler outperformed all baselines in

terms of the proportion of instances solved and the solution quality when problem size

scales up to 100 tasks for two- and three-robot teams. Our method also outperforms all

approximate solution techniques for four- and five-robot teams at this scale while yielding

a 100× speedup over our exact baseline. Even though our method constructs schedules

under a deterministic setting, this speedup allows us to re-schedule in a timely manner

in response to unexpected disturbance during execution. Furthermore, we can leverage

the method from [25], which uses the output schedule’s ordering constraints back into

the original STN—rather than using the output schedule itself—to preserve a high degree

42



Figure 3.5: This figure depicts our demonstration of a 5-robot team completing tasks for
airplane fuselage assembly.

of flexibility in dispatching the robots via the modified STN. We also demonstrated our

method on a multi-robot testbed (Figure 3.5). We summarize our contributions as follows:

1. To our best knowledge, ours is the first to leverage graph neural networks in solving

STN-based scheduling problems with spatial constraints. We extend the graph atten-

tion network to deal with directed, weighted graphs by incorporating edge weights

during both attention coefficient calculation and node feature aggregation. Our work

enables graph neural network to be applied to STNs.

2. We propose a novel graph attention network-based scheduler (RoboGNN) that is non-

parametric in both the number of tasks and the number of robots. Benefiting from

such scalable structure, the proposed RoboGNN scheduler can be trained via imita-

tion learning on small problems for which expert solution can be easily obtained, and

be applied in generating schedules for larger-scale problems.

43



3. We conduct experiments evaluating the performance of the proposed method, show-

ing the superiority of the trained RoboGNN scheduler—considering solution quality,

proportion of instances solve, and computation time—vs. state-of-the-art methods.

3.8 Summary

We presented a graph attention network framework to automatically learn a scalable schedul-

ing policy to coordinate multi-robot teams of various sizes. By combining imitation learn-

ing with graph attention network in a non-parametric framework, we were able to ob-

tain policy that generated fast, near-optimal scheduling of robot teams. We demonstrated

that our network-based policy found significantly more solutions over prior state-of-the-art

methods in all testing scenarios.

44



CHAPTER 4

HETEROGENEOUS GRAPH ATTENTION NETWORKS FOR SCALABLE

MULTI-ROBOT SCHEDULING

4.1 Introduction

In recent years, deep neural networks have brought about breakthroughs in many domains,

including image classification, natural language understanding and drug discovery, as they

can discover intricate structures in high-dimensional data without hand-crafted feature en-

gineering [25]. Promising progress has also been made towards learning heuristics for

combinatorial optimization problems by utilizing graph neural networks to learn meaning-

ful representations of the problem to guide the solution construction process [31]. Yet this

research focuses on significantly easier problems with a simpler graphical structure, e.g.

the traveling salesman problem (TSP).

In this chapter, We propose a novel heterogeneous graph attention network model,

called ScheduleNet, to learn heuristics for solving the multi-robot task allocation and schedul-

ing problems with upper- and lowerbound temporal and spatial constraints. Figure 4.1

shows the overall framework of our proposed method. We extend the simple temporal

network (STN) [33] that encodes the temporal constraints into a heterogeneous graph by

adding nodes denoting various components, such as workers (human or robot) and physi-

cal locations or other shared resources. By doing so, ScheduleNet directly operates on the

heterogeneous graph in a fully-convolutional manner and can estimate the Q-function of

state-action pairs to be used for schedule generation. We show that ScheduleNet is end-

to-end trainable via imitation learning on small-scale problems and generalizes to large,

unseen problems with an affordable increase in computation cost. This flexibility allows

us to set a new state of the art for multi-robot coordination and in autonomously learning

45



Figure 4.1: Overview of the proposed ScheduleNet, which operates on the heteroge-
neous graph constructed by augmenting the STN of the problem, and predicts Q-values
for scheduling. Courtesy: KUKA Robotics

domain-specific heuristics for robotic applications.

The development of ScheduleNet extends from the RoboGNN scheduler which was

limited in modeling only teams of robots with homogeneous task performance (i.e., each

robot was equally proficient in completing a given task) and could only consider a more

restricted set of shared resource constraints. We build upon this prior work in three key

ways. First, we extend ScheduleNet to efficiently reason about coordinating teams of het-

erogeneous robots (i.e., robots have varying proficiencies in completing each task). Second,

we expand the types of spatial constraints from 1-Dimensional (1D) locations to 2D areas

with minimum-distance constraints. Third, to improve ScheduleNet’s ability to coordi-

nate heterogeneous teams with such spatial constraints, we further augment our approach

by proposing novel schedule synthesis strategies. These extensions and the accompany-

ing empirical validation and robot demonstration serve to provide a more holistic view of

ScheduleNet’s capabilities with emphases on its flexibility, scalability and generalizability.

Our results show that ScheduleNet outperforms benchmark approaches when under both

the homogeneous and heterogeneous cases. Our extension even solves random problem

instances with up to 10 heterogeneous robots and 200 tasks when no other baseline can

46



solve even a single such instance.

4.2 Problem Overview

4.2.1 Problem Statement

We follow the problem statement presented in section 3.2, with an extension that allows

robots to have heterogeneous task proficiency. That is, each task τi takes a certain amount

of time duri,r for robot r to complete, as shown in Equation 4.1.

fi − si =
∑
r∈r

duri,rAr,i,∀τi ∈ τ (4.1)

Additionally, Lsame is replaced with Lproximity. Lproximity is the set of task pairs,

<τi, τj>, that should be separated along the time axis due to the presence of pairwise

proximity constraints on agents performing tasks at the corresponding locations in Loc.

We begin our experiments in section 4.4 by considering the problem of coordinating a

set of homogeneous robots to complete a set of tasks given temporal constraints and 1D

task location constraints (i.e., no two robots can be in the same place at the same time).

Here, homogeneity in robot teams refers to teams comprised of robots that are equally

proficient in completing a task (i.e., duri,r = duri,∀r ∈ r, ∀τi ∈ τ ). This modeling

setup is motivated by common manufacturing scenarios in which work locations are along

a line with robots moving across a rail to perform assembly tasks of a large workpiece,

e.g., the Boeing 777 Fuselage Automated Upright Build process [137]. Under this setting,

Lproximity consists of all task pairs that require the same location to be completed.

Second, we examine scheduling problems involving heterogeneous robots moving with

2D proximity constraints (section 4.5). The relaxation to heterogeneous robot teams allows

for the full expressivity where duri,r ̸= duri in general. Furthermore, expanding from

1D location constraints to 2D proximity constraints allows us to model an open factory

floor concept where a certain distance must be maintained between robots while executing

47



tasks. In these experiments, we extend Lproximity to include task pairs whose locations

fall within the minimum allowed safety distance.

As z varies depending on application-specific goals, we mainly report the results of

minimizing the makespan (i.e., overall process duration, z = maxi fi) as a generic ob-

jective function. To show the generalization of our method, in subsection 4.4.4, we also

consider an application-specific case where we try to minimize the weighted sum of the

completion time of all tasks (z =
∑

i cifi). We use this objective function as an analogy to

the minimization of weighted tardiness in job-shop scheduling [138].

4.2.2 Schedule Generation

Our learned policy relies on the evaluation function Q(x, u), which will be learned using a

collection of problem instances, to estimate the total discounted future reward of state-

action pairs and select accordingly. We use scheduling-through-simulation to generate

schedules as it has been shown in Chapter 2 that this process achieves better performance

than using decision-step-based generation.

Algorithm 1 illustrates the process of generating schedules for a problem instance using

ScheduleNet via scheduling-through-simulation. In scheduling-through-simulation, start-

ing from t = 0 (here t refers to time points instead of decision steps), at each time step

the policy first collects all the available robots not working on a task into a set ravail =

{rj|rj is available}. Then, the policy picks a robot (denoted as the pickRobot function)

from ravail and tries to assign τi using τ := argmaxτ∈τavail
Qθ(x, u), where τavail is the

set of unscheduled tasks and only Q-values associated with rj are considered. This task

allocation step repeats until no robot is available; then, the simulation moves to the next

time step, t + 1. When considering a team of homogeneous robots, pickRobot can be im-

plemented as simply picking robots from ravail in the same order as their initial index or

another static priority queue. However, we empirically found that such a static strategy for

ScheduleNet was not efficient for the more difficult problem of task allocation with hetero-

48



Algorithm 1: Solve a problem instance using ScheduleNet via scheduling-
through-simulation

Input: Problem components <r, τ ,d,w,Loc>, maximum allowed time tmax

Output: A schedule generated by ScheduleNet
1 Initialize all robots’ pratial schedules as ∅;
2 Initialize problem state x with <r, τ ,d,w,Loc>;
3 t← 0;
4 while t ≤ tmax do
5 Collects all available robots at t into ravail;
6 r ← pickRobot(ravail);
7 while r ̸= NULL do
8 Collect all unscheduled tasks at t into τavail;
9 if τavail ̸= ∅ then

10 Build the heterogeneous graph g from x;
11 Generate input features for nodes in g;
12 Run ScheduleNet on g to predict Qθ(x, u);
13 τ ← argmaxτ∈τavail

Qθ(x, u)|u=<τ,r>;
14 Append τ into r’s partial schedule and update x;
15 if x becomes infeasible then
16 Exit with an infeasible schedule;
17 else if all tasks have been assigned then
18 Exit with a feasible schedule;
19 end
20 Remove r from ravail;
21 r ← pickRobot(ravail);
22 else
23 break;
24 end
25 end
26 t← t+ 1;
27 end
28 Exit with an infeasible schedule;

49



geneous robot teams. As such, we developed a set of additional task allocation strategies

for dynamically picking heterogeneous robots from ravail:

• First available – Pick the first robot in ravail according to their original index.

• Minimum average time on unscheduled tasks – Compute the average time it takes

for each robot in ravail to complete unscheduled tasks, and pick the robot with the

smallest such time.

• Minimum time on any one unscheduled task – Find the minimum time it takes for

each robot in ravail to complete any one unscheduled task, and pick the robot with

the smallest such time.

• Minimum average time on all tasks – Compute the average time it takes for each

robot in ravail to complete all tasks, both scheduled and unscheduled, and pick the

robot with the smallest such time.

When solving a given problem instance, we run ScheduleNet in parallel with each task

allocation strategy variants for the pickRobot function. Among the feasible solutions pro-

duced by the same model with each of the four strategies, we keep the one that yields

the best objective function score. This result ensemble of different robot-picking variants

proves to find not only more feasible schedules, but also schedules with better makespans

than any single strategy alone, as each strategy may work better than another in certain

problems but not the others.

4.3 Heterogeneous Graph Attention Network

Traditional graph neural networks (GNNs) operate on homogeneous graphs to learn a uni-

versal feature update scheme for all nodes. We instead cast the task scheduling problem

into a heterogeneous graph structure, and propose a novel heterogeneous graph attention

network, ScheduleNet, that learns per-edge-type message passing and per-node-type fea-

ture reduction mechanisms on this graph. One advantage of ScheduleNet is that it directly

50



estimates the Q-values of state-action pairs as its output node features. In this section, we

first describe how to construct the heterogeneous graph given a problem state, xt, starting

with homogeneous robot teams and then introducing necessary extensions for heteroge-

neous robots. Next, we present the building block layer used to assemble a ScheduleNet

of arbitrary depth (through stacking this layer), which we call the heterogeneous graph

attention (HetGAT) layer.

4.3.1 Heterogeneous Graph Representation

Homogeneous Robot Case

The temporal constraints in multi-robot task allocation and scheduling problems have been

commonly modeled as STNs because the consistency of the upper and lower bound con-

straints can be efficiently verified in polynomial time [139]. STNs also allow for encoding

set-bounded uncertainty. However, as we develop multiple homogeneous agents, physi-

cal constraints, etc., we also have latent disjunctive variables that augment the graph to

account for each agent being able to perform only one task at a time and for only one

robot occupying a work location at a time, which is known as the Disjunctive Temporal

Problem [130]. To learn a more expressive and scalable representation of the problem,

we extend the STN formulation into a heterogeneous graph using the construction process

illustrated in Algorithm 2. In a heterogeneous graph, we use a three-tuple, in the form

of <srcName, edgeName, dstName>, to specify the edge type/relation that connects

the two node types (from source node to destination node), which can also be denoted as

(srcName
edgeName−−−−−−→ dstName).

In traditional STN formulations, each task, τi, is represented by two event nodes: its

start time node, si, and finish time node, fi. The directed, weighted edges encode the

temporal constraints associating corresponding nodes. Under the homogeneous robot team

setting, task duration is deterministic without knowing the actual assignment. Exploiting

this fact, we develop a novel simplification trick to reduce the model complexity. That is,

51



Algorithm 2: Construct the heterogeneous graph for modeling homogeneous
robot teams

Input: STN, locations Loc, robots r and their partial schedules, available actions
uavail

Output: Heterogeneous graph representation
1 Run Johnson’s algorihtm on STN to find its minimum distance graph, gd;
2 Remove all fi’s from gd, except f0;
3 Use gd as the new STN and si as the task node of τi;
4 foreach robot rj do
5 Add a robot node, rj;
6 foreach τm assigned to rj do
7 Add an edge τm → rj;
8 end
9 end

10 Connect robot nodes with each other;
11 foreach location Lk do
12 Add a location node, Lk;
13 foreach τm located in Lk do
14 Add an edge τm → Lk;
15 end
16 end
17 Connect location nodes with each other;
18 Add a state node st, connect all other nodes to it;
19 foreach un =< τn, rn >∈ uavail do
20 Add a value nodes vn;
21 Add an edge τn → vn;
22 Add an edge rn → vn;
23 Add an edge st→ vn;
24 end
25 Add self-loops;
26 return gd.

52



(a) Original STN

(b) Table of shortest distances from each source (src) node
to each destination (dst) node

(c) Simplified Minimum Distance Graph

Figure 4.2: An example STN consisting of 3 tasks: (a) the original STN with placeholder
start and finish nodes, s0 and f0; (b) The shortest distances between all pairs of source (src)
and destination (dst) nodes found by an all pairs shortest path (APSP) algorithm, with blue
denoting the nodes/edges that are maintained in the simplified graph and orange denoting
nodes/edges that are pruned; (c) the simplified minimum distance graph with fi removed
for each task, with the duration of each task encoded in the input node features

53



after running Johnson’s algorithm [140] on the original STN to find its minimum distance

graph, we remove all finish time nodes (except f0) from the distance graph to obtain a

new STN. The simplified STN, using only half the nodes, still reserves all the necessary

temporal constraints. In this way, each task can be represented by its start time node with

task duration now serving as its node feature. Figure 4.2 illustrates this process with an

example problem consisting of 3 tasks. Tasks 1, 2, and 3 are shown with durations 4, 8, and

7, respectively. Task 3 has a deadline constraint: f3 ≤ 8. There is a wait constraint between

task 1 and task 2: s1 ≥ f2+3. Distances in the blue cells of Figure 4.2b are used to construct

the graph in Figure 4.2c. The representation shown in Figure 4.2c effectively describes the

temporal constraint representation in Figure 4.2a for the purposes of performing an all-

pairs shortest path computation as input to our GNN model. The task durations represented

by edges in Figure 4.2a are preserved implicitly in the graph edges shown in Figure 4.2c

and are captured by our GNN as node features for the corresponding tasks. Given the

partial schedule at the current state, we generate the initial input features of each task node

as follows: the first two dimensions are the one-hot encoding of whether a task has been

scheduled [1 0] or not [0 1]; the next dimension is the task duration. We denote the edge

type from STNs using (task
temporal−−−−−→ task) as they encode the temporal constraints.

To extend the simplified STN, we add robot and location nodes equaling the number

of robots and locations in the problem, respectively. A robot node is connected to the task

nodes that have been assigned to it, with edge relation (task
assignedTo−−−−−−→ robot). All robots

are connected with each other to enable message flow between them, with edge relation

(robot
communicate−−−−−−−→ robot). The initial feature of a robot node is the number of tasks

assigned so far. In a similar manner, a location node is connected to the task nodes in that

location, with edge relation (task
locatedIn−−−−−→ location). All location nodes are connected

with each other, with the relation (location
near−−→ location). The initial feature of a location

node is the number of tasks in that location.

As the Q-function is based on state-action pairs, we also expect the network to learn a

54



state embedding of the problem from all the task, robot, and location node embeddings. To

achieve this, we add a state summary node into the graph structure. The state summary node

is connected to all the task, robot and location nodes, with edge types (task
in−→ state),

(robot
in−→ state), (location in−→ state), respectively. The initial features of the graph

summary node include the number of total tasks, the number of currently scheduled tasks,

the number of robots and the number of locations.

Once the node embeddings are computed using the heterogeneous graph, it is possible

to learn a separate Q network consisting of several fully-connected (FC) layers to predict

the Q-value of a state-action pair, taking as input the concatenation of embeddings from cor-

responding state, task, and robot nodes. However, designing a separate Q network on top of

GNNs is computationally expensive and not memory efficient, especially when evaluating

a large number of state-action pairs at once for parallel computing. Instead, we propose to

add value nodes in the graph to directly estimate the Q-values. A value node is connected

to corresponding nodes with edge types denoted as (task
to−→ value), (robot to−→ value),

(state
to−→ value). The initial feature of a value node is set to 0. During evaluation, the

heterogeneous graph is constructed with the needed Q-value nodes covering task nodes in

τavail and robot node of rj . As we are calculating the minimum distance graph of a STN

while constructing the heterogeneous graph, we can further filter out the tasks in τavail of

which the lower bound of task start time is greater than the current time. For all nodes,

self-loops are added so that their own features from previous layers are considered for the

next layer’s computation. The metagraph (or network schema) of the graph constructed

with Algorithm 2 is shown in Figure 4.3a, which summarizes all the node types and edge

types.

Extension for Heterogeneous Task Completion

In a setting of heterogeneous robot teams, the duration of a task depends on the robot which

is assigned to the task. We recall that our problem state consists of a partial schedule in

55



(a) Homogeneous Robot Team Metagraph

(b) Heterogeneous Robot Team Metagraph

Figure 4.3: Metagraph of the heterogeneous graph built from the STN by adding robot, lo-
cation, state, and value nodes: (a) team of homogeneous robots; (b) team of heterogeneous
robots

56



which some tasks have already been assigned an agent and then sequenced. For those tasks,

we know their duration, which is given by the assigned robot (i.e., duri,r for task τi assigned

robot r). However, the duration of unscheduled tasks is yet to be determined, as no robot

has been assigned. As such, Equation 4.1 can only be described with a relaxed set bound as

shown in Equation 4.2. Here duri,min, duri,max are the minimum and maximum amounts of

time task τi can be finished. Specifically, duri,min = min
r

duri,r and duri,max = max
r

duri,r.

duri,min ≤ fi − si ≤ duri,max,∀τi ∈ {unscheduled} (4.2)

Unfortunately, this set bound nullifies our novel simplification trick in Section 3.3.1

for reducing the graph’s–and in turn our algorithm’s–complexity. To recover our simpli-

fication in this more expressive setting, we extend the set of task node features to include

multiple descriptive statistics describing the task’s possible completion times among all

robots where the size is non-parametric in the number of robots. Specifically, the input

features of task τi consists of the minimum, maximum, mean and standard deviation of

{duri,r,∀r ∈ r}. This modeling approach achieves a potent balance between model com-

plexity and expressivity.

Additionally, we encode information about completion times for unscheduled tasks by

augmenting the heterogeneous graph obtained from Algorithm 2. We add two new edge

types between nodes of unscheduled tasks and robot nodes: (task
takeT ime−−−−−→ robot) and

(robot
useT ime−−−−−→ task). The edge attribute encodes the time used for a robot to complete the

task connected via this edge.

A further change we make to Algorithm 2 concerns the handling of edges between

location nodes. Because locations are expanded to 2D spatial areas in the heterogeneous

robot case, we only connect locations that fall within the minimum allowed safety distance

to represent the proximity constraints, instead of connecting location nodes with each other.

Figure 4.3b shows the augmented metagraph with heterogeneous robot teams, includ-

ing the newly-added edge types between robot nodes and task nodes. The edge type

57



(location
near−−→ location), although shares the same name as in Figure 4.3a, now encodes

the 2D proximity constraints.

4.3.2 Heterogeneous Graph Attention Layer

Homogeneous Robot Case

The feature update process in a HetGAT layer is conducted in two steps: per-edge-type

message passing followed by per-node-type feature reduction. During message passing,

each edge type uses a distinct weight matrix, WedgeName ∈ RD×S , to process the input

feature from the source node, Nsrc, and sends the computation result to the destination

node, Ndst’s mailbox. S is the input feature dimension of Nsrc, and D is the output fea-

ture dimension of Ndst. In the case that several edge types share the same name, we use

WsrcName,edgeName to distinguish between them. For example, we distinguish edge types

coming into the state nodes by Wtask,in, Wrobot,in, Wloc.,in and Wstate,in. As for edge type

(task
temporal−−−−−→ task) which is the only weighted edge in our heterogeneous graph formu-

lation of homogeneous robots, the edge attribute, edge, is also sent after transformed by

WtempEdge ∈ RD×1.

Feature reduction happens inside each node’s mailbox. For each edge type that a node

has, the HetGAT layer computes per-edge-type aggregation result by weighing received

messages, stored in its mailbox, along the same edge type with normalized attention co-

efficients that are feature-dependent and structure-free. Those results are then merged to

compute a node’s output feature. We note that, in the case of coordinating teams of homo-

geneous robots, task type nodes only ever serve as destination nodes for other task nodes.

Task nodes can serve as source nodes for non-task type nodes (e.g., robot nodes). This flow

of information from task nodes to robot nodes enables us to extract embeddings for each

robot. Embeddings for tasks are extracted from the underlying STN, which already cap-

tures information regarding the robots’ homogeneous task completion times. The feature

update formulas of different node types are listed in Equation 4.3-Equation 4.7.

58



Task h′
i = σ

( ∑
j∈Ntemporal(i)

αtemporal
ij (Wtemporalhj

+WtempEdgeedgeji)
)

(4.3)

Robot h′
i = σ

( ∑
j∈NassginedTo(i)

αassignedTo
ij WassignedTohj

+
∑

k∈Ncomm.(i)

αcomm.
ik Wcomm.hk

)
(4.4)

Location h′
i = σ

( ∑
j∈NlocateIn(i)

αlocatedIn
ij WlocatedInhj

+
∑

k∈Nnear(i)

αnear
ik Wnearhk

)
(4.5)

State h′
i = σ

( ∑
j∈Ntask,in(i)

αtask,in
ij Wtask,inhj

+
∑

k∈Nrobot,in(i)

αrobot,in
ik Wrobot,inhk

+
∑

m∈Nloc.,in(i)

αloc.,in
im Wloc.,inhm

+Wstate,inhi

)
(4.6)

Value h′
q = σ

(
Wtask,toht +Wrobot,tohr

+Wstate,tohs +Wvalue,tohq

)
(4.7)

In Equation 4.3-Equation 4.7, NedgeName(i) is the set of incoming neighbors of node

59



i along a certain edge type, and σ() represents the ReLU nonlinearity. Prior work has

shown that attention mechanisms are beneficial for representation learning on homoge-

neous graphs [141, 28]. Thus, we extend the attention models from prior work to reason

about task scheduling with heterogeneous graph networks. Specifically, the per-edge-type

attention coefficient, αedgeName
ij , is calculated based on source node features and destination

node features (plus edge attributes if applicable). More specifically, the attention coeffi-

cient for edge type (task
temporal−−−−−→ task) is calculated by Equation 4.8, where a⃗Ttemporal is

the learnable weights, || is the concatenation operation, and σ′() is the LeakyReLU non-

linearity (with a negative input slope of 0.2). Softmax function is used to normalize the

coefficients across all choices of j.

αtemp.
ij = softmaxj

(
σ′
(
a⃗Ttemp.[

Wtemp.h⃗i||Wtemp.h⃗j||WtempEdgeedgeji

] ))
(4.8)

For edge types connecting the same type of nodes, the attention coefficients can be

computed by Equation 4.9.

αedgeName
ij = softmaxj

(
σ′
(

a⃗TedgeName

[
WedgeNameh⃗i||WedgeNameh⃗j

] ))
(4.9)

However, Equation 4.9 does not hold for edges where the source node, hj , and desti-

nation node, hi, are of different node types. Take the edge type (task
assignedTo−−−−−−→ robot)

as an example, the message passing weights, WassignedTo, are only defined and trained

for processing the source node type features (of task nodes) and are thus not adequate

for processing the destination node type features (of robot nodes) for attention computa-

60



tion. Therefore, we change Equation 4.9 into Equation 4.10 by using both WedgeName and

WdstType to account for differing types of source and edge nodes. While these additional

parameters improve model expressivity, there is a cost in terms of computational memory

and speed. In practice, we find that we can achieve a helpful tradeoff between expressivity

and computational costs by employing weight sharing. Specifically, we set WdstType to be

equal to Wcomm., Wnear, and Wstate,in when the destination node type is robot, location and

state, respectively.

αedgeName
ij = softmaxj

(
σ′
(

a⃗TedgeName

[
WdstTypeh⃗i||WedgeNameh⃗j

] ))
(4.10)

To stabilize the learning process, we utilize the multi-head attention proposed in [141],

adapting it to fit the heterogeneous case. We use K independent HetGAT layers to com-

pute node features in parallel and then merge the results as the multi-headed output via

the concatenation operation for each multi-head layer in ScheduleNet, except for the last

layer which employs averaging. Considering that ScheduleNet utilizes a fully convolu-

tional structure where the last graph layer directly predicts Q-values as the 1-dimensional

output feature of value nodes, merging multi-head results with concatenation is no longer

viable for the last layer as it would give a K-dimensional output.

Extension for Heterogeneous Task Completion

Because the newly-added edge type (robot
useT ime−−−−−→ task) only accounts for unscheduled

tasks, the feature update formula for scheduled tasks remains the same as Equation 4.3. For

unscheduled tasks, we change Equation 4.3 by including terms accounting for the message

coming through the new edge type, as shown in Equation 4.11.

61



h′
i = σ

( ∑
j∈Ntemporal(i)

αtemporal
ij (Wtemporalhj

+WtempEdgeedgeji)

+
∑

k∈NuseTime(i)

αuseT ime
ik (WuseT imehk

+WuseT imeEdgeedge
′

ki

)
(4.11)

In Equation 4.11, edge′

ki is the attribute of the new edge, and the corresponding attention

coefficient, αuseT ime
ik , is computed by Equation 4.12.

αuseT ime
ik = softmaxk

(
σ′
(
a⃗TuseT ime[

Wtemp.h⃗i||WuseT imeh⃗k||WuseT imeEdgeedge
′

ki

] ))
(4.12)

Similarly, the addition of new edge type (task takeT ime−−−−−→ robot) changes the feature up-

date equation of robot nodes from Equation 4.4 in the homogeneous case to Equation 4.13

in the heterogeneous case.

h′
i = σ

( ∑
j∈NassginedTo(i)

αassignedTo
ij WassignedTohj

+
∑

k∈Ncomm.(i)

αcomm.
ik Wcomm.hk

+
∑

m∈NtakeTime(i)

αtakeT ime
im (WtakeT imehm

+WtakeEdgeedge
′′

mi

)
(4.13)

62



In Equation 4.13, edge′′
mi is the attribute of the corresponding edge, and the correspond-

ing attention coefficient, αtakeT ime
im , is computed according to Equation 4.14.

αtakeT ime
im = softmaxm

(
σ′
(
a⃗TtakeT ime[

Wcomm.h⃗i||WtakeT imeh⃗m||

WtakeT imeEdgeedge
′′

mi

]))
(4.14)

Even though locations are extended from 1D to 2D areas, Equation 4.5 still applies to

location nodes. Because now Nnear(i) only considers neighbor locations falling within the

allowed safety distance instead of all locations, and Wnear, α
near
ik will learn to encode the

corresponding proximity constraints. Finally, we note that the update equations for state

and value nodes (Equation 4.6 and Equation 4.7) remain the same as in the homogeneous

robot case.

4.4 Experimental Results on Homogeneous Robots

In this section, we evaluate the performance of ScheduleNet on problems involving ho-

mogeneous robot teams. We show the results of optimizing a generic objective function,

which is the minimization of total makespan. In subsection 4.4.4, we also consider the

application-specific objective function mentioned in subsection 4.2.1, in which we mini-

mize the weighted sum of task completion time, to investigate how ScheduleNet general-

izes under different use cases.

4.4.1 Dataset

To evaluate the performance of ScheduleNet, we generate random problems based on [142].

We simulate multi-agent construction of a large workpiece, e.g. an airplane fuselage, with

three different configurations: a two-robot team, a five-robot team, and a ten-robot team.

63



Task duration is generated from a uniform distribution in the interval [1, 10]. Approximately

25% of the tasks have absolute deadlines drawn from a uniform distribution in the interval

[1, N × T ], where N is the number of total tasks. We use T = 5 for two-robot teams,

T = 2 for five-robot teams, and T = 1 for ten-robot teams. Approximately 25% of the

tasks have wait constraints, and the duration of non-zero wait constraints is drawn from a

uniform distribution in the interval [1, 10]. We set the number of locations in a problem to

be the same as the number of robots, and each task’s location is picked randomly.

For each team configuration, problems are generated in three scales: small (16-20

tasks), medium (40-50 tasks) and large (80-100). For each problem scale, we generate

1,000 problems for testing. To train the ScheduleNet model, we generate another 1,000

small problems with two-robot teams. We run Gurobi with a cutoff time of 15 minutes on

generated problems to serve as exact baselines for test set and expert demonstrations for

training set of imitation learning. This resulted in a total of 17,513 transitions for train-

ing. To further examine the scalability of ScheduleNet, we also generate 100 ten-robot

team problems in extra-large scale (160-200 tasks), and set the Gurobi cutoff time to be 1

hour, as the MILP formulation involves 300,000+ general constraints and 160,000+ binary

variables.

4.4.2 Benchmark

We benchmark ScheduleNet against these methods:

• EDF – A ubiquitous heuristic algorithm, earliest deadline first (EDF), that selects

from a list of available tasks the one with the earliest deadline, assigning it to the first

available worker.

• Tercio – A state-of-the-art scheduling algorithm for this problem domain, Tercio [22].

Tercio is a hybrid algorithm that combines mathematical optimization for task allo-

cation and an analytical sequencing test to ensure temporal and spatial feasibility.

Hyperparameters are chosen from [22].

64



(a) (b) (c)

Figure 4.4: Evaluation results on problems of two-robot teams of homogeneous robots: (a)
Small problems; (b) Medium problems; (c) Large problems

• HomGNN – A neural-network-based method proposed in [143]. Their method uses

a homogeneous GNN to exact problem embedding from the STN, and a separate Q-

network consisting of two FC layers to predict the Q-value. We denote this model as

HomGNN and use the same hyper-parameters in [143].

• Exact – Gurobi, a commercial optimization solver widely used for mixed integer

linear programming. Its results represent the exact baseline.

4.4.3 Evaluation Results

Metrics – For minimizing the makespan, we use the following metric for evaluation pur-

pose. M1: Percentage of problems solved within optimality ratio. A problem is considered

solved by an algorithm if the ratio, r, between the objective value it finds and the optimal

value is within a certain range (e.g., r =
zalgorithm
zoptimal

≤ 1.1). Gurobi solutions are used as

the optimal value. If the algorithm finds a solution of the problem which Gurobi fails to

solve within cutoff time, we set r = 1 on this problem during evaluation. By calculating

this metric with different optimal ratios, we can obtain a comprehensive view of how the

solution quality an algorithm finds is distributed.

Model Details – We implement ScheduleNet using PyTorch [144] and Deep Graph Library

[145]. The ScheduleNet used in training/testing is constructed by stacking four multi-head

HetGAT layers (the first three use concatenation, and the last one uses averaging). The

65



(a) (b) (c)

Figure 4.5: Evaluation results on problems of five-robot teams of homogeneous robots:
(a) Small problems; (b) Medium problems; (c) Large problems. For 40% of the large
problems, ScheduleNet’s solutions outperform Gurobi within cutoff time as denoted by
data points left of the 1.0 optimality ratio

feature dimension of hidden layers = 64, and the number of heads = 8. We set γ = 0.99,

D = 3.0 and used Adam optimizer [134] through training. The training procedure used a

learning rate of 10−4, λ1 = 0.9, λ2 = 0.1, qo = 3.0 and batch size = 8. Both training and

evaluation were conducted on a Quadro RTX 8000 Graphics Processing Unit (GPU).

The ScheduleNet was trained on small problems of two-robot teams and the same

model was evaluated on all the different problem scales and team configurations. As

HomGNN is not scalable in number of robots, for each team configuration, we trained

a new model on 1000 small problems and used it for evaluation on the rest. Figure 4.4-

Figure 4.6 compared the evaluation results of different methods using M1, where optimal-

ity ratio ranges from 1 to 2 with intervals of 0.05 by default.

For small problems, as far as small optimal ratio (r ≤ 1.2) is concerned, ScheduleNet

outperformed three other heuristics (EDF, Tercio, and HomGNN) by a large margin, and

achieved significantly closer results to the exact method. This result shows the effectiveness

of ScheduleNet in finding high-quality feasible schedules. The only case where HomGNN

performed similarly was when examined under a large optimal ratio (r ≥ 1.8), indicating

HomGNN was able to find more low-quality solutions, which is often not preferred.

For medium problems, both EDF and Tercio tended to find high-quality schedules, but

with a low percentage, while HomGNN found more feasible low-quality solutions. Again,

66



(a) (b)

(c) (d)

Figure 4.6: Evaluation results on problems of ten-robot teams of homogeneous robots: (a)
Small problems; (b) Medium problems; (c) Large problems; (d) Ex-Large problems. In the
Large and Ex-Large problems cases, ScheduleNet is able to find solutions that outperform
Gurobi as denoted by data points left of a 1.0 optimality ratio

(a) (b) (c)

Figure 4.7: Running time statistics on different problems of homogeneous robots: (a) Two-
robot teams; (b) Five-robot teams; (c) Ten-robot teams. Error bars denote the 25th and
75th percentile. Results for EDF, Tercio, and HomGNN are not shown in cases when no
solutions are found within the allowed cutoff time

67



ScheduleNet model significantly outperformed the other three methods. Even though only

trained with small problems, the performance of ScheduleNet remained consistent in solv-

ing medium and large problems, where a notable performance drop was observed for other

methods. HomGNN failed to find solutions on large problems within Gurobi cuttoff time

(at least 40 minutes vs. 15 minutes), thus was not reported. During evaluation on large

and ex-large problems, we found that for some problems the solutions found by Sched-

ulerNet had better makespans than those found by Gurobi under its cutoff time. Therefore,

we extended the opimality ratio to the smallest value under which ScheduleNet still solved

at least one problem in Figure 4.5c, Figure 4.6c and Figure 4.6d. For ex-large problems,

Gurobi failed to find most of the feasible solutions within the one hour cuttoff time (8

solved out of 100), while ScheduleNet managed to find substantially more feasible sched-

ules (79 solved). These results demonstrated that our model can transfer knowledge learned

on small problem to help solve larger problems, by exploiting the scalabililty within het-

erogeneous graph formulation.

We reported computation time of different methods in Figure 4.7, where only feasible

solutions were counted for each method. Due to differences in implementation details,

CPU/GPU utilization, besides directly comparing the raw numbers, we also focused on

the time changes of each method with respect to increasing problem sizes. When prob-

lem size increased, the performance of ScheduleNet stayed consistent with an affordable

increase in computation time, which was less than Gurobi. This was largely due to the

fully convolutional structure as well as the STN simplification trick that greatly reduced

its model complexity and computation cost. As ten-robot team imposes a larger number

of robot-related constraints than other team sizes, it took Gurobi less time to find solutions

for ten-robot problems than two- and five-robot problems. In contrast, HomGNN failed

to scale up to 100 tasks within Gurobi cuttoff time. This was mainly due to its structure,

where FC layers are stacked on top of a GNN for Q-value prediction, making the model

complexity proportional to 2×Ntask×Naction during parallel evaluation. As a comparison,

68



(a) (b)

Figure 4.8: Evaluation results of minimizing the weighted sum of completion times on
five-robot teams of homogeneous robots: (a) Small problems; (b) Medium problems

the structure complexity of ScheduleNet is only proportional to Ntask+Naction, considering

Nrobot, Nlocation ≪ Ntask.

4.4.4 Application-Specific Objective Function

To evaluate the performance of our proposed method under a different objective function,

z =
∑

i cifi, we generated problems involving five-robot teams with two scales: small and

medium, following the same parameters as used in subsection 4.4.1. Additionally, each task

was associated with a real number cost, c, drawn from a uniform distribution in the interval

[1, 10]. This cost is added to the input features of task nodes. For each problem scale,

1,000 problems were generated for testing. We generated 1000 small problems for training

the ScheduleNet. We ran Gurobi on all problems with a cutoff time of 15 minutes to serve

as exact baselines. We used the same set of parameters during training as used in the total

makespan case, except qo = 30, considering the reward was generally larger. We compare

ScheduleNet against a Highest Cost Tardiness First (HCTF) priority heuristic which assigns

the task with the highest cost to the first available worker in every scheduling decision.

Figure 4.8 shows the evaluation results. For r ≤ 1.2 both methods solved similar number

of problems. However, under larger optimaliy ratios, ScheduleNet started to outperform

69



HCTF, resulting in a better overall performance.

4.5 Experimental Results on Heterogeneous Task Completion

In this section, we evaluate the performance of ScheduleNet for coordinating robots that

are heterogeneous in task completion time with the objective of minimizing the team’s

makespan.

4.5.1 Dataset and benchmark

We generate random problems following the same setting and hyper-parameters as de-

scribed in Section subsection 4.4.1, with the following two differences:

1. For each task, τi, we sample a mean value from [1, 10] and a gap value from [1,

3], both with uniform distributions. Then we sample duri,r for each robot from a

uniform distribution in the interval [mean − gap,mean + gap] (clamped at [1, 10]

if applicable).

2. The task locations are randomly sampled from the 2D map. We use 2x2 for two-robot

teams, 3x3 for five-robot teams, and 5x5 for ten-robot teams. The safety distance is

set to 1. If |Loci − Locj| ≤ 1, then (τi, τj) ∈ Lproximity.

Considering that HomGNN [143] is not designed for handling heterogeneous task com-

pletion among robots, we benchmark ScheduleNet against the remaining set of methods

described in subsection 4.4.2: EDF, Tercio and Exact (i.e., a MILP solved by Gurobi).

4.5.2 Evaluation Results

Model Details – For performance evaluation, we use the same M1 metric as used in sub-

section 4.4.3. The ScheduleNet model also consisted of four multi-head HetGAT layers

(the first three use concatenation, and the last one uses averaging). The feature dimension

of hidden layers = 64, and the number of heads = 8. We set γ = 0.95, D = 3.0 and

70



(a) (b) (c)

Figure 4.9: Evaluation results on problems of two-robot teams of heterogeneous robots: (a)
Small problems; (b) Medium problems; (c) Large problems

(a) (b) (c)

Figure 4.10: Evaluation results on problems of five-robot teams of heterogeneous robots:
(a) Small problems; (b) Medium problems; (c) Large problems

used Adam optimizer. The training procedure used a learning rate of 3 × 10−4, λ1 = 0.9,

λ2 = 0.3, qo = 3.0 and batch size = 8. Both training and evaluation were conducted on a

Quadro RTX 8000 GPU.

Same as in the homogeneous robot case, we trained the ScheduleNet for heterogeneous

robot teams on small problems of two-robot teams and evaluate the same model on vary-

ing problem scales and team configurations. Evaluation results using M1 are shown in

Figure 4.9-Figure 4.11 where optimality ratios range from 1 to 2 with intervals of 0.05 by

default.

For small and medium problems, ScheduleNet outperformed EDF and Tercio for medium-

to-large optimality ratios (r ≥ 1.2) other than small problems of ten-robot teams, and

obtained results close to Tercio for r ≥ 1.5 while consistently beating EDF. The improve-

ment in performance of ScheduleNet over the baseline models was particularly significant

71



(a) (b)

(c) (d)

Figure 4.11: Evaluation results on problems of ten-robot teams of heterogeneous robots:
(a) Small problems; (b) Medium problems; (c) Large problems; (d) Ex-Large problems

in medium problems of two-robot and five-robot teams in which ScheduleNet found feasi-

ble solutions for more than half of the problems whereas Tercio and EDF found less than

15% for medium-to-high optimality ratios (r ≥ 1.2). Compared to evaluation results for

homogeneous robots, high-quality schedules for heterogeneous robots were much harder

to find for all three methods with a much lower success rate overall in finding a feasible

schedule.

For large and extra-large problems, we extended the optimality ratios (measured rel-

ative to the solution returned by Gurobi) to the smallest value under which ScheduleNet

solved at least one problem. In addition to finding schedules that were of higher quality

72



(a) (b) (c)

Figure 4.12: Running time statistics on different problems of heterogeneous robots: (a)
Two-robot teams; (b) Five-robot teams; (c) Ten-robot teams. Error bars denote the 25th
and 75th percentile

than those found by Gurobi for ∼ 10% of problems, ScheduleNet models significantly

outperformed EDF and Tercio by finding feasible solutions for >30% of large problems

compared to less than 5% by the latter baselines. Notably, for extra-large problems,

EDF, Tercio and Gurobi all failed to find any feasible solutions, whereas ScheduleNet

was able to find schedules for up to 24% of the problems. These results further demon-

strate ScheduleNet’s capability of generalizing learned knowledge to solving larger unseen

problems.

Running time statistics of different methods were shown in Figure 4.12, where we

counted only feasible solutions found by each method. Because these problems of coor-

dinating heterogeneous robot teams were much harder than the homogeneous robot case

(Figure 4.7), computation times in heterogeneous case (Figure 4.12) increased for all three

methods. Furthermore, Gurobi timed out significantly more frequently. For ScheduleNet,

similar time change patterns with respect to increasing problem scales can be observed as

the homogeneous robot case. Nonetheless, computation times of ScheduleNet are shorter

than those of Gurobi and show a much better balance between solution quality and solving

speed than EDF and Tercio, making ScheduleNet much more viable in practice.

73



(a)

(b)

Figure 4.13: Demonstration of a 5-robot team completing tasks for airplane fuselage as-
sembly. The ScheduleNet outputs for each step are plotted at the bottom, with the selected
task assignment highlighted in red. (a) homogeneous robots with 1D task locations; (b)
heterogeneous robots with 2D task locations

74



4.6 Robot Demonstration

We demonstrate our trained ScheduleNet model to coordinate the work of a five-robot team

in a simulated environment for airplane fuselage construction, covering both homogeneous

robot case in 1D space and heterogeneous robot case in 2D space. Our demo leverages

the Robotarium, a remotely accessible swarm robotics research testbed with GRITSBot X

robots [136]. Examples of scheduling homogeneous robot teams and heterogeneous robot

teams are shown in Figure 4.13a and Figure 4.13b, respectively. The ScheduleNet outputs

for each step are depicted in bar plots at the bottom of each figure, with the selected task

assignment highlighted in red. A detailed breakdown of the scheduling process with those

examples can be found in the supplementary video.

4.7 ScheduleNet Discussion

Our empirical results and analysis demonstrates that ScheduleNet establishes a state-of-

the-art in autonomously learning heuristics for coordinating teams of robots in a computa-

tionally efficient framework. In particular, we demonstrate that our approach:

1. Outperforms prior work in multi-robot scheduling both in terms of schedule opti-

mality and the total number of feasible schedules found (Figure 4.4-Figure 4.6, Fig-

ure 4.9-Figure 4.11).

2. Achieves this superior performance in a scalable framework that allows us to train via

imitation-based Q-learning on smaller problems to provide high-quality schedules on

much larger problems (Figure 4.6d, Figure 4.11d).

3. Autonomously learns scheduling policies on multiple application domains (Figure 4.5

vs. Figure 4.8, attaining an order of magnitude speedup vs. an exact method (Fig-

ure 4.7, Figure 4.12).

75



4. Leverages a highly flexible framework that models homogeneous robots and hetero-

geneous robots via graph augmentation. Given the high expressiveness of heteroge-

neous graphs, our research opens up future opportunities in designing graph-based

learning algorithms in multi-robot research.

We also note our algorithm’s limitations. First, high-quality expert data are required to

train ScheduleNet as the loss function assumes the experts choose the optimal scheduling

action at each time step. Therefore, sub-optimal expert data would likely lead to degrade

model performance. In this chapter, we assume it is practical to obtain high-quality solu-

tions for small-scale problems where the problem complexity allows for exact algorithms

to be used. Nonetheless, we propose in future work to investigate computational formu-

lations of ScheduleNet that can explicitly reason about sup-optimality in expert schedul-

ing demonstrations. Second, although ScheduleNet scales to different problem and team

sizes, we observe a performance drop when the problem scale increases. Considering that

our approach only trains on small scale problems, applying the learned representation to

large scale problems, we propose further exploration into fine-tuning and transfer learning

methods for improving the performance of ScheduleNet as problem sizes increases. An-

other limitation is that ScheduleNet assumes task durations to be deterministic and known

a priori. Task performance in the real world is subject to many sources of uncertainty or

randomness [86], such as machine breakdowns, unexpected releases of high priority jobs,

or uncertainty in the processing times. Although the speedup of ScheduleNet vs. exact

methods allows us to dynamically re-schedule in a timely manner in response to unex-

pected disturbance during execution, we propose to extend our approach to reason about

stochasticity in task completion times to ensure robust schedule execution.

4.8 Summary

We presented a novel heterogeneous graph attention network model, called ScheduleNet,

to learn a scalable policy for multi-robot task allocation and scheduling problems. By intro-

76



ducing robot- and proximity-specific nodes into the simple temporal network that encodes

the temporal constraints, we obtained a heterogeneous graph structure that is nonparametric

in the number of tasks, robots and task resources. We showed that the model is end-to-end

trainable via imitation learning with expert demonstrations, and generalizes well to large,

unseen problems. Empirically, we showed that our method outperformed existing state-of-

the-art methods in a variety of testing scenarios involving both homogeneous robot teams

and heterogeneous robot teams.

77



CHAPTER 5

RECURRENT SCHEDULE PROPAGATION FOR COORDINATING

STOCHASTIC HUMAN-ROBOT TEAMS

5.1 Introduction

In this chapter, we focus on the problem of multi-agent task allocation and scheduling [9]

with mixed human-robot teams over multiple iterations of the same coordination problem.

Our work accounts for and leverages stochastic, time-varying human task performance to

quickly solve task allocation problems among team members to achieve a high-quality

schedule with respect to the application-specific objective function while satisfying the

temporal constraints (i.e., upper and lower bound deadline, wait, and task duration con-

straints) and spatial constraints (i.e., safety distance constraints).

Compared to task scheduling within multi-robot systems, the inclusion of human work-

ers makes scheduling even more challenging because, while robots can be programmed to

carry out certain tasks at a fixed rate, human workers typically have latent, dynamic, and

task-specific proficiencies. Effective collaboration in human-robot teams requires utilizing

the distinct abilities of each team member to achieve safe, effective, and fluent execution.

For these problems, we must consider the ability of humans to learn and improve in task

performance over time. To exploit this property, a scheduling algorithm must reason about

a human’s latent performance characteristics in order to decide whether to assign the best

worker to a task now versus giving more task experience to a person who is slower but

has a greater potential for fluency at that particular task. However, it is non-trivial to infer

human strengths and weaknesses while ensuring that the team satisfies requisite schedul-

ing constraints, due to the uncertainty introduced by variability in task execution behavior

across different individuals, as well as uncertainty on future task performance affected by

78



human’s learning effects with practice [12]. Moreover, a lack of consideration for human

preferences and perceived equality may, in the long run, put efficient behavior and fluent

coordination at a contradiction [146].

Recent advances in scheduling methods for human-robot teams have shown a signif-

icant improvement in the ability to dynamically coordinate large-scale teams in final as-

sembly manufacturing [34, 22]. Prior approaches typically rely on an assumption of de-

terministic or static worker-task proficiencies to formulate the scheduling problem as a

mixed-integer linear program (MILP), which is generally NP-hard [35]. Exact methods

are hard to scale and often fail to consider the time-varying stochastic task proficiencies of

human workers over multi-round schedule execution that could result in significant produc-

tivity gains. The heuristic approaches may be able to determine task assignments; however,

such approaches require domain specific knowledge that takes years to gain. We desire a

scalable algorithmic approach that can automatically learn to factor in human behavior for

fast and fluent human-robot teaming.

In Chapter 2 and Chapter 3, we show that graph neural networks can be combined with

imitation learning to efficiently solve multi-agent task allocation scheduling. However,

both RoboGNN and ScheduleNet requires deterministic environments with known agent

performance, making them not suitable for stochastic human-robot teams.

In this chapter, we propose a deep learning-based framework, called HybridNet, for

scheduling stochastic human-robot teams under temporospatial constraints. Figure 5.1

shows the overall framework operating for multi-round scheduling. HybridNet utilizes a

heterogeneous graph-based encoder and a recurrent schedule propagator. The encoder ex-

tracts high-level embeddings of the scheduling problem using a heterogeneous graph rep-

resentation extended from the simple temporal network (STN) [33]. By formulating task

scheduling as a sequential decision-making process, the recurrent propagator uses Long

Short Term Memory (LSTM) cells to carry out fast schedule generation. The resulting

policy network provides a computationally lightweight yet highly expressive model that is

79



Sample
a Task

(Task, Agent)
Picked

Whole Schedule

Agent Index

Sample
an AgentAgent Selector

Task Selector

Input to
LSTM

Task
Embeddings

Problem Instance

Reward /Makespan

Repetition Tracker

Round number

MuRSE HybridNet

Learning Curve Models

Human-Robot Teams
Temporospatial

Constraints

Step

Training

Single Assignment

Kalman Filter

Evaluate

Append

Encoder
Schedule Propagator

H
et

G
AT

 L
ay

er

H
et

G
AT

 L
ay

er

H
et

G
AT

 L
ay

er

Agent
Embedding

Agent
LSTM

State
Embeddings

State
LSTM

Figure 5.1: Overview of Multi-Round Scheduling Environment with HybridNet Scheduler.
Left: MuRSE is developed to simulate a human-robot scheduling problem over multiple
iterative rounds of execution, accounting for changes in human task performance. Right:
HybridNet consists of a heterogeneous graph-based encoder to extract high-level embed-
dings of the problem and a recurrent schedule propagator for fast schedule generation.

end-to-end trainable via reinforcement learning algorithms.

The primary contributions of our work are:

• We propose a deep learning-based framework, HybridNet, for human-robot coor-

dination under temporospatial constraints. HybridNet consist of a Heterogeneous

Graph-based encoder and a Recurrent Schedule Propagator. The encoder extracts

essential embeddings about the initial environment, while the propagator generates

the consequential models of each task-agent assignments based on the initial embed-

dings. Inspired by the sensory encoding and recurrent processing of the brain, this

approach allows for fast schedule generation, removing the need to interact with the

environment between every task-agent pair selection.

• We develop a virtual Multi-Round Scheduling Environment (MuRSE) for mixed

human-robot teams, capable of modeling the stochastic learning behaviors of hu-

man workers. MuRSE is OpenAI gym-compatible and we expect it to serve as a

testbed to facilitate the development of human-robot scheduling algorithms.

80



• We present a novel policy learning framework that jointly learns how to pick agents

and tasks without interacting with the environment between intermediate scheduling

decisions and only needs a single reward at the end of schedule. By factoring in the

action space into an agent selector and a task selector, we enable conditional policy

learning with HybridNet. We account for the state and agent models when selecting

the agents, and combine the information regarding the tasks, selected agent and the

state for task assignment. As a result, HybridNet is end-to-end trainable via Policy

Gradients algorithms.

• We conducted extensive experiments to benchmark the performance of HybridNet

across various problem configurations, plus detailed ablation studies. Results showed

HybridNet consistently outperformed prior human-robot scheduling solutions under

both deterministic and stochastic settings.

5.2 Human-Robot Team Scheduling Problem

5.2.1 Problem Statement

We consider the problem of coordinating a mixed human-robot team in the same space,

with temporal constraints related to probabilistic task completion times, wait and deadline

constraints as well as spatial constraints. The problem extends subsection 4.2.1 by includ-

ing stochastic human workers. We cast our problem in a multi-round setting and consider

iterative schedule generation followed by schedule execution for a fixed number of rounds.

We describe the components of the problem using an eight-tuple <nr,a, τ , d,w, rep,

Loc, z>. nr is the round number. a consists of all the agents available, with the first Nr

agents denoting robot workers and the next Nh denoting human workers. τ are the tasks to

be performed. Each task τi is associated with a start time si and a finish time fi and takes

a certain amount of time duri,a for agent a to complete. We introduce s0 as the time origin

and f0 as the time point when all tasks are completed. d contains the deadline constraints.

81



di ∈ d specifies before which task τi has to be completed, i.e., fi ≤ di. w is the set of

wait constraints. wi,j ∈ w specifies the wait time between task τi and task τj . rep stores

the repetition counter of every task-human worker pair. repri,j ∈ rep is the number of

repetitions that human worker aj has completed for task τi in the past nr − 1 rounds. Loc

is the list of all task locations. Finally, z is an objective function to minimize that can take

different forms depending on end-user applications.

A solution in each round consists of an assignment of tasks to agents and a schedule

for each agent’s tasks, such that all constraints are satisfied and the objective function is

minimized. As z varies depending on application-specific goals, we report the results of

minimizing the makespan (i.e., overall process duration, z = maxi(fi − f0)) as a generic

objective function. For multi-round scheduling, we consider either the makespan in the

final round or a weighted sum of makespan from all rounds.

In a multi-round scheduling environment, while robot task completion times are fixed

across different rounds, human task completion times are stochastic and not known be-

forehand, which prohibits us from passing the math formulation of the problem to a MILP

solver to search for optimal solutions. Also, human workers learn over time based on their

internal learning curve models [147], as shown in prior work for assembly tasks [12].

5.2.2 Multi-Round Scheduling Environment

The Multi-Round Scheduling Environment (MuRSE) is developed to simulate a human-

robot scheduling problem over multiple iterative rounds of execution, accounting for changes

in the task performance of human workers based on previous round. Each round is a step in

our OpenAI Gym-based environment implementation, which takes as input the complete

schedules of team members, and then simulates the outcome of schedule execution.

Each round’s execution is considered finished when all the tasks are assigned to one

of the agents or if the provided schedule is determined to be infeasible under the problem

constraints. The environment checks the feasibility of the provided schedule given the

82



constraints of the problem. If the schedule is feasible, the environment computes the total

duration of task completion. If the schedule does not satisfy the constraints, it is determined

to be infeasible and the list of tasks that could not been scheduled are returned.

We formulate scheduling in MuRSE as a Partially Observable Markov Decision Process

(POMDP) using seven-tuple ⟨S,A, T,R,Ω, O, γ⟩ shown below:

• States: The problem state S in MuRSE is a joint state consisting of all the agents’

states plus the problem constraints.

• Actions: Actions at round t within MuRSE refers to a complete set of task allocations

made up of a list of task-agent pairs, denoted as At = [⟨τi1 , aj1⟩, ⟨τi2 , aj2⟩, ...], to be

executed in order.

• Transitions: T corresponds to executing the action in MuRSE and proceed to next

round.

• Rewards: Rt is based on the scheduling objective a user wants to optimize. In sub-

section 5.2.5 we show how to compute Rt when optimizing makespan.

• Observations: Ω is the estimated performance of all the task-agent pairs, plus the

observable part of the problem state.

• Observation Function: O is handled by the Learning Curve Estimator explained in

the subsection 5.2.4.

• Discount factor, γ.

5.2.3 Agent Modeling

MuRSE stores the latent information of the whole team and models each agent as either

a robot or a human worker to keep track of each agent’s proficiency. The update of the

environment happens at the end of each round, allowing agents to modify themselves based

on their internal models based on the (task-agent) pairs executed this round.

83



Deterministic Robot Model

We generate the robot task completion times randomly through uniform distribution. Such

completion times are kept fixed across different rounds for each robot.

Stochastic Human Model

In our system, we leverage the findings of [12] to account for humans learning over time,

both in problem generation as part of the environment and a learning curve predictor as

part of the scheduling policy. The human learning curve follows an exponential function of

generic form over the course of multiple iterations as shown below:

y = c+ ke−βi (5.1)

where i is the number of iteration the human has previously executed a task and c, k, β

parameters.

We generate the human task completion times randomly based on Equation 5.1, and

set the environment to provide Deterministic and Stochastic performance for human learn-

ing. The task duration parameters of the human learning model, c, k, β are built from

the randomly sampled initial task completion time for the first round. For stochastic per-

formance, the standard deviations are sampled from a Normal distribution following the

method described in [12].

5.2.4 Learning Curve Estimator

The scheduler is given an estimate of the performance of the human agents for each task

based on the information about the task duration of the previous executions of the task-

agent pair through the Learning Curve Estimator as part of our MuRSE implementation.

We implement a black box model based on the insights from [12] to simulate a Stochastic

Human Learning Estimator. As an Agent completes a task in multiple rounds, its model

84



records the actual task completion duration, allowing Learning Curve Estimator to predict

the next task-agent duration more accurately.

We design our learning curve model update as an adaptive Kalman filter, where our state

vector is composed of learning curve parameters and our observation consists of observed

task duration over multiple rounds. We model each individual’s learning curve parameters

as a hidden but static state, with the best initial guess as the population average. The model

is further refined using the knowledge of the past experiences after the completion of each

round in MuRSE. The task performance of each task-agent assignment is recorded from the

actual agent performance to increase knowledge of the learning curve of the human agents.

We update the Kalman Filter using the observed human task durations after every round

following the Algorithm 2 from [12].

5.2.5 Reward Design

The total reward, Rt, at round t for the schedule generated by MuRSE is calculated based

on the feasible, A′, and infeasible, Ã′, subsets of task allocations, such that At = A′
t ∪ Ã′

t.

Specifically, the reward, Rt, is a combination of the expected reward for the feasible subset

of task-agent assignments, Rt(A
′
t), and the reward from the assignment of the infeasi-

ble subset of task-agent assignments, RtÃ
′
t. The infeasible subset reward is computed by

assigning every unfinished task to the agent that will complete it in the longest possible

duration, multiplied by an infeasibility penalty coefficient, Ci, as in Equation 5.2.

Rt =
∑
i∈A′

t

R (τi, ai) + Cimaxaj

∑
i∈Ã′

R (τi, aj)

 (5.2)

The total reward, Rt, favors schedules with more feasible task allocations and enables

learning from infeasible explorations during training.

85



5.3 HybridNet Scheduling Policy

As shown in Figure 5.1, our HybridNet framework consists of a heterogeneous graph-

based encoder to learn high level embeddings of the scheduling problem, and a recurrent

schedule propagator to generate the team schedule sequentially. This hybrid network archi-

tecture enables directly learning useful features from the problem structure, owing to the

expressiveness of heterogeneous graph neural networks, and at the same time efficiently

constructing the schedule with our LSTM-based propagator. As a result, HybridNet does

not require interaction with the environment between every task-agent pair selection, which

is necessary but computationally expensive in prior work [148, 149].

We denote the policy learned by HybridNet as πθ(A|S), with θ representing the param-

eters of the neural network. At round t, an action takes the form of an ordered sequence

of scheduling decisions, At = {d1, d2, ..., dn}, di = ⟨τi, aj⟩, where a latter decision, di, is

conditioned on its former ones, d1:i−1. Then, the policy can be factorized as

pθ(At|St) =
n∏

i=1

pθ(di|St, d1:i−1). (5.3)

Using the Recurrent Schedule Propagator, HybridNet recursively computes the conditional

probability, pθ(di|St, d1:i−1), for sampling a task-agent pair. At the end, the network col-

lects all the decisions and sends to the environment for execution.

5.4 Heterogeneous Graph Encoder

We cast the task scheduling problem for human-robot teams into a heterogeneous graph

structure and adapt the heterogeneous graph attention (HetGAT) layer proposed in [149].

Although the original HetGAT layer has been shown effective in representation learning of

multi-robot scheduling problems, it requires a deterministic setting and thus is not suitable

for reasoning with stochastic human workers. Here, we make several key innovations that

allow HetGAT to process stochastic human-robot teams.

86



5.4.1 HetGAT Layer for Stochastic Human-Robot Teams

At the start of each round for a given human-robot scheduling problem with observation

ot, we construct the STN from constraints following [149]. In a STN, each task, τi, is

represented by two event nodes: its start time node, si, and finish time node, fi. The

directed, weighted edges encode the temporal constraints associating corresponding nodes.

For stochastic human workers, the estimated task complete times from the learning curve

estimator are used.

Next, we build the heterogeneous graph representation by extending from the STN

to include agent nodes, location nodes and a state summary node. In a heterogeneous

graph, we use a three-tuple, <srcName, edgeName, dstName>, to specify the edge

type/relation that connects the two node types (from source node to destination node). The

metagraph summarizing all the node types and edge types of the heterogeneous graph is

shown in Figure 5.2.

Then, a HetGAT layer computes the output node features by performing per-edge-type

message passing followed by per-node-type feature reduction, while utilizing a feature-

dependent and structure-free attention mechanism.

Improvement #1

The first innovation we make lies in the STN simplification process. Here, we develop a

more efficient method than the one used in [149]. For every finish node, fi (i > 0), we

re-route all its incoming edges to its correspond start node, si. That is, we replace edge

(src → fi) with a new edge (src → si) by combing the corresponding edge weights.

Then we remove all finish time nodes (except f0) from the STN to obtain a simplified

version that reserves most of the information of the original STN while using only half the

nodes. In this way, each task can be represented by its start time node. We denote the edge

type from STNs using <task, temporal, task>as they encode the temporal constraints. To

facilitate message passing among task nodes, for each edge present in the simplified STN,

87



we add a reverse edge with the same edge weight, denoted as edge type <task, aug, task>.

Compared to the method used in [149], our method does not require finding the minimum

distance graph of the STN, which are not robust against stochastic task execution. The

re-routing also reduces the graph structure from a dense STN to a sparse one that are more

computationally efficient.

Improvement #2

In [149], the same edge features are passed as input to all HetGAT layers, making the edge

features used “shallow”. In HybridNet, we also learn “deep” embeddings for edge features.

This is achieved by assigning learnable weights to edge attributes and outputting the results

to be used for next HetGAT layer. Also, the edge attributes of relations <task, assignedTo,

agent>,<task, takeT ime, agent>, and <agent, useT ime, task> now use the estimated

duration and standard deviation of the corresponding (task, agent) pair instead of a single

value.

5.4.2 Encoder Network

We directly build our encoder on the graph by stacking several HetGAT layers sequentially

to obtain a fully graph convolutional structure that is nonparametric on problems sizes

and end-to-end trainable. The encoder utilizes multi-layer structure to extract high-level

embeddings of each node that will be send to the recurrent propagator for fast schedule

generation.

5.5 Recurrent Schedule Propagator

Prior work in GNN-based schedulers [148, 149] uses interactive scheduling to generate the

whole solution, which requires regenerating the graph representation and recomputing the

relevant embeddings between each task-agent assignment, which could be ineffective when

problem scales up. By utilizing an LSTM-based Recurrent Predictor, we propagate forward

88



useTime

inAgent State

takeTime

assignedTo
in

locatedIn

temporal

Task

aug

in

Location

near

Figure 5.2: Metagraph of the heterogeneous graph built from the STN by adding agent and
state summary nodes.

LSTM Cell
Task/Agent
Selectors

HetGAT
Encoder

Figure 5.3: LSTM based Schedule Propagator Model taking initial input from the Encoder
or the picked Task-Agent Assignment for Agent and State Encoding.

89



consequences of each assignment, recreating the encoded information without querying the

environment, leading to significantly reduction in computational complexity compared to

pure GNN-based methods.

As di = ⟨τi, aj⟩, one straightforward learning approach is to learn a policy that directly

outputs the task-agent pair, i.e., πjoint = p(τi|·) · p(aj|·). However, this approach fails

to capture the underlying composite and conditional nature of the scheduling decisions,

where the task to schedule is strongly dependent on the picked agent. Also, jointly out-

puting task and agent requires evaluating all possible task agent pair combiniations, which

is inefficient when problem size scales up. Instead, we explicitly factor the action space

into an agent selector and a task selector and aim to learn a conditional policy. That is,

πfactor = πagent(aj|·) · πtask(τi|aj, ·). This factorization allows the policy to reason about

the conditional dependence of tasks on heterogeneous agents.

The pseudo-code for scheduling generation with HybridNet is presented in algorithm 3.

The Recurrent Schedule Propagator takes as input the Task, State and Agent embeddings

generated by the Heterogeneous Graph Encoder and sequentially generates task-agent pairs

based on the encoded information. To predict the consecutive encoding of state and agents,

we use LSTM cells to recursively generate the Agent and State embeddings after each

agent-task assignment, as shown in line 14-15, where || denotes concatenation operation.

The use of LSTM removes the requirement of interacting with the Environment during

intermediate scheduling decisions, and directly outputs the whole schedule at the end.

The key component of the Schedule Propagator is the use of LSTM. By leveraging the

LSTM cells, we remove the need to use GNN models for task allocation for all but the first

task-agent assignment. After each task-agent pair selection, the state and agent embeddings

are updated using the state LSTM and agent LSTM, respectively. The LSTM Cell stores

the hidden and cell data from the previous step of the task allocation and predicts the next

step based on the input using Equation 5.4 [125].

90



Algorithm 3: Schedule Generation using HybridNet
Input: graph g, features f , unscheduled tasks u
Output: schedule

1 schedule = [ ], t = 0
2 (ht

a, c
t
a, h

t
τ , c

t
τ , h

t
s, c

t
s)← Encoder(g, f)

3 while |u| ≠ 0 do
4 pta ← AgentSelector(ht

s, h
t
a)

5 aj ← Sampling(pta)
6 ptτ ← TaskSelector(ht

τ , h
t
s, h

t
aj
)

7 τi ← Sampling(ptτ )
8 schedule.append(⟨τi, aj⟩)
9 unscheduledTasks.remove(τi)

10 if |unscheduledTasks| == 0 then
11 return schedule
12 end
13 t← t+ 1
14 ht

s, c
t
s ← LSTMs((h

t−1
τ [τi]||ht−1

a [aj]), h
t−1
s , ct−1

s )
15 ht

a, c
t
a ← LSTMa((h

t−1
τ [τi]||ht−1

a [aj]), h
t−1
a , ct−1

a )

16 end

ft = σ(Wf [ht−1, xt] + bf )

it = σ(Wi[ht, xt] + bi)

c̃t = tanh(Wc[ht−1, xt] + bc)

ct = ftct−1 + itc̃t

ot = σ(Wo[ht−1, xt] + bo

ht = ottanh(ct)

(5.4)

The Encoder output is in the form of [h1, c1] where the initial hidden state, h1, and initial

cell state, c1, are used as the initial inputs for Equation 5.4. Equation 5.4 calculates the next

hidden state, ht, and cell state, ct, using the internal values ft, it and c̃t. ft is the forget gate

output generated from the previous hidden state ht−1 and input xt, using the forget gate

weights Wf . it is the input gate output computed using ht−1 and xt, along with the input

91



Selected
Agent

logits
SoftmaxAgent

Selector

Agent Embedding

State Embedding

Figure 5.4: Agent Selector Model using Softmax based Sampling.

gate weights Wi. The Cell State, ct, is based on the previous cell state, ct−1, and the outputs

of the input gate and calculated using the cell state gate weights Wc. The learnable weights

Wf , Wi and Wc are trained using the training method described in section 5.6 along with

the Heterogeneous Graph Encoder.

5.5.1 Agent Selector

The Agent Selector selects the new agent for the next decision d based on the state and

agent information. Specifically, the concatenated state-agent embeddings are processed

by a feed-forward neural network, fa, to compute the likelihood of selecting each agent

for the next task-agent pair, using Equation 5.5. A softmax operation is performed to

convert the raw predictions into a probability distribution. After the selection of the agent,

the agent embedding of the chosen agent is updated based on the selected task and state

embeddings, as state change only happens for the assigned agent. This approach allows

the agent selector to consider how busy each agent is, based on the inherent information

presented in the embeddings.

πagent(aj|s) = softmaxi(fa([haj ||hs])) (5.5)

5.5.2 Task Selector

Next, the Schedule Propagator uses the Task Selector to assign the task for the selected

agent based on the state, agent and unscheduled task embeddings. As shown in Equa-

92



Selected
TaskTask

Selector

Selected Agent Embedding
State Embedding
Task Embedding

logits
Softmax

Selected Tasks

Figure 5.5: Task Selector Model using Softmax Sampling after filtering out the Previously
Assigned Tasks.

tion 5.6, the Task Selector concatenates the state, selected agent and the unscheduled task

embeddings and passes the combined information to a feedforward neural network, fτ , to

calculate the likelihood of the task being assigned to the selected agent. After assigning

a task to an agent for execution, it is removed from the list of unscheduled tasks for this

round. Since the calculation of likelihood of each task is independent of each other up

to the last softmax operation, the model is scalable and can be used for different problem

sizes.

πtask(τi|aj, s) = softmaxi(fτ ([hτi||haj ||hs])) (5.6)

5.5.3 Ensemble-Based Schedule Boosting

We boost the performance of HybridNet by ultilizing multiple trained models to generate

schedules for each round of the problem. These schedules are evaluated in the Estimated

Environment using the task-completion times provided by the Learning Curve Estimator.

The best schedule in the Esimated Environment is selected as the output of HybridNet and

then sent to MuRSE for execution using actual task completion times for human agents.

The Learning Curve Estimator is updated based on the chosen optimal schedule and the

observed actual task-completion times for each round. This ensures that the scheduler

interacts with the real world only once per round.

93



Leveraging Sample Space

During testing, we utilize an ensemble sampling strategy to further the performance gain.

Specifically, we generate multiple schedules for the same task allocation problem every

round. We select the best performing schedule by computing the estimated makespan uti-

lizing the Learning Curve Estimator and provide it to the MuRSE instance. As the sampling

of the task allocation is done after the generation of the output from the Heterogeneous

Graph Encoder, the initial encoding for the problem is shared across all sampled schedules

in the ensemble. We use the shared initial encoding and the Recurrent Schedule Propagator

to generate the sequential task-agent allocations, creating a set of schedules. More sam-

pling improves solution quality at increased computation that scales with the complexity of

the Schedule Propagator.

Leveraging Multiple Policies

We utilize an ensemble of different models from the training to improve the overall perfor-

mance. After the completion of the training, we validate the trained models to select top K

performing policies. As different policies have different advantages, generating schedules

using multiple policies provides a more diverse set of solutions to select from. We select

the top K performing policies through a validation step and evaluate the models on a sepa-

rate data set to the training set. Similar to 1), we leverage the simulated environment using

the Learning Curve Estimator to select the best schedule from the solution sets. Diversity

of the policies improves solution quality at the cost of increased computation.

Schedule from Previous Round

We also store the schedule used in the previous round in the MuRSE. This schedule is

evaluated alongside the Ensemble-based schedules in the Estimated Environment using the

task-proficiencies from the Learning Curve Estimator. This ensures that previous feasible

schedules can be inherited between rounds to compare with newly generated schedules.

94



5.6 Learning Stochastic Scheduling Polices

HybridNet is end-to-end trainable in MuRSE using Policy Gradient methods that seek

to directly optimize the model parameters based on rewards received from the environ-

ment [150]. We develop our policy learning framework from Proximal Policy Optimiza-

tion (PPO) [94] and make several adaptations for better variance reduction in stochastic

scheduling. In particular, we optimize the clipped surrogate objective shown in Equa-

tion 5.7, where rt(θ) denote the probability ratio between current policy and old policy on

collected rollout data, rt(θ) =
πθ(A|S)

πθold
(A|S) , Advt is the estimated advantage term, and ϵ is the

clipping parameter.

LCLIP (θ) = Et[min(rt(θ)Advt,

clip(rt(θ), 1− ϵ, 1 + ϵ)Advt)] (5.7)

In Equation 5.7, Advt, is estimated by subtracting a “baseline” from the total future reward

(or “return”). PPO and Actor-Critic methods typically utilze a learned state-based value

function as such baselinses. However, in a stochastic environment like MuRSE, due to

the combinatorial nature of the task scheduling problem, plus the stochasticity in human

proficiency, learning a helpful value function is non-trivial. Instead, we choose to use the

Greedy Rollout Baseline (GRB) as a more accessible and efficient alternative. Specifically,

GRB uses, πgreedy(A|S), a deterministic greedy version of the HybridNet scheduler, to

collect rewards in the environment. Its weights, θgreedy, are updated periodically by copying

the weights from the current learner, πθ(A|S).

We present the pseudocode for HybridNet training in algorithm 4. Lines 5-14 details

the process of rollout data collection on MuRSE instances generated on-the-fly. Line 6

ensures the same randomly-initialized environment instance is used by all episodes within

one training epoch for variance reduction. In lines 15-22, GRB is used on the same MuRSE

instance to collect baseline rewards. Lines 23-24 computes the advantage estimates with

95



Algorithm 4: HybridNet Training
Input: Number of training epochs K, Batch size N , learning rate η, number of

gradient updates per epoch Niter, total number of rounds T , greedy
baseline update frequency Kgreedy

Output: Trained policy πθ

1 Initialize policy network parameters θ0
2 θgreedy ← θ0
3 for k = 1 to K do
4 Sample problem instance, MuRSEk

5 for i = 1 to N do
6 Reset MuRSEk to t = 1
7 for t = 1 to T do
8 Get observation oit from MuRSEk

9 Build heterogeneous graph and input node features
10 Sample Ai

t = [⟨τi1 , aj1⟩, ⟨τi2 , aj2⟩, ...] from πθ

11 Step through MuRSEk and get reward rit
12 Store {(oit, Ai

t, r
i
t)} to trajectory buffer

13 end
14 end
15 Reset MuRSEk to t = 1
16 for t = 1 to T do
17 Get observation ogreedyt from MuRSEk

18 Build heterogeneous graph and input node features
19 Agreedy

t = argmax
A

p(A|ogreedyt ), p(A|·) ∼ πgreedy

20 Step through MuRSEk and get reward rgreedyt

21 Store {(rgreedyt )} to baseline buffer
22 end
23 Compute rewards-to-go: Ri

t =
∑T

t′=t γ
t′−trit′ , R

greedy
t =

∑T
t′=t γ

t′−trgreedyt′

24 Compute advantage estimates: Ai
t = Ri

t −Rgreedy
t

25 for j = 1 to Niter do
26 Compute the clipped surrogate objective L(θ) using

Equation 5.5-Equation 5.7
27 Perform stochastic gradient ascent for∇L(θ) using Adam optimizer with

learning rate η

28 end
29 Perform θgreedy ← θ every Kgreedy epochs
30 end

96



GRB rewards. Lines 25-28 show the gradient update procedure by maximizing L(θ), which

requires recomputing the action probability using updated policy network at each iteration.

Line 29 updates the weights of GRB policy every certain training epochs.

5.7 Experimental Results

5.7.1 Data Generation

We generate scheduling problems with deadline, wait and spatial constraints under different

scales to evaluate the performance of HybridNet. For all scales, the deadline constraints are

randomly generated for approximately 25% of the tasks from a range of [1, 25N ] where

N is the number of tasks. Wait constraints are generated such that 25% of Tasks have wait

time constraints, and the duration of non-zero wait constraints is sampled from U([1, 50]).

All agents’ task durations are sampled and clamped to the range of [15, 100].

Small Scale

The small data set is uniformly sampled to have 9 to 11 tasks and 3 to 5 agents with at

least 1 robots and 1 humans in a team. We generated 2000 training problems and 200 test

problems.

Medium Scale

The medium data set is uniformly sampled to have 18 to 22 tasks and 3 to 5 agents with at

least 1 robots and 1 humans in a team. We generated 200 test problems.

Large Scale

The large data set is uniformly sampled to have 36 to 44 tasks and 3 to 5 agents with at

least 1 robots and 1 humans in a team. We generated 200 test Problems to evaluated the

HybridNet performance on scalability.

We generate data sets for training, validating and testing our model against benchmarks:

97



• Training data set is generated to train the models in small data scale.

• Validation data Set are generated for the small data scale to validate and select the

top K = 3 best performing policies for ensemble-based boosting.

• Test data set are generated for small, medium and large scales.

To simulate the stochastic learning of human agents, for each Data Set noise is intro-

duced to the Human Agent models by simulating the natural distribution of the c, k, β

parameters of Equation 5.1.

Agent performance of both humans and robots in the final round is uniformly sampled

from a range of [15, 100]. For Human Performance, we achieve this by sampling the

Human Mean Task Performance at starting round to have mean task durations within [30,

100] to account for human learning effects. The c and k values for the Human Performance

are sampled from the mean task performance such that both value are at least 1. The β

value is computed so that over 10 rounds the decrease in the task durations are within a

range of 20% to 40%.

The standard deviations of c, k and β values for simulating stochastic human perfor-

mance are generated using the following steps:

1. Sampling the combined standard deviation of c and k from a uniform distribution of

[1, 28].

2. Sampling the standard deviation of c value based on the combined standard deviation

such that both standard deviations of c and k are at least 1.

3. The standard deviation of β is calculated to ensure that 99.7% of sampled noise falls

within the range of [0, 2β].

Deterministic Models are based on the mean values of k, c and β while the Stochastic

Models sample from the generated standard deviations using Equation 5.1. Both Determin-

istic and Stochastic models are clipped to fall within the specified range of task durations.

98



5.7.2 Benchmark

We benchmark HybridNet against the following methods:

• EDF: A ubiquitous heuristic algorithm, earliest deadline first (EDF), that selects from

a list of available tasks the one with the earliest deadline, assigning it to the first

available agent.

• GeneticEDF: An Evolutionary Optimization Algorithm that uses post-processing on

the schedule generated by EDF [68]. The genetic algorithm creates new schedules

based on the initial schedule through iterative randomized mutations by swapping

task allocations and task orders [12]. Each generation selects the top performing

schedules, sorted on feasibility and total schedule completion time, and used as the

baseline for creating new mutations. The GeneticEDF was run for 10 generation with

90 baseline schedules, 10 task allocation and 10 task order swapping mutations.

Furthermore, we evaluate the functionality of the Recurrent Schedule Propagator by

comparing it against the following HybridNet variant:

• HetGAT: We implement a HetGAT Scheduler based on the Graph Neural Network

Encoder of HybridNet. After each task-agent pair assignment, instead of using the

LSTM Cells to update the task, agent and state embeddings, HetGAT Policy directly

interacts with the environment to model the consequences of action with a new het-

erogeneous graph and re-computes those information from it. We trained HetGAT

using Policy Gradient with Greedy Rollout Baselines.

We evaluate HybridNet on three metrics: 1) Feasibility, that is, proportion of problems

solved; 2) Adjusted makespan, which is computed using the average of a) the makespan

of feasible schedules and b) the maximum possible makespan of the infeasible schedules;

and 3) Runtime statistics. Runtime statistics for training and execution is compared for

HybridNet and HetGAT Scheduler to investigate their computational complexity.

99



5.7.3 Model Details

We implement HybridNet and HetGAT using PyTorch [151] and Deep Graph Library

[152]. The Kalman Filter’s learning curve parameters are initialized based on 50 randomly

generated human performance for each task during problem set construction. We use the

same parameters for the Kalman filter updates as in [12]. The HybridNet Encoder used

in training/testing is constructed by stacking three multi-head HetGAT layers (the first two

use concatenation, and the last one uses averaging). The feature dimension of hidden layers

= 64, and the number of heads = 8. The Recurrent Propagator utilizes a LSTMCell of size

32 followed by a fully-connected layer and a softmax layer. We set γ = 0.99, batch size =

8 and used Adam optimizer [153] with a learning rate of 2 × 10−3, and a weight decay of

5 × 10−4. We also added the entropy regularization in loss computation with a coefficient

of 3× 10−2. We employed a learning rate decay of 0.5 every 4000 epochs. We evaluate the

models using a batch size of 8 and 16. For MuRSE parameters, the infeasible reward coef-

ficient Ci = 2.0 and total round number = 10. Both training and evaluation were conducted

on a Quadro RTX 8000 GPU.

5.7.4 Evaluation with Deterministic Task Proficiency

Table 5.1 shows the evaluation performance with Deterministic Human Proficiency in dif-

ferent scales. The Deterministic Human Proficiency means that during training and evalu-

ation, human learning curve is known and execution is deterministic for every agent based

on the mean task completion times. In Table 5.1, “Small”, “Medium” and “Large” denotes

the data scale the method is tested. For ensemble-based schedule boosting, HybridNet sam-

ples 8 different schedules using the top 3 performing policies selected during the validation

step. The results show that HybridNet outperforms both EDF and GeneticEDF in terms of

adjusted makespan and feasibility percentage. HybridNet trained on Small scale problems

is able to generalize to both Medium and Large scale problems, consistly outperforming

other baselines. The performance of EDF and GeneticEDF dropped sharply from medium

100



Ta
bl

e
5.

1:
E

va
lu

at
io

n
R

es
ul

ts
:

A
dj

us
te

d
M

ak
es

pa
n

an
d

Fe
as

ib
ili

ty
w

ith
D

et
er

m
in

is
tic

H
um

an
Ta

sk
Pr

ofi
ci

en
cy

fo
r

th
e

Fi
na

l
(1
0t

h
)

R
ou

nd

Sm
al

l
M

ed
iu

m
L

ar
ge

M
et

ho
ds

To
ta

lM
ak

es
pa

n
Fe

as
ib

ili
ty

(%
)

To
ta

lM
ak

es
pa

n
Fe

as
ib

ili
ty

(%
)

To
ta

lM
ak

es
pa

n
Fe

as
ib

ili
ty

(%
)

E
D

F
40

8.
76
±

0.
00

61
.5

0
±

0.
00

10
22

.7
0
±

0.
00

33
.0

0
±

0.
00

23
70

.8
0
±

0.
00

12
.0

0
±

0.
00

G
en

et
ic

E
D

F
35

6.
36
±

9.
68

72
.5

5
±

1.
80

97
8.

72
±

9.
27

38
.2

0
±

0.
87

23
85

.1
0
±

17
.2

1
11

.1
5
±

0.
67

H
et

G
AT

57
2.

81
±

4.
32

22
.0

5
±

1.
23

12
39

.5
7
±

4.
57

4.
00
±

0.
71

25
18

.6
5
±

4.
18

0.
25
±

0.
25

H
yb

ri
dN

et
33

3.
99
±

6.
82

82
.0

5
±

1.
72

96
0.

20
±

8.
80

43
.3

5
±

1.
43

22
89

.6
6
±

8.
01

16
.7

5
±

0.
56

101



Ta
bl

e
5.

2:
E

va
lu

at
io

n
R

es
ul

ts
:A

dj
us

te
d

M
ak

es
pa

n
an

d
Fe

as
ib

ili
ty

w
ith

St
oc

ha
st

ic
H

um
an

Ta
sk

Pr
ofi

ci
en

cy
fo

rt
he

Fi
na

l(
10

th
)R

ou
nd

Sm
al

l
M

ed
iu

m
L

ar
ge

M
et

ho
d

To
ta

lM
ak

es
pa

n
Fe

as
ib

ili
ty

(%
)

To
ta

lM
ak

es
pa

n
Fe

as
ib

ili
ty

(%
)

To
ta

lM
ak

es
pa

n
Fe

as
ib

ili
ty

(%
)

E
D

F
41

3.
15
±

6.
72

62
.2

5
±

1.
17

10
59

.4
0
±

19
.4

1
37

.4
5
±

1.
52

26
88

.8
7
±

28
.6

2
14

.2
5
±

1.
01

G
en

et
ic

E
D

F
37

2.
18
±

7.
81

69
.3

5
±

1.
64

99
9.

91
±

7.
82

31
.8

5
±

1.
36

22
18

.9
1
±

25
.4

1
15

.4
0
±

1.
50

H
et

G
AT

58
1.

84
±

6.
39

19
.6

5
±

2.
34

12
40

.3
9
±

5.
46

4.
15
±

0.
90

25
21

.8
7
±

4.
99

0.
25
±

0.
34

H
yb

ri
dN

et
35

1.
99
±

6.
23

78
.4

0
±

1.
97

88
1.

99
±

12
.9

1
52

.0
5
±

1.
56

22
11

.5
4
±

13
.6

0
21

.5
0
±

0.
89

102



Table 5.3: Evaluation Results: Runtime (s) Performance on Single Problem

Data Scale EDF GeneticEDF HetGat HybridNet

Training Small - - 126.88 ± 63.76 23.55 ± 5.59
Medium - - 394.11 ± 85.61 33.84 ± 6.58

Evaluation
Small 0.88 ± 0.89 4.22 ± 2.50 7.68 ± 5.66 3.20 ± 0.41
Medium 2.83 ± 3.50 17.22 ± 14.06 14.32 ± 8.06 6.28 ± 1.59
Large 2.88 ± 11.03 81.58 ± 96.67 42.88 ± 26.72 15.33 ± 7.23

to large problems.

HybridNet also outperforms HetGAT on all scales. This shows that HybridNet is capa-

ble of learning high performance policies by leveraging the Recurrent Schedule Propagator

and effectively removes the interaction with the Environment that is required by HetGAT.

This advantage makes HybridNet much less computationally expensive than a pure GNN-

based framework. As seen in the lower performance of HetGAT model compared to other

methods in Table 5.1 and Table 5.2, training GNN-only models like HetGAT using a single

reward for each round, without interactive scheduilng to distribute the reward into each

intermediate scheduilng decsion, leads to sub-optimal policies. The reason might be due to

the difficulty of credit assignment and the vanishing gradients problem arising from long

sequence assignments. Note that for pure-GNN based models, each task-agent assignment

builds a new heterogeneous graph. Unlike complex and slow Graph Neural Network mod-

els to compute sequences of task allocations, LSTMs provide a faster method of predicting

long sequences, making them more efficient for scalable task predictions. As a resuts,

HybridNet only runs a single Graph Neural Network per schedule generated and ultlizes

LSTM cells to address the vanishing gradient problem.

In Table 5.3, we provide the runtimes of training and evaluation for HetGAT and

HybridNET. HybridNet is approximately 5 times faster in training compared to HetGAT

Model in small scale and 10 times faster in the medium scale and at least 2 times faster dur-

ing evaluation, under the same batch size. EDF and GeneticEDF were evaluated through

the CPU without GPU acceleration, making it less appropriate to compare the runtime of

deep learning models to the traditional methods. Here we only report their runtime in eval-

103



uation for completeness. When problem size increases, the computation time of HybridNet

increases less than GeneticEDF. When the data scale increases by a factor of 4, Genet-

icEDF’s solving duration increases by a factor of 20, while both HetGat and HybridNet

scale by a factor of 5. The only advantage of EDF and GeneticEDF is that both methods

do not require training.

5.7.5 Evaluation with Stochastic Task Proficiency

Table 5.2 shows the evaluation performance with Stochastic Human Proficiency in differ-

ent problem scales. The Stochastic Human Proficiency is presented as uncertainty in the

actual human performance within MuRSE, where the human task durations are sampled

from Equation 5.1 with c, k and β values, plus initially generated standard deviation. The

results show that HybridNet outperforms the EDF, GeneticEDF and HetGAT across differ-

ent data scales. EDF outperforms GeneticEDF in Medium Scale for Stochastic Models as

the GeneticEDF utilizes the Learning Curve Estimator to evaluate the best policy across

multiple generations. The error between the Environment generated by the Learning Curve

Estimator and the actual environment may lead to the selection of sub-optimal schedules

for the GeneticEDF. Same as in the deterministic case, HybridNet trained on small prob-

lems is able to generalizes to larger problems with much less performance drop than EDF

and GeneticEDF.

To make a closer comparison between different methods, in Figure 5.6 and Figure 5.7

we plot the performance curves evaluated at every round. It can be seen that the Human

Performance Prediction made by the Kalman Filter helps the HybridNet scheduler to find

better schedules for future rounds. We show that better scheduling policies also have a

steeper learning curve, as more information for feasible task completion times are provided

to the Kalman Filter. The increase in fidelity of the Learning Curve Estimator in turn

improves the input of the policy model for the future rounds.

In Table 5.2 as well as in Figure 5.7a and Figure 5.7c, the GeneticEDF and HybridNet

104



(a) (b) (c)

Figure 5.6: Feasibility percentage results with stochastic human model over 10 rounds.
The shaded regions represents 1 standard deviation of the mean values calculated over 10
repetitions of the evaluation. (a) Small-scale; (b) Medium-scale; (c) Large-scale.

(a) (b) (c)

Figure 5.7: Total makespan results with stochastic human model over 10 rounds. (a) Small-
scale; (b) Medium-scale; (c) Large-scale.

have close adjusted makespans in the Small and Large problem scales, especially at later

rounds, despite HybridNet having a higher feasibility percentage in both cases. This is at-

tributed to the way GeneticEDF searches through schedules. As the GeneticEDF searches

through schedules based on feasibility first and makespan second, it selects schedules with

a lower adjusted makespan even if the generated schedule is not feasible. This approach

results in GeneticEDF generating schedules with lower adjusted makespan even if the solu-

tion is not feasible. Moreover, HybridNet is trained to balance efficient schedules with fea-

sible schedules during training leading to a slightly higher adjusted makespan compared to

a model that specifically focuses on minimizing the makespan of feasible solutions. Since

a similar Genetic extension to the EDF algorithm can also be applied to the results from

the HybridNet model, the schedules produced by the HybridNet can be further optimized

through a evolutionary approach similar to GeneticEDF, which we left as future work.

105



5.8 HybridNet Discussion

Our empirical results and analysis demonstrates that HybridNet establishes a state-of-the-

art in autonomously learning policies for coordinating stochastic human-robot teams in a

computationally efficient framework. In particular, we demonstrate that:

1. The Heterogeneous Graph Attention Model is able to leverage the relationships be-

tween individual units within the problem to generate more informed embeddings.

The node feature updates can utilize different types of structural information effi-

ciently to generate representations used by the selector model in Figure 5.4 and Fig-

ure 5.5 toward fast decision generation for the policy.

2. Our model is scalable in both data scale and sample size. This allows us to train Hy-

bridNet via policy optimization on small problems to provide high-quality schedules

on much larger problems, as shown in Table 5.1 and Table 5.2.

3. Compared to pure GNN-based schedulers, the use of Recurrent Scheduler Propagator

brings in much speedup. When leveraging sample space for schedule boosting, the

Encoding generated by the Heterogeneous Graph Encoder is shared across multiple

scheduler rollouts of the propagator. This allows for sequential task-allocation to

be done without needing to rebuild the Graph Model after the initial construction in

both training and testing. As only a single Graph Model is generated per training

step, Proximal Policy Optimization only needs to store a single instance of the graph

model to optimize the clipped surrogate objective in Equation 5.7.

We also note our algorithm’s limitations. First, our environment only considers single-

task agents and single-agent tasks. Therefore, it is not suitable to simulate tasks that require

several robots at the same time to complete. Also, machine breakdowns are not considered

during schedule execution. Addressing those points is necessary towards deploying Hy-

bridNet in real-world scenarios. Second, we use Reinforcement Learning and need Reward

106



Engineering to develop a reward scheme to enable learning with infeasible schedule explo-

rations, using Equation 5.2. We propose in future work to investigate methods to learn from

sub-optimal demonstrations. We also plan to evaluate off-policy RL methods to improve

sample efficiency in training HybridNet.

Similar to how the GeneticEDF Baseline improves upon the performance of the EDF

as shown in experimental results, it is possible to use schedules found by HybridNet to

warm-start the genetic algorithm’s population. In future work, we propose to explore novel

mechanisms for combining our framework with traditional planning techniques towards

further performance gain.

Finally, we propose in future work to explore multi-task learning methods of joint train-

ing HybridNet under different objective functions beside minimizing overall makespan, and

transfer learning between them.

5.9 Summary

We present a deep learning-based framework, called HybridNet, combining a heteroge-

neous graph-based encoder with a recurrent schedule propagator, for scheduling stochastic

human-robot teams under temporal and spatial constraints. The resulting policy network

provides a computationally lightweight yet highly expressive model that is end-to-end train-

able via reinforcement learning algorithms. We developed MuRSE, a multi-round task

scheduling environment for stochastic human-robot teams, and conducted extensive ex-

periments, showing that HybridNet outperforms other human-robot scheduling solutions

across various problem sizes.

107



CHAPTER 6

FAILURE-PREDICTIVE MAINTENANCE SCHEDULING USING

HETEROGENEOUS GRAPH-BASED POLICY OPTIMIZATION

6.1 Introduction

Optimizing aircraft maintenance has drawn keen interest, due to the significant contribution

of maintenance costs to overall operating expenses and aircraft availability [16]. One of the

most promising strategies of reducing cost is by scheduling predictive maintenance, which

entails deciding whether and when to preemptively service one or more of an aircraft’s

subsystems before the subsystem fails [17]. Research suggests that predictive maintenance

could reduce unscheduled work up to 33% [18], which would result in an annual savings

of $21.7 billion globally1. Currently, predictive maintenance scheduling is performed with

ad hoc, hand-crafted heuristics and manual scheduling by human domain experts, which

is a time-consuming and laborious process that is hard to scale. Because of these issues,

researchers are becoming increasingly interested in developing automatic scheduling solu-

tions that can not only provide high-quality schedules on large scale but also generalize to

different application needs.

In this chapter, we propose an innovative design of the scheduling policy network op-

erating on a heterogeneous graph representation of predictive-maintenance scheduling en-

vironment, as shown in Figure 6.1. Two keys to our approach are: 1) we directly model the

dynamic scheduling decisions as nodes within a heterogeneous graph network, allowing for

an end-to-end trainable resource scheduling policy that is capabale of reasoning over the

various interactions within the environment, computationally lightweight and nonparamet-

ric to problem scales; 2) we develop an RL-based policy optimization procedure to enable

1Based upon 2012 figures for worldwide airline revenue of $598 Billion [19] and 11% of revenue allocated
for maintenance [20].

108



Figure 6.1: The figure depicts AirME, a virtual predictive-maintenance scheduling environ-
ment (Left), and our proposed scheduling policy network (Right). Left: AirME consisits
of a team of maintenance crews and a heterogeneous fleet of aircraft and operates under
hour-based simulation. Right: The scheduling policy network uses several heterogeneous
graph layers (edges omitted for simplicity) stacked in series to extract high level embed-
dings from the graph built with environment observations. Different schemes are proposed
and tested for generating dynamic scheduling decisions. We train our policy network via
heterogeneous graph-based policy optimization, which we call HetGPO. HetGPO receives
a reward signal from AirME and updates via gradient descent.

robust learning in highly stochastic environments for which typical actor-critic RL methods

are ill-suited.

To evaluate our heterogeneous graph based policy optimization (HetGPO) approach, we

worked in consultation with aerospace industry partners in developing a virtual predictive-

maintenance environment for a heterogeneous fleet of aircraft, which we call AirME, as a

testbed which will be released to public. The challenges for scheduling in AirME comes

from the stochasticity in maintenance tasks and the uncertainty of potential components

failure that greatly influences maintenance costs. We empirically validate HetGPO across

a set of problem sizes and when optimizing for multiple objective functions. Results show

HetGPO achieves a 29.1% improvement in airline profit over corrective scheduling and

outperforms both heuristic and learning-based baselines.

109



6.2 Aircraft Maintenance Environment

Our research focuses on task scheduling for stochastic resource optimization, with ap-

plication to failure-predictive aircraft maintenance. In a stochastic resource-constrained

environment, both the resource allocation task and the outcome may be affected by la-

tent stochastic processes (e.g., a plane may break randomly; the maintenance duration

is non-deterministic). The scheduler must dynamically allocate resources to maximize

application-specific objectives, given observations from the environment.

In consultation with aerospace industry partners along with their real-world experi-

ence on modeling approach for aircraft maintenance data, we develop a virtual predictive-

maintenance scheduling environment for a heterogeneous fleet of aircraft, which we call

AirME, as shown in Figure 6.1. In AirME, the stochasticity comes from the stochastic

nature of aircraft maintenance work and the uncertainty of potential components failure

that greatly influences maintenance costs. The AirME codebase and the supplementary

metarials have been made publicly available2.

An AirME instance consists of Np planes, denoted as {pi}, and Nc maintenance crews,

denoted as {cj}. We consider a heterogeneous fleet of aircraft including fixed-wing aircraft

and helicopters and a homogeneous team of maintenance crews. Each airplane, pi, has a

set of observable parameters, {oik} such as operating time, total number of takeoffs, and

engine status. A plane, pi, is associated with a repeating maintenance task, mi, a proba-

bilistic failure model, Pi(break|usage), and a repeating flying operation fi, all affecting the

plane’s status during simulation. Each crew can be assigned a maintenance job, resulting

in the crew becoming unavailable for further repairs until the current repair is complete.

A maintenance decision, d, in AirME is specified by a 2-tuple <pi, cj>, consisting of an

assignment of cj to perform a specific maintenance operation (preemptive or otherwise) on

pi, starting at current time step.

AirME utilizes an hour-based time system and proceeds through the simulation in dis-

2https://github.com/CORE-Robotics-Lab/AirME

110



crete time steps. At the beginning of each hour, the environment receives maintenance

decisions from a scheduler and updates the status of planes, crews and associated mainte-

nance tasks and flying operations. Each plane’s failure model is called to sample potential

failures of its components. Then, AirME collects costs from all running maintenance tasks

and hourly income from operating planes. Before stepping to the next hour, AirME releases

completed maintenance tasks and flying operations.

6.2.1 Aircraft Failure Model

Each aircraft, pi, has Ki number of components/parts depending on its type (i.e., airliner

or helicopter). According to the MSG-3 document [154], failure refers to the inability of

an item to perform within previously specified limits. For each component, its probability

of failure is modeled using the Weibull distribution as a function of aircraft usage, such as

flight hours or number of landings/takeoffs, as shown in Equation Equation 6.1, where x is

the usage input, k > 0 is the shape parameter and λ > 0 is the scale parameter. k and λ are

randomly selected but hold constant across the same plane type.

p(x;λ, k) =
k

λ

(x
λ

)k−1
e−(x/λ)k , x ≥ 0, (6.1)

A plane is grounded and changed to broken status when failure happens for at least one

of its components. As a result, the plane failure model becomes a hybrid probabilistic

model that jointly considers different plane parameters. Hyper-parameters of the failure

model is not accessible to scheduling policies and instead must be inferred. Thus, HetGPO

must implicitly learn a representation of this process in order to inform its decision-making

policy.

Table 6.1 lists the hyper-parameters used for each aircraft type in our experiments.

Those values are picked empirically so that the resulted probabilistic failure models have

sufficiently different characteristics to test the heterogeneous graph neural networks ex-

111



Table 6.1: Hyper-parameters of Plane Failure Models

Aircraft Type Number of Parts Scales Shapes Hour Norm
Fixed-Wing Aircraft 4 [15, 12, 18, 16] [5.0, 5.5, 6.0, 6.5] 20

Helicopter 3 [8, 7, 5] [7, 6, 11] 15

pressiveness. For all types, the usage input of first part is number of landings, and the rest

parts use flight hours as inputs. Additionally, we divide flight hours by the value specified

under “Hour Norm” before being used as input.

6.2.2 Maintenance Task and Flying Operation

Each maintenance task is modeled as a stochastic process in which both the duration of the

maintenance task and its cost are generated on-the-fly at the time when a crew is assigned to

a plane. The duration of a maintenance task consists of a universal component drawn from

a uniform distribution and a plane-specific part based on the plane’s operation parameters.

If one of the plane’s subsystems is broken before a preemptive repair is performed, AirME

labels the task as corrective maintenance and additional penalty time is added to its dura-

tion. The cost of a maintenance task includes: 1) a one-time, fixed cost proportional to the

plane’s hourly income; 2) the cost of labor proportional to maintenance time; 3) additional

cost if part failure happens.

AirME assumes that each aircraft returns to the airbase where maintenance can be con-

ducted after each operation. At the start of each time point, for every grounded available

plane, the environment samples whether the plane will be used for an operation based upon

a given plane type-specific usage rate. If so, the operation is enabled with a randomly

sampled duration for this plane to execute. Different planes earn different hourly income,

stored as their parameters, when flying.

We present the parameters of AirME instances used in our experiments. The values

are picked empirically in consultation with aerospace industry partners. The usage rate for

sampling a flying operation is 0.6 for fixed-wing aircraft and 0.3 for helicopters, assuming

112



helicopters are less often used. To support a heterogeneous fleet of aircraft, the hourly

income of a plane is drawn randomly, from Uniform(1, 20) for fixed-wing aircraft and

Uniform(1, 10) for helicopters. For each environment instance, at t = 0, random initial

usage data are generated for each plane and we set ∼10% of the planes to be broken.

Maintenance Duration The universal component is drawn from Uniform(2, 8). The

plane specific part is computed as flight hours/24 + number of landings/6. Penalty

time for corrective maintenance is set to 12. Task duration is rounded to integer.

Maintenance Cost The one-time fixed part is computed as Uniform(0.1, 1)×hourly income.

The cost of labor is computed as 2× duration. Additional failure cost is set to 48.

6.2.3 Scheduling Objectives

While a common objective for maintenance scheduling is maximizing the overall profit,

other objectives exist to serve different needs. In AirME, we consider three objectives.

O1: overall profit considering both hourly income and maintenance cost. O2: revenue

only, similar to a situation where maintenance is provided at a fixed-price contract by a

third-party. O3: fleet availability, a common objective in applications involving operation

readiness and humanitarian crises [83].

6.2.4 POMDP Formulation

We formulate failure-predictive scheduling in AirME as a partially observable Markov de-

cision process (POMDP) using a seven-tuple <S,A, T,R,Ω, O, γ>below:

• States: The problem state S is a joint state consisting states of all planes and crews,

plus the system hyper-parameters used in simulating flying operations and mainte-

nance tasks.

113



• Actions: Action at time t is denoted as a collection of maintenance decisions, Ut =

{d1, d2, ..., dn}. Action space in AirME is flexible as a scheduler may issue as many

maintenance decisions as wanted for one time step.

• Transitions: T corresponds to executing the action in AirME and proceed to next

time step.

• Rewards: Rt is set to the same value as the scheduling objective a user wants to

maximize.

• Observation: Ω contains {oik} of all planes. Additionally, it includes the observable

status of all crews, current progress of flying operations and maintenance tasks.

• Observation Functions: O is handled by AirME to update the observations based on

problem state after taking the action.

• Discount factor, γ.

6.3 Stochastic Scheduling with Graphs

We develop heterogenous graph representation of the scheduling environment and propose

a novel heterogeneous graph layer that learns per-edge-type message passing and per-node-

type feature reduction mechanisms on this graph. We directly build our scheduler policy

over it to obtain a fully graph convolutional structure that are nonoparametric on problems

sizes and dynamic action space, and are end-to-end trainable. Our approach is not restricted

to AirME and is capable of modeling the heterogeneity among entities and their interaction

in most resource optimization environments (e.g., nurse-patient scheduling in health care;

coordinating mixed human robot teams in manufacturing/assembly line). In this section,

we first describe how the scheduling policy network operates under the composite, dynamic

action space. Next, we explain each component of the heterogeneous graph constructed at

114



a given time step. Finally, we detail the computation flow within the building block layer

used to assemble a policy network of arbitrary depth.

6.3.1 Scheduling Policy Network

We denote the policy learned by our scheduling policy network as πθ(u|o), with θ repre-

senting the parameters of the heterogeneous graph neural network. In AirME, an action

takes the form of a collection of maintenance decisions, ut = {d1, d2, ..., dn}, with n vary-

ing from 0 (no maintenance scheduled) to Navail (every available crew is assigned a plane).

To handle this flexible action space, we reformulate ut as an ordered sequence of schedul-

ing decisions, where a latter decision (e.g., di) is conditioned on a former one (e.g., di−1).

Then, the policy can be factorized as Equation 6.2.

pθ(ut|ot) =
n∏

i=1

pθ(di|ot, d1:i−1) (6.2)

The scheduling policy network recursively computes the conditional probability, pθ(di|ot, d1:i−1),

for sampling a maintenance decision. The heterogenous graph is modified after every main-

tenance decision, before being used for computing the next decision. At the end, the net-

work collects all the decisions and sends to AirME for execution.

We test different schemes for determining n, the number of total decisions in ut, in the

decision generation block shown in Figure 6.1. Scheme #1) Full: For every crew available

at t, the policy assigns a plane to it to conduct maintenance. We include a placeholder plane

with ID 0, when picked, denoting “no-op” for the assigned crew. Scheme #2) Skip: While

the policy still recursively assigns planes to available crews as in Full, plane 0 now func-

tions as a “skip” token. Picking plane 0 means that the policy does not wish to schedule

further maintenance tasks and wants to step into t + 1. In both variants, plane 0 allows

the policy to learn to balance between spending current resources and reserving for fu-

ture needs, which is an important challenge to reason about in such scheduling problems.

115



Scheme #3) Single: During training, we restrict the policy to only issue one scheduling

decision in any time step, i.e., π(u|o) = π(d|o). During testing, multi-decision actions

are allowed by repeatedly sampling from the same distribution, pθ(d|ot) for every available

crew. While sacrificing some performance, Single only needs one forward pass over the

network and is thus more computationally efficient.

6.3.2 Heterogeneous Graph Representation

When developing a heterogeneous graph representation for a given stochastic resource op-

timmization problem, our computational target is to model entities in the environment (i.e.,

planes, crews) and RL components (i.e., state, decisions) in the same graph to enable joint

learning the problem representation and the policy.

To begin with, we directly model each entity class in the resource optimization prob-

lem as a unique node type and their interactions as directed edges to build a heterogeneous

graph. We use a three-tuple, <srcName, edgeName, dstName>, to specify the edge

type/relation that connects two nodes (from source to destination). In AirME, this leads to

two node types: the plane nodes and crew nodes. If a crew is conducting maintenance work

for a plane, two types of edges are established between them: <crew, reparing, plane> and

<plane, repaired by, crew>. The observable parameters of each entity are used as its in-

put node features.

Next, a state summary node is added and is connected by all the task nodes and agent

nodes, with edge types <plane, in, state>, <crew, in, state>, respectively. The addition

of state node enables the policy network to explicitly learn a high-level global embedding

for estimating the problem state regardless of the problem scale. The initial input features

of the state node are the meta-data defining the problem (e.g., the type and number of each

aircraft).

To obtain an end-to-end trainable, graph-based policy, we augment the heterogeneous

graph by introducing decision value nodes to allow the policy to handle varying num-

116



Figure 6.2: Metagraph of the heterogeneous graph built given an environment state in
AirME.

ber of scheduling choices. Each scheduling decision is evaluated by a decision value

node that is connected with the state node and associated entity nodes (e.g., the corre-

sponding plane and crew in a maintenance task), using edge types <state, to, decision>,

<plane, to, decision>, and <crew, to, decision>, respectively. The initial feature of a

decision node is set to 0. As shown in Figure Figure 6.1, after the last heterogeneous graph

layer, the scheduling policy network performs a softmax operation over all decision value

nodes to obtain a probability distribution for picking each decision. As AirME involves a

homogeneous team of maintenance crews, we simplify the graph by removing edges from

crew nodes to decision nodes. We leave scheduling with heterogeneous crews as future

work.

The metagraph for HetGPO applied to AirME is shown in Figure 6.2, which summa-

rizes all the node types and edge types. For all nodes, self-loops are added so that their own

features from previous layers are considered in current layer’s computation.

117



6.3.3 Computation Flow of Graph Layers

We propose and implement a novel heterogeneous graph layer that operates on the hetero-

geneous graph structure and serves as the building block of our scheduling policy network.

The feature update process in a heterogeneous graph layer is conducted in two steps: 1)

per-edge-type message passing and then 2) per-node-type feature reduction.

During message passing, each edge type uses a distinct weight matrix, WedgeName ∈

RD×S , to process the input feature from the source node, Nsrc, and sends the computation

result to the destination node, Ndst. S is the input feature dimension of Nsrc, and D is the

output feature dimension of Ndst. In the case that several edge types share names, we use

WsrcName,edgeName to distinguish between weight matrices.

Feature reduction is performed for each node type by aggregating received messages

to compute a node’s output features. The feature update formulas of different node types

are listed in Equation 6.3-Equation 6.6, where σ() represents the ReLU nonlinearity, and

NedgeType(s) is the set of incoming neighbors of the state node s along the specified edge

type.

Plane h⃗′
p = σ

(
Wplane,self h⃗p +Wrepairingh⃗c

)
(6.3)

Crew h⃗′
c = σ

(
Wrepaired byh⃗p +Wcrew,self h⃗c

)
(6.4)

State h⃗′
s = σ

( ∑
p∈Nplane,in(s)

αplane,in
s,p Wplane,inh⃗p

+
∑

c∈Ncrew,in(s)

αcrew,in
s,c Wcrew,inh⃗c

+Wstate,self h⃗s

)
(6.5)

118



Decision h⃗′
d = σ

(
Wplane,toh⃗p +Wstate,toh⃗s

+Wdecision,self h⃗d

)
(6.6)

When computing output features of state summary node using Equation 4.6, we implement

attention mechanisms adapted from [32] to weigh incoming messages for each edge type

in a feature-dependent and structure-free manner. The per-edge-type attention coefficient,

αedgeName
s,i , is calculated based on source node features and destination node features using

Equation 4.10, where a⃗TedgeName is the learnable weights, || is the concatenation operation,

and σ′() is the LeakyReLU. The softmax function is used to normalize the coefficients

across all choices of i.

αedgeName
s,i = softmaxi

(
σ′
(
a⃗TedgeName[

Wstate,self h⃗s||WedgeNameh⃗i

] ))
(6.7)

To stabilize the learning process of self-attention, we utilize the multi-head mechanism that

has been shown beneficial in homogeneous graphs [32], adapting it to fit the heterogeneous

case. We use K independent heterogeneous graph (sub-)layers to compute node features

in parallel and then merge the results as the multi-headed output either by concatenation or

by averaging.

By stacking several heterogeneous graph layers sequentially (i.e., output from previous

layer is directly used as input to the next layer), we construct the scheduling policy network

that utilizes multi-layer structure to extract high-level embeddings of each node as shown

in Figure 6.1. Note that all graph layers operate on the same heterogeneous graph built on

current observation and share the same computation flow. However, the weight matrices

(e.g., Wreparing, Wrepaired by, Wplane,in) differ with each layer).

119



Algorithm 5: HetGPO Training
Input: Number of training epochs K, Number of episodes per epoch N , learning

rate, η, number of gradient updates per epoch Niter, episode length
parameters: Tmin, Tstep, Trange

Output: Trained policy πθ

1 Initialize policy network parameters θ0
2 for t = 1 to K do
3 Sample episode length T ∼ Uniform(Tmin, Tmin + Trange)
4 Sample a random environment instance, AirMEk

5 for i = 1 to N do
6 Reset AirMEk to t = 0
7 for t = 0 to T − 1 do
8 Get observation oit from AirMEk

9 Build heterogeneous graph and input node features
10 Sample ut = {d1, d2, ..., dn} from πθ

11 Step through AirMEk and get intermediate reward rit
12 Store {(oit, ui

t, r
i
t)} to trajectory buffer

13 if broken planes ≥ 80% then
14 Terminate current episode and zero-pad future rewards
15 end
16 end
17 end
18 Compute rewards-to-go: Ri

t =
∑T

t′=t γ
t′−trit′

19 Compute advantage estimates: Ai
t = Ri

t − 1
N

∑N
i′=1 R

i′
t

20 for j = 1 to Niter do
21 Compute the clipped surrogate objective L(θ) using Equation 7
22 Perform stochastic gradient ascent for∇L(θ) using Adam optimizer with

learning rate η

23 end
24 if Tmin ≤ Tmax then
25 Tmin = Tmin + Tstep

26 end
27 end

120



6.4 Stochastic Policy Learning Methods

Our scheduling policy network is end-to-end trainable via Policy Gradient methods that

seek to directly optimize the network’s parameters based on rewards received from the en-

vironment. We develop our heterogeneous graph-based policy learning framework, which

we call HetGPO, from Proximal Policy Optimization (PPO) [94] and make several adapta-

tions for better variance reduction. In particular, we optimize the clipped surrogate objec-

tive shown in Equation 6.8, where rt(θ) denote the probability ratio between current policy

and old policy on collected rollout data, rt(θ) = πθ(u|o)
πθold

(u|o) , At is the estimated advantage

term, and ϵ is the clipping parameter.

L(θ) = Et[min(rt(θ)At, clip(rt(θ), 1− ϵ, 1 + ϵ)At] (6.8)

In Equation 6.8, the advantage term, At is estimated by subtracting a “baseline” from the

total future reward (or “return”). PPO and Actor-Critic methods typically utilze a learned

state-based value function as such baselinses. However, in a stochastic environment, such

as AirME, learning a helpful value function is non-trivial. This difficulty is due to the

fact that the state dynamics and rewards are closely affected by an exogenous, random

process (e.g., plane’s failure model). Thus, the state alone provides limited information for

predicting future expected return, resulting in high variance when learning a state-based

value function. Instead, we choose to use a step-based baseline [96] as a more accessible

and efficient alternative. Specifically, during gradient estimation, the baseline value being

subtracted is set as the average of the return values, where the average is taken at the same

time step across all training episodes.

We present the pseudocode for HetGPO training in algorithm 5. Lines 3-17 details

the process of rollout data collection on AirME instances generated on-the-fly. Line 6

ensures the same randomly-initialized environment instance is used by all episodes within

one training epoch for further variance reduction. Early termination based on percentage

121



of plane failures are enabled in lines 13-15 to penalize poor explorations. In line 19, a step-

based baseline is computed by taking the average of rewards-to-go on all episodes at the

same step. Lines 20-23 shows the gradient update procedure by maximizing L(θ), which

requires recomputing the action probability using updated policy network at each iteration.

Lines 24-26 implements a curriculum-based procedure in which initial training episodes

are shorter, and the duration of episodes gradually increases, to avoid ineffective learning

at the initial training phase.

Generalizability of HetGPO We develop HetGPO with the mindset of a general, graph-

based policy learning algorithm to solve a broader class of stochastic resource optimization

problems that are not restricted to aircraft maintenance scheduling. Both the heteroge-

neous graph formulation techniques (e.g., the useage of “state summary” and “decision

value” nodes) and the HetGPO training process can be used in similar stochastic schedul-

ing domains as they require little hand-engineering. We leave it as future work to apply our

framework on similar domains such as patient admission scheduling in health care [155].

6.5 Experimental Results

In this section, we evaluate the utility of HetGPO against baselines under various applica-

tion needs in AirME.

6.5.1 Baseline Methods

We benchmark HetGPO against a set of relevant baselines (i.e., heuristics) commonly em-

ployed for scheduling maintenance operations as well as modern machine learning-based

approaches we adapt to the task. Further details for all baselines are provided in Supple-

mentary.

122



Heuristics Baselines

We employ the following heuristics:

Random Scheduler At time t, the random baseline assigns each available crew a plane

to start maintenance work on that is randomly picked from all planes that are not under

maintenance (including placeholder plane #0 for “no op”) to build ut.

Corrective Scheduler [156] The corrective scheduler only schedules corrective mainte-

nance tasks which address component failures that have occurred. When there are multiple

planes with component failures at t, these planes are ranked into a priority queue based on

hourly income.

Condition-Based Scheduler [157] Condition-based maintenance (CBM) has been shown

to improve system efficiency by reducing the number of needed corrective maintenance

tasks. Besides addressing all planes with component failures, the condition-based sched-

uler ranks the non-failure planes into another priority queue (e.g., based the flight hours or

number of landings) and assigns the rest of crew for conducting CBM for them. A thresh-

old, βc, is set for planes without a failure to be eligible to enter the priority queue. Being a

measure to balance plane availability and future failure risk, the choice of βc greatly affects

the scheduler’s performance. To decide the choice of βc, we test values from [0, 10, 20, 30,

..., 110, 120] for flight hours and [0, 1, 2, 3, ..., 11, 12] for number of landings on small

environment instances and pick the best performing one. As a result, βc = 40 for flight

hours is used to generate evaluation results for all objectives.

Periodic Scheduler [74] The periodic scheduler schedules regular occurring mainte-

nance tasks using a prescribed time interval, βp. After βp amount of time has passed, the

periodic scheduler assign every available crew a plane for conducting maintenance. Planes

are ranked first by failure status and then by flight hours. A periodic scheduler’s perfor-

123



mance is closely related to the choice of βp. Note that a periodic scheduler with βp = 1 is

equivalent to a condition-based scheduler with βc = 0. We test values from [1, 2, 3, ..., 11,

12] for βp on small environment instances and pick the best performing one. As a result,

βp = 6 is used to generate results for all objectives.

Model-based Planning

To construct a model-based scheduler, we augment the condition-based scheduler by giving

it access to the plane failure model used in the environment. In this case, non-failure planes

are ranked based on their truth failure probability used in the environment sampling process

for next time step. A threshold, βp, on failure probability is set for planes to be eligible to

enter the priority queue. We test various values for βp on small environment instances and

pick the best performing one, βp = 0.004.

Machine Learning-Based Methods

We consider two methods in prior works for resource scheduling and adapt them to AirME:

DeepRM [95] DeepRM represents the current allocation of resources as fixed-size ten-

sors and uses feed-forward neural network to learn a policy of fixed output dimension. The

input to the policy network is constructed by concatenating the flattened features of all

planes, crews and state. To enable DeepRM to handle variable problem sizes, we zero-

pad the flattened plane- and crew-feature tensor to contain the maximum number of planes

and crews. The output dimension of policy network is also set to the maximum number

of planes. When generating the decision probability distribution, we mask out the un-

valid planes (i.e., planes already under repair) from the network output. We train separate

DeepRM models for small, medium and large environments in AirME. The policy net-

work consists of four fully-connected layers, with hidden dimension of 64 for small, 128

for medium and large environments. DeepRM learns by REINFORCE with step-based

124



baselines.

Decima [96] Decima utilizes a scalable architecture that combines a graph neural net-

work to process jobs/tasks and a separate policy network that makes decisions triggered by

scheduling events. In AirME, the graph neural network used by Decima is a bipartite graph

containing maintenance task nodes as children nodes and a global state summary node as

the parent node. Considering homogeneous crews, we model maintenance task nodes sim-

ilarly as the plane nodes used in HetGPO. Message passing in Decima is conducted as

Equation Equation 6.9.

hs = g
( ∑
m∈N(s)

f(hm)
)
, (6.9)

where g(·) and f(·) are non-linear transformations implemented as neural networks. hm are

the input features of maintenance tasks and hs are the global state embeddings. In Dec-

ima, a scheduling event is triggered when a worker (maintenance crew) becomes available.

Decima’s separate policy network computes a score qm = q(f(hm), hs) for each candidate

maintenance task m. q(·) is a score function that takes as input the global state embed-

dings and transformed task embeddings. Decima then uses a softmax operation over all the

scores to compute the probability of selecting each task as Equation Equation 6.10.

p(m) =
exp(qm)∑

m′∈M exp(qm′)
, (6.10)

where M is the set of all candiate tasks. Keeping consistent with the original paper, we

implement g(·), f(·) and q(·) as separate neural networks in AirME, each consisting of

three fully-connected layers with ReLU activation and hidden dimension of 64. Decima is

trained by REINFORCE with step-based baselines.

125



6.5.2 Evaluation Settings

Evaluation Dataset Environment instances with various problem sizes and random ini-

tialization are generated and saved as test dataset. Three environment scales are consid-

ered: 1) Small: the ranges of fixed-wing aircraft, helicopters and crews are chosen from the

ranges [16, 24], [8, 12], and [6, 8], respectively, using uniform distributions. 2) Medium:

the corresponding ranges are [32, 48], [16, 24], and [12, 16]. 3) Large: the corresponding

ranges are [64, 96], [32, 48], and [24, 32]. For each testing environment instance, we evalu-

ate a method for ten episodes and record the overall performance. Each evaluation episode

starts by loading the test environment instance and runs the scheduler for a fix length of

duration (30 days used).

Evaluation Metrics For each objective discussed in Section section 6.2, we use two eval-

uation metrics. M1: normalized objective value. Normalization is performed w.r.t the

objective value obtained when assuming all planes are flying without failure; M2: % im-

provement over the Corrective Scheduler.

Model Details We implement HetGPO3 using PyTorch [144] and Deep Graph Library

[152]. The policy network used in training/testing is constructed by stacking three multi-

head heterogeneous graph layers (the first two use concatenation, and the last one uses

averaging). The feature dimension of hidden layers = 32, and the number of heads = 4. We

set γ = 0.99, and used Adam optimizer with a learning rate of 1e-3. All variants of HetGPO

are trained with small environment instances generated on-the-fly. In algorithm 5, we set

K = 2000, N = 8, η = 10−3, Niter = 3, Tmin = 50, Tstep = 0.8, Tmax = 200, Tmin = 30.

The clipping parameter ϵ in Equation 6.8 is set to 0.2. Models are trained and evaluated on

a Nvidia A40 Data Center GPU and a AMD EPYC 7452 32-Core CPU.
3https://github.com/CORE-Robotics-Lab/AirME

126



Ta
bl

e
6.

2:
E

va
lu

at
io

n
re

su
lts

on
O

1:
pr

ofi
t.

M
et

ho
ds

Sm
al

l
M

ed
iu

m
L

ar
ge

M
1

M
2

(%
)

M
1

M
2

(%
)

M
1

M
2

(%
)

R
an

do
m

0.
52

2
±

0.
02

5
-2

.8
7

±
5.

65
0.

53
2

±
0.

02
1

-2
.6

5
±

4.
22

0.
53

3
±

0.
01

6
-2

.2
3

±
3.

51
C

or
re

ct
iv

e
0.

53
9

±
0.

02
3

0.
0

±
0.

0
0.

54
7

±
0.

01
6

0.
0

±
0.

0
0.

54
6

±
0.

01
6

0.
0

±
0.

0
C

on
di

tio
n-

ba
se

d
0.

65
6

±
0.

05
0

21
.7

±
6.

41
0.

66
1

±
0.

04
1

20
.8

±
5.

87
0.

64
8

±
0.

05
1

18
.6

±
7.

03
Pe

ri
od

ic
0.

59
9

±
0.

05
1

11
.1

±
6.

96
0.

59
8

±
0.

04
7

9.
38

±
7.

00
0.

58
7

±
0.

04
8

7.
52

±
6.

83
M

od
el

-b
as

ed
0.

66
9

±
0.

05
2

24
.0

±
6.

99
0.

67
1

±
0.

04
4

22
.8

±
6.

45
0.

65
8

±
0.

05
4

20
.5

±
7.

68
D

ee
pR

M
0.

53
3

±
0.

01
5

-0
.8

8
±

2.
57

0.
53

8
±

0.
01

1
-1

.4
7

±
1.

77
0.

53
9

±
0.

01
3

-1
.1

1
±

0.
97

D
ec

im
a

0.
65

1
±

0.
02

1
21

.1
±

6.
42

0.
66

0
±

0.
01

7
20

.9
±

4.
49

0.
66

3
±

0.
01

4
21

.6
±

4.
51

H
et

G
PO

-S
in

gl
e

0.
68

0
±

0.
01

2
26

.4
±

4.
32

0.
67

6
±

0.
01

1
23

.7
±

3.
17

0.
66

6
±

0.
01

1
22

.3
±

3.
77

H
et

G
PO

-S
ki

p
0.

69
5

±
0.

01
0

29
.1

±
4.

09
0.

69
7

±
0.

00
9

27
.5

±
2.

70
0.

69
5

±
0.

00
8

27
.5

±
2.

72
H

et
G

PO
-F

ul
l

0.
69

3
±

0.
01

1
28

.8
±

4.
01

0.
69

4
±

0.
00

9
27

.1
±

2.
62

0.
69

3
±

0.
00

8
27

.1
±

2.
68

127



Ta
bl

e
6.

3:
E

va
lu

at
io

n
re

su
lts

on
O

2:
to

ta
l

re
ve

nu
e.

N
ot

e
th

at
fo

r
ea

ch
1%

of
im

pr
ov

em
en

t
fo

r
O

2,
w

e
w

ou
ld

ge
t

a
$0

.6
57

8
B

ill
io

n
re

ve
nu

e
in

cr
ea

se
.e

.g
.,

fo
rL

ar
ge

-O
2,

H
et

G
PO

-F
ul

lw
ou

ld
ac

hi
ev

e
a

$9
.2

7
B

ill
io

n
in

cr
ea

se
in

re
ve

nu
e.

M
et

ho
ds

Sm
al

l
M

ed
iu

m
L

ar
ge

M
1

M
2

(%
)

M
1

M
2

(%
)

M
1

M
2

(%
)

R
an

do
m

0.
61

1
±

0.
01

6
-5

.6
3

±
3.

85
0.

61
8

±
0.

01
4

-5
.7

4
±

2.
87

0.
61

8
±

0.
01

2
-5

.6
8

±
2.

41
C

or
re

ct
iv

e
0.

64
8

±
0.

02
2

0.
0

±
0.

0
0.

65
6

±
0.

01
5

0.
0

±
0.

0
0.

65
5

±
0.

01
8

0.
0

±
0.

0
C

on
di

tio
n-

ba
se

d
0.

72
4

±
0.

03
5

11
.6

±
2.

71
0.

72
7

±
0.

03
0

10
.7

±
2.

61
0.

71
8

±
0.

03
6

9.
45

±
2.

87
Pe

ri
od

ic
0.

67
5

±
0.

03
8

4.
06

±
3.

47
0.

67
7

±
0.

03
3

3.
05

±
3.

39
0.

66
9

±
0.

03
5

2.
05

±
3.

17
M

od
el

-b
as

ed
0.

72
8

±
0.

03
7

12
.3

±
2.

91
0.

73
2

±
0.

03
0

11
.5

±
2.

66
0.

72
3

±
0.

03
7

10
.3

±
2.

98
D

ee
pR

M
0.

62
5

±
0.

01
4

-3
.5

4
±

1.
62

0.
62

6
±

0.
01

1
-4

.6
6

±
1.

38
0.

62
2

±
0.

01
2

-5
.0

2
±

1.
24

D
ec

im
a

0.
72

5
±

0.
01

1
11

.9
±

4.
57

0.
73

0
±

0.
01

0
11

.3
±

3.
17

0.
73

2
±

0.
00

7
11

.8
±

3.
55

H
et

G
PO

-S
in

gl
e

0.
73

6
±

0.
00

8
13

.7
±

3.
72

0.
73

5
±

0.
00

8
12

.0
±

2.
67

0.
73

0
±

0.
00

7
11

.5
±

3.
24

H
et

G
PO

-S
ki

p
0.

74
7

±
0.

00
8

15
.3

±
3.

43
0.

74
8

±
0.

00
7

14
.0

±
2.

29
0.

74
7

±
0.

00
6

14
.0

±
2.

72
H

et
G

PO
-F

ul
l

0.
74

7±
0.

00
8

15
.4

±
3.

41
0.

74
9

±
0.

00
6

14
.1

±
2.

26
0.

74
7

±
0.

00
6

14
.1

±
2.

73

128



Ta
bl

e
6.

4:
E

va
lu

at
io

n
re

su
lts

on
O

3:
fle

et
av

ai
la

bi
lit

y.

M
et

ho
ds

Sm
al

l
M

ed
iu

m
L

ar
ge

M
1

M
2

(%
)

M
1

M
2

(%
)

M
1

M
2

(%
)

R
an

do
m

0.
69

9
±

0.
01

5
-2

.9
7

±
4.

27
0.

70
6

±
0.

01
2

-3
.2

6
±

3.
43

0.
70

5
±

0.
01

2
-3

.0
0

±
3.

39
C

or
re

ct
iv

e
0.

72
2

±
0.

03
3

0.
0

±
0.

0
0.

73
0

±
0.

02
7

0.
0

±
0.

0
0.

72
8

±
0.

03
2

0.
0

±
0.

0
C

on
di

tio
n-

ba
se

d
0.

81
0

±
0.

05
7

12
.0

±
4.

18
0.

81
2

±
0.

05
2

11
.1

±
3.

82
0.

79
6

±
0.

06
5

9.
16

±
4.

68
Pe

ri
od

ic
0.

74
7

±
0.

08
0

3.
19

±
7.

20
0.

74
3

±
0.

07
4

1.
48

±
7.

05
0.

72
5

±
0.

08
1

-0
.6

7
±

7.
33

M
od

el
-b

as
ed

0.
81

4
±

0.
05

8
12

.6
±

4.
27

0.
81

7
±

0.
05

1
11

.8
±

3.
76

0.
80

3
±

0.
06

5
10

.0
±

4.
63

D
ee

pR
M

0.
70

8
±

0.
01

7
-1

.8
2

±
2.

30
0.

70
9

±
0.

01
3

-2
.8

6
±

2.
45

0.
70

6
±

0.
01

3
-2

.9
0

±
3.

22
D

ec
im

a
0.

74
8

±
0.

03
1

3.
98

±
8.

85
0.

75
5

±
0.

02
5

3.
69

±
7.

10
0.

76
0

±
0.

02
2

4.
76

±
7.

63
H

et
G

PO
-S

in
gl

e
0.

84
2

±
0.

00
7

16
.8

±
4.

84
0.

84
0

±
0.

00
5

15
.2

±
3.

99
0.

83
7

±
0.

00
4

15
.1

±
4.

94
H

et
G

PO
-S

ki
p

0.
84

7
±

0.
00

7
17

.6
±

4.
89

0.
84

8
±

0.
00

5
16

.3
±

3.
99

0.
84

7
±

0.
00

5
16

.6
±

4.
86

H
et

G
PO

-F
ul

l
0.

84
9

±
0.

00
7

17
.7

±
4.

90
0.

84
9

±
0.

00
5

16
.5

±
3.

98
0.

84
9

±
0.

00
5

16
.8

±
4.

84

129



6.5.3 Evaluation Results

We present the evaluation results under three objectives in Table 6.2-Table 6.4, where both

mean and standard deviation are listed. The corrective scheduler is used as the baseline

method when computing M2.

HetGPO outperforms all baselines across all objectives. HetGPO-Skip and HetGPO-

Full performs similarly, with HetGPO-Single achieving slightly worse. HetGPO-Skip and

HetGPO-Full’s performance remains consistent from small scale to large scale, while a

performance drop is observed for HetGPO-Single on large scale. This is due to the differ-

ence in training and testing for HetGPO-Single, which trades some performance for better

computation efficiency.

The biggest improvement in M2 of HetGPO is observed in O1, up to 29.1%. HetGPO

outperforms the condition-based scheduler, which is the best performing heuristic method,

by ∼ 8% in O1, ∼ 4% in O2, and ∼ 6% in O3. The condition-based scheduler benefits

from the priority queue as a mechanism to estimate the likelihood of plane failures. Both

the condition-based scheduler and the periodic scheduler rely on hand-picked threshold

values, and their performance drops quickly if βc or βp deviates from optimal.

With access to the plane failure model, the model-based scheduler improves over condition-

based scheduler, but is still outperformed by HetGPO. As we have heterogeneous fleet and

stochastic maintenance task, it is not trivial to design effective heuristics even with ac-

cess to truth failure sampling probability. On the other hand, thanks to the heterogeneous

graph formulation, HetGPO is capable of automatically learning to implicitly reason about

the plane failure and maintenance specifics toward optimizing scheduling objectives, with-

out the help of expert domain knowledge. Note that HetGPO can be complementary to

symbolic and model-based methods, and we leave it as future work to explore novel mech-

anisms for combining HetGPO with model-based planning techniques towards further per-

formance gain.

DeepRM fails to learn useful scheduling policies and the performance is close to the

130



Figure 6.3: HetGPO-Single training on O1 with a step-based baseline vs. state-based value
function. Numbers in the legend denote the random seeds used.

random scheduler. This shows that the fixed-size tensor representation DeepRM uses is

inefficient in modeling heterogeneous scheduling environments. On the other hand, Dec-

ima uses graph neural networks to learn from the structure information with the help of a

global summary node. Decima is able to learn scheduling policies that are comparable with

the condition-based scheduler under O1 and O2. However, the graph structure in Decima

only allows for one round of message passing among its nodes, and the summary node

does not utilize attention. The limitation in model expressiveness makes Decima perform

worse than HetGPO. In addition to achieving superior performance across problem sizes

and various objective functions, HetGPO policies are more robust and consistent than other

methods, with M1 standard deviation up to 5x smaller than heuristics and 2x smaller than

Decima.

6.5.4 Ablation Studies

Here, we investigate the effectiveness of step-based baselines over standard PPO training

with a state-based value function. We add a critic head to process the output node feature of

state node for value function prediction. We include the amount of time left in an episode as

131



separate input to the critic head during training, because the time information affects value

estimation. Figure 6.3 shows the learning curves of different baseline choices on 4 random

seeds under O1, using Single variant. Due to the stochasticity from both the maintenance

work and the plane failure process, learning a state-based value function made the policy

learning nosier than using step-based baselines. As shown in Figure 6.3, two seeds failed

to learn a helpful value function, in which the policy performance decreased as training

continued. When a value function was learned, the policy performance was still inferior

than policies trained with step-based baselines.

6.6 Summary

Inspired by recent advances in leveraging deep learning to solve operations research prob-

lems, we propose an innovative design of heterogeneous graph neural networks-based

policy for automatically learning the decision-making for failure-predictive maintenance

scheduling. We directly build the scheduling policy into a heterogeneous graph representa-

tion of the environment to obtain a fully convolutional structure, providing a computation-

ally lightweight and nonparametric means to perform dynamic scheduling. Furthermore,

we develop an RL-based policy optimization procedure, called HetGPO, to enable robust

learning in highly stochastic environments. AirME, a virtual predictive-maintenance en-

vironment for a heterogeneous fleet of aircraft, is designed and implemented as a testbed.

Experimental results across various problem scales and objective functions (e.g., profit- and

availability-based) show the effectiveness of our proposed framework over conventional,

hand-crafted heuristics and baseline learning methods.

132



CHAPTER 7

CONCLUSION AND FUTURE WORK

In this dissertation, we explore deep-learning based methods for solving resource optimiza-

tion problems and how to best leverage graph neural networks for effective policy learning.

This chapter concludes our work, discusses limitations, and gives potential future work

plans.

7.1 Conclusion

We build a unified framework of learning scalable scheduling policies for effectively solv-

ing resource optimization problems. We validate this framework in different scheduling

scenarios ranging from multi-robot task scheduling, human-robot coordination to aircraft

maintenance scheduling.

Our investigation begins with homogeneous robot teams. In Chapter 2, we presented

a graph attention network framework to automatically learn a scalable scheduling policy

to coordinate multi-robot teams of various sizes. By combining imitation learning with

graph attention networks in a non-parametric framework, we were able to obtain a policy

that generated fast, near-optimal scheduling of robot teams. We demonstrated that our

network-based policy found significantly more solutions than prior state-of-the-art methods

in all testing scenarios.

To extend our work to allow scheduling robots with different capabilities, in Chapter 3,

we presented a novel heterogeneous graph attention network model, called ScheduleNet, to

learn a scalable policy for multi-robot task allocation and scheduling problems. By intro-

ducing robot- and proximity-specific nodes into the simple temporal network that encodes

the temporal constraints, we obtained a heterogeneous graph structure that is nonparametric

in the number of tasks, robots and task resources. We showed that the model is end-to-end

133



trainable via imitation learning with expert demonstrations, and generalizes well to large,

unseen problems. Empirically, we showed that our method outperformed existing state-of-

the-art methods in a variety of testing scenarios involving both homogeneous robot teams

and heterogeneous robot teams.

One of the big challenges of ScheduleNet is that the training requires optimal expert

demonstrations and task durations are assumed to be deterministic and known a priori. To

overcome this issue, ways of learning stochastic scheduling policies are being explored.

Chapter 4 introduces a deep learning-based hybrid framework, called HybridNet, combin-

ing a heterogeneous graph-based encoder with a recurrent schedule propagator, for schedul-

ing stochastic human-robot teams under temporal and spatial constraints. The resulting

policy network provides a computationally lightweight yet highly expressive model that

is end-to-end trainable via reinforcement learning algorithms. We developed MuRSE, a

multi-round task scheduling environment for stochastic human-robot teams, and conducted

extensive experiments, showing that HybridNet outperforms other human-robot scheduling

solutions across various problem sizes.

Finally, in Chapter 5, we focus on learning the decision-making for failure-predictive

maintenance scheduling. We directly build the scheduling policy into a heterogeneous

graph representation of the environment to obtain a fully convolutional structure, providing

a computationally lightweight and nonparametric means to perform dynamic scheduling.

We developed an RL-based policy optimization procedure, called HetGPO, to enable ro-

bust learning in highly stochastic environments. AirME, a virtual predictive-maintenance

environment for a heterogeneous fleet of aircraft, is designed and implemented as a testbed.

Experimental results across various problem scales and objective functions (e.g., profit- and

availability-based) show the effectiveness of our proposed framework over conventional,

hand-crafted heuristics and baseline learning methods.

134



7.2 Limitations and Future Work

We note the limitations of our research, as listed below.

• First, we only address high-level task planning while ignoring task execution details.

For multi-robot and human-robot teams, motion planning and path planning of each

agent after task-agent assignment are not considered. We also assume the task dura-

tion is considerably larger than agent travel time. In scenarios where such assumption

no longer holds, the schedule provided by our learner may become infeasible.

• Second, the training of both the RoboGNN and ScheduleNet models requires high-

quality expert data as the loss function assumes the experts choose the optimal schedul-

ing action at each time step. Therefore, sub-optimal demonstrations would lead to

degraded model performance or even the wrong direction of gradient updates. Also,

the proposed imitation learning method no longer works in stochastic scenarios. Al-

though we can train HybridNet with reinforcement learning methods in such cases,

the training requires delicate reward engineering and takes much longer time com-

pared to imitation learning. Therefore, it is beneficial to investigate policy learning

methods that can explicitly reason about sup-optimality in scheduling demonstra-

tions.

• Third, although our GNN-based schedulers scale to different problem and team sizes,

we observe a performance drop when the problem scale increases. Considering that

our approach only trains on small scale problems, applying the learned representation

to large scale problems, it remains an important open problem to investigate fine-

tuning and transfer learning methods for improving the performance as problem sizes

increases.

In future work, besides addressing the above-mentioned limitations, there are also sev-

eral directions to extend our work, which are listed below.

135



Learning across Different Objective Functions

In ScheduleNet and HetGPO in AirME, we show that the same model structure can be

trained to learn policies with different objective functions depending on application needs.

However, those training processes are independent of each other. While different objectives

require different scheduling strategies, they operate in the same problem state space. We

plan to investigate if the learned high-level representation of one objective can facilitate the

learning process when optimizing a different but related objective. Therefore, we propose

in future work to explore multi-task learning methods of joint learning under different

objective functions and transfer learning between them.

Combining Deep Learning Models with Heuristics

Our graph neural network-based models are developed to be complementary to symbolic

and heuristic methods. For example, in multi-robot coordination, one could leverage Sched-

uleNet’s task selector as a branching or selection policy for model-based search methods. It

is also possible to use schedules found by HybridNet to warm-start the Genetic Algorithm’s

population. In future work, we propose to explore novel mechanisms for combining our

framework with traditional planning techniques towards further performance gain.

Generalizing HetGPO to Broader Domains

We develop HetGPO with the mindset of a general, graph-based policy learning algorithm

to solve a broader class of stochastic resource optimization problems that are not restricted

to aircraft maintenance scheduling. The heterogenous graph is built by first modeling each

entity class of the domain as a unique node type and their interactions as directed edges

(i.e., the base graph) and then adding “state summary” node and “decision value” nodes.

While constructing the base graph depends on the specific domain, the modeling is rel-

atively straightforward and requires little hand-engineering. The input node features are

merely the observables from the environment and do not require feature engineering. In

136



Figure 7.1: Metagraph of the heterogeneous graph built for patient admission scheduling
problems.

future, we plan to apply HetGPO on similar stochastic resource optimization domains that

require predictive scheduling efforts, including patient admission scheduling in health care.

Recent research has shown success in training GNN-based models with imitation learning

for solving the staff rerostering problem [158].

Take patient admission for the delivery room from [159] as an example, the base graph

of the scenario can be built by modeling nurses, beds and patients as different types of

nodes, with edges denoting their interaction. By adding the “state summary” and “decision

value” nodes to the base graph, we obtain the heterogeneous graph used by the scheduling

policy network of HetGPO, as shown in Figure 7.1. In addition to the state summary node, a

decision node now also connects with a patient, a nurse and a bed to estimate the outcome of

admitting the selected patient. Then, Algorithm 5 can be used to learn scheduling policies

under the objective functions defined for hospital scenarios.

137



REFERENCES

[1] B. Zhou, J. Bao, J. Li, Y. Lu, T. Liu, and Q. Zhang, “A novel knowledge graph-
based optimization approach for resource allocation in discrete manufacturing work-
shops,” Robotics and Computer-Integrated Manufacturing, vol. 71, p. 102 160,
2021.

[2] Z. Yan, N. Jouandeau, and A. A. Cherif, “A survey and analysis of multi-robot
coordination,” International Journal of Advanced Robotic Systems, vol. 10, no. 12,
p. 399, 2013.

[3] Y. Kantaros and M. M. Zavlanos, “Global planning for multi-robot communication
networks in complex environments,” IEEE Transactions on Robotics, vol. 32, no. 5,
pp. 1045–1061, 2016.

[4] J. Alonso-Mora, S. Baker, and D. Rus, “Multi-robot formation control and ob-
ject transport in dynamic environments via constrained optimization,” The Interna-
tional Journal of Robotics Research, vol. 36, no. 9, pp. 1000–1021, 2017.

[5] G. Wagner and H. Choset, “Subdimensional expansion for multirobot path plan-
ning,” Artificial intelligence, vol. 219, pp. 1–24, 2015.

[6] J. Yu and S. M. LaValle, “Optimal multirobot path planning on graphs: Complete
algorithms and effective heuristics,” IEEE Transactions on Robotics, vol. 32, no. 5,
pp. 1163–1177, 2016.

[7] C. Sarkar, H. S. Paul, and A. Pal, “A scalable multi-robot task allocation algorithm,”
in 2018 IEEE International Conference on Robotics and Automation (ICRA), IEEE,
2018, pp. 5022–5027.

[8] E. F. Flushing, L. M. Gambardella, and G. A. Di Caro, “Simultaneous task allo-
cation, data routing, and transmission scheduling in mobile multi-robot teams,”
in 2017 IEEE/RSJ International Conference on Intelligent Robots and Systems
(IROS), IEEE, 2017, pp. 1861–1868.

[9] E. Nunes, M. Manner, H. Mitiche, and M. Gini, “A taxonomy for task allocation
problems with temporal and ordering constraints,” Robotics and Autonomous Sys-
tems, vol. 90, pp. 55–70, 2017.

[10] A. Vysocky and P. Novak, “Human-robot collaboration in industry,” MM Science
Journal, vol. 9, no. 2, pp. 903–906, 2016.

138



[11] A. Ajoudani, A. M. Zanchettin, S. Ivaldi, A. Albu-Schäffer, K. Kosuge, and O.
Khatib, “Progress and prospects of the human–robot collaboration,” Autonomous
Robots, vol. 42, no. 5, pp. 957–975, 2018.

[12] R. Liu, M. Natarajan, and M. C. Gombolay, “Coordinating human-robot teams with
dynamic and stochastic task proficiencies,” ACM Transactions on Human-Robot
Interaction (THRI), vol. 11, no. 1, pp. 1–42, 2021.

[13] M. C. Gombolay, C. Huang, and J. Shah, “Coordination of human-robot teaming
with human task preferences,” in 2015 AAAI Fall Symposium Series, 2015.

[14] J. A. Shah and B. C. Williams, “Fast dynamic scheduling of disjunctive temporal
constraint networks through incremental compilation.,” in ICAPS, 2008, pp. 322–
329.

[15] D. Dinis, A. Barbosa-Póvoa, and Â. P. Teixeira, “A supporting framework for main-
tenance capacity planning and scheduling: Development and application in the
aircraft mro industry,” International Journal of Production Economics, vol. 218,
pp. 1–15, 2019.

[16] M. A. Bajestani and J. C. Beck, “Scheduling an aircraft repair shop,” in Twenty-
First International Conference on Automated Planning and Scheduling, 2011.

[17] I. Haloui, C. Ponzoni Carvalho Chanel, and A. Haı̈t, “Towards a hierarchical mod-
elling approach for planning aircraft tail assignment and predictive maintenance,”
in the 13th International Scheduling and Planning Applications woRKshop (SPARK),
2020.

[18] The Economist, Artificial intelligence is changing every aspect of war, Accessed:
2021-12-15, 2019.

[19] IATA, International Air Transport Association Annual Report 2012. 2012.

[20] Scott McCartney, How airlines spend your airfare, Accessed: 2021-12-15, 2012.

[21] O. Koné, C. Artigues, P. Lopez, and M. Mongeau, “Event-based milp models for
resource-constrained project scheduling problems,” Computers & Operations Re-
search, vol. 38, no. 1, pp. 3–13, 2011.

[22] M. C. Gombolay, R. J. Wilcox, and J. A. Shah, “Fast scheduling of robot teams
performing tasks with temporospatial constraints,” IEEE Transactions on Robotics,
vol. 34, no. 1, pp. 220–239, 2018.

[23] V. Tereshchuk, N. Bykov, S. Pedigo, S. Devasia, and A. G. Banerjee, “A schedul-
ing method for multi-robot assembly of aircraft structures with soft task precedence

139



constraints,” Robotics and Computer-Integrated Manufacturing, vol. 71, p. 102 154,
2021.

[24] E. R. López-Santana and G. A. Méndez-Giraldo, “A knowledge-based expert sys-
tem for scheduling in services systems,” in Workshop on Engineering Applications,
Springer, 2016, pp. 212–224.

[25] Y. LeCun, Y. Bengio, and G. Hinton, “Deep learning,” Nature, vol. 521, no. 7553,
pp. 436–444, 2015.

[26] Y. Bengio, A. Lodi, and A. Prouvost, “Machine learning for combinatorial opti-
mization: A methodological tour d’horizon,” European Journal of Operational Re-
search, vol. 290, no. 2, pp. 405–421, 2021.

[27] E. Khalil, H. Dai, Y. Zhang, B. Dilkina, and L. Song, “Learning combinatorial op-
timization algorithms over graphs,” in Advances in Neural Information Processing
Systems, 2017, pp. 6348–6358.

[28] W. Kool, H. van Hoof, and M. Welling, “Attention, learn to solve routing prob-
lems!” In International Conference on Learning Representations, 2019.

[29] T. Ma, P. Ferber, S. Huo, J. Chen, and M. Katz, “Online planner selection with
graph neural networks and adaptive scheduling,” in Proceedings of the AAAI Con-
ference on Artificial Intelligence, vol. 34, 2020, pp. 5077–5084.

[30] H. Raghavan, O. Madani, and R. Jones, “Active learning with feedback on features
and instances,” Journal of Machine Learning Research, vol. 7, no. Aug, pp. 1655–
1686, 2006.

[31] J. Zhou et al., “Graph neural networks: A review of methods and applications,”
arXiv preprint arXiv:1812.08434, 2018.

[32] P. Veličković, G. Cucurull, A. Casanova, A. Romero, P. Liò, and Y. Bengio, “Graph
Attention Networks,” International Conference on Learning Representations, 2018.

[33] R. Dechter, I. Meiri, and J. Pearl, “Temporal constraint networks,” Artificial intel-
ligence, vol. 49, no. 1-3, pp. 61–95, 1991.

[34] E. Nunes and M. Gini, “Multi-robot auctions for allocation of tasks with tempo-
ral constraints,” in Twenty-Ninth AAAI Conference on Artificial Intelligence, 2015,
pp. 2110–2116.

[35] M. M. Solomon, “On the worst-case performance of some heuristics for the vehicle
routing and scheduling problem with time window constraints,” Networks, vol. 16,
no. 2, pp. 161–174, 1986.

140



[36] M. Caridi and S. Cavalieri, “Multi-agent systems in production planning and con-
trol: An overview,” Production Planning & Control, vol. 15, no. 2, pp. 106–118,
2004.

[37] Y. N. Sotskov and N. V. Shakhlevich, “Np-hardness of shop-scheduling problems
with three jobs,” Discrete Applied Mathematics, vol. 59, no. 3, pp. 237–266, 1995.

[38] C. Le Pape, “A combination of centralized and distributed methods for multi-
agent planning and scheduling,” in Proceedings., IEEE International Conference
on Robotics and Automation, IEEE, 1990, pp. 488–493.

[39] R. J. Rabelo and L. Camarinha-Matos, “Negotiation in multi-agent based dynamic
scheduling,” Robotics and computer-integrated manufacturing, vol. 11, no. 4, pp. 303–
309, 1994.

[40] X. Zheng and S. Koenig, “K-swaps: Cooperative negotiation for solving task-allocation
problems,” in Twenty-First International Joint Conference on Artificial Intelligence,
2009.

[41] B. P. Gerkey and M. J. Matarić, “A formal analysis and taxonomy of task allocation
in multi-robot systems,” The International journal of robotics research, vol. 23,
no. 9, pp. 939–954, 2004.

[42] G. A. Korsah, A. Stentz, and M. B. Dias, “A comprehensive taxonomy for multi-
robot task allocation,” The International Journal of Robotics Research, vol. 32,
no. 12, pp. 1495–1512, 2013.

[43] J. Chen and R. G. Askin, “Project selection, scheduling and resource allocation
with time dependent returns,” European Journal of Operational Research, vol. 193,
no. 1, pp. 23–34, 2009.

[44] M. Koes et al., “Heterogeneous multirobot coordination with spatial and temporal
constraints,” in AAAI, vol. 5, 2005, pp. 1292–1297.

[45] A. Prorok, M. A. Hsieh, and V. Kumar, “Fast redistribution of a swarm of hetero-
geneous robots,” in Proceedings of the 9th EAI International Conference on Bio-
inspired Information and Communications Technologies (formerly BIONETICS),
2016, pp. 249–255.

[46] B. P. Gerkey and M. J. Mataric, “Sold!: Auction methods for multirobot coordina-
tion,” IEEE transactions on robotics and automation, vol. 18, no. 5, pp. 758–768,
2002.

141



[47] G. P. Das, T. M. McGinnity, S. A. Coleman, and L. Behera, “A distributed task
allocation algorithm for a multi-robot system in healthcare facilities,” Journal of
Intelligent & Robotic Systems, vol. 80, no. 1, pp. 33–58, 2015.

[48] A. Messing, G. Neville, S. Chernova, S. Hutchinson, and H. Ravichandar, “Grstaps:
Graphically recursive simultaneous task allocation, planning, and scheduling,” The
International Journal of Robotics Research, vol. 41, no. 2, pp. 232–256, 2022.

[49] H. Hanna, “Decentralized approach for multi-robot task allocation problem with
uncertain task execution,” in 2005 IEEE/RSJ International Conference on Intelli-
gent Robots and Systems, IEEE, 2005, pp. 535–540.

[50] C. Ferreira, G. Figueira, and P. Amorim, “Scheduling human-robot teams in col-
laborative working cells,” International Journal of Production Economics, vol. 235,
p. 108 094, 2021.

[51] Y. Qu, X. Ming, Z. Liu, X. Zhang, and Z. Hou, “Smart manufacturing systems:
State of the art and future trends,” The International Journal of Advanced Manu-
facturing Technology, vol. 103, no. 9, pp. 3751–3768, 2019.

[52] S.-D. Lee, M.-C. Kim, and J.-B. Song, “Sensorless collision detection for safe
human-robot collaboration,” in 2015 IEEE/RSJ International Conference on In-
telligent Robots and Systems (IROS), IEEE, 2015, pp. 2392–2397.

[53] S. Pellegrinelli, A. Orlandini, N. Pedrocchi, A. Umbrico, and T. Tolio, “Motion
planning and scheduling for human and industrial-robot collaboration,” CIRP An-
nals, vol. 66, no. 1, pp. 1–4, 2017.

[54] P. A. Hancock, D. R. Billings, K. E. Schaefer, J. Y. Chen, E. J. De Visser, and R.
Parasuraman, “A meta-analysis of factors affecting trust in human-robot interac-
tion,” Human factors, vol. 53, no. 5, pp. 517–527, 2011.

[55] M. Natarajan and M. Gombolay, “Effects of anthropomorphism and accountabil-
ity on trust in human robot interaction,” in Proceedings of the 2020 ACM/IEEE
International Conference on Human-Robot Interaction, 2020, pp. 33–42.

[56] H. Liu and L. Wang, “Gesture recognition for human-robot collaboration: A re-
view,” International Journal of Industrial Ergonomics, vol. 68, pp. 355–367, 2018.

[57] A. M. Zanchettin, A. Casalino, L. Piroddi, and P. Rocco, “Prediction of human ac-
tivity patterns for human–robot collaborative assembly tasks,” IEEE Transactions
on Industrial Informatics, vol. 15, no. 7, pp. 3934–3942, 2018.

[58] J. Kolb, M. Kishore, K. Shaw, H. Ravichandar, and S. Chernova, “Predicting in-
dividual human performance in human-robot teaming,” in 2021 30th IEEE Inter-

142



national Conference on Robot & Human Interactive Communication (RO-MAN),
IEEE, 2021, pp. 45–50.

[59] J. C. Mateus, D. Claeys, V. Limère, J. Cottyn, and E.-H. Aghezzaf, “A structured
methodology for the design of a human-robot collaborative assembly workplace,”
The International Journal of Advanced Manufacturing Technology, vol. 102, no. 5,
pp. 2663–2681, 2019.

[60] R. Paleja, M. Ghuy, N. Ranawaka Arachchige, R. Jensen, and M. Gombolay, “The
utility of explainable ai in ad hoc human-machine teaming,” Advances in Neural
Information Processing Systems, vol. 34, pp. 610–623, 2021.

[61] W. Xu, Q. Tang, J. Liu, Z. Liu, Z. Zhou, and D. T. Pham, “Disassembly sequence
planning using discrete bees algorithm for human-robot collaboration in remanu-
facturing,” Robotics and Computer-Integrated Manufacturing, vol. 62, p. 101 860,
2020.

[62] M. Rizwan, V. Patoglu, and E. Erdem, “Human-robot collaborative assembly plan-
ning using hybrid conditional planning,” in Proc. FAIM/ISCA Workshop on Artifi-
cial Intelligence for Multimodal HRI, 2018, pp. 23–26.

[63] A. Cherubini, R. Passama, A. Crosnier, A. Lasnier, and P. Fraisse, “Collaborative
manufacturing with physical human–robot interaction,” Robotics and Computer-
Integrated Manufacturing, vol. 40, pp. 1–13, 2016.

[64] L. Wang, B. Schmidt, and A. Y. Nee, “Vision-guided active collision avoidance for
human-robot collaborations,” Manufacturing Letters, vol. 1, no. 1, pp. 5–8, 2013.

[65] H. Ding, M. Schipper, and B. Matthias, “Optimized task distribution for industrial
assembly in mixed human-robot environments-case study on io module assembly,”
in 2014 IEEE international conference on automation science and engineering
(CASE), IEEE, 2014, pp. 19–24.

[66] N. Nikolakis, N. Kousi, G. Michalos, and S. Makris, “Dynamic scheduling of
shared human-robot manufacturing operations,” Procedia CIRP, vol. 72, pp. 9–14,
2018.

[67] A. Casalino, A. M. Zanchettin, L. Piroddi, and P. Rocco, “Optimal scheduling of
human–robot collaborative assembly operations with time petri nets,” IEEE Trans-
actions on Automation Science and Engineering, vol. 18, no. 1, pp. 70–84, 2019.

[68] S. Zhang, Y. Chen, J. Zhang, and Y. Jia, “Real-time adaptive assembly scheduling in
human-multi-robot collaboration according to human capability*,” 2020 IEEE In-
ternational Conference on Robotics and Automation (ICRA), pp. 3860–3866, 2020.

143



[69] Y. Ran, X. Zhou, P. Lin, Y. Wen, and R. Deng, “A survey of predictive maintenance:
Systems, purposes and approaches,” arXiv preprint arXiv:1912.07383, 2019.

[70] L. Swanson, “Linking maintenance strategies to performance,” International jour-
nal of production economics, vol. 70, no. 3, pp. 237–244, 2001.

[71] I. Gertsbakh and I. B. Gertsbakh, Reliability theory: with applications to preventive
maintenance. Springer Science & Business Media, 2000.

[72] J. Wan et al., “A manufacturing big data solution for active preventive mainte-
nance,” IEEE Transactions on Industrial Informatics, vol. 13, no. 4, pp. 2039–
2047, 2017.

[73] J. H. Williams, A. Davies, and P. R. Drake, Condition-based maintenance and ma-
chine diagnostics. Springer Science & Business Media, 1994.

[74] R. Ahmad and S. Kamaruddin, “An overview of time-based and condition-based
maintenance in industrial application,” Computers & industrial engineering, vol. 63,
no. 1, pp. 135–149, 2012.

[75] K.-A. Nguyen, P. Do, and A. Grall, “Multi-level predictive maintenance for multi-
component systems,” Reliability engineering & system safety, vol. 144, pp. 83–94,
2015.

[76] J. Wang, L. Zhang, L. Duan, and R. X. Gao, “A new paradigm of cloud-based
predictive maintenance for intelligent manufacturing,” Journal of Intelligent Man-
ufacturing, vol. 28, no. 5, pp. 1125–1137, 2017.

[77] H. Löfsten, “Measuring maintenance performance–in search for a maintenance pro-
ductivity index,” International Journal of Production Economics, vol. 63, no. 1,
pp. 47–58, 2000.

[78] T. A. Feo and J. F. Bard, “Flight scheduling and maintenance base planning,” Man-
agement Science, vol. 35, no. 12, pp. 1415–1432, 1989.

[79] M. Biró, I. Simon, and C. Tánczos, “Aircraft and maintenance scheduling support,
mathematical insights and a proposed interactive system,” Journal of Advanced
Transportation, vol. 26, no. 2, pp. 121–130, 1992.

[80] C. A. Hane, C. Barnhart, E. L. Johnson, R. E. Marsten, G. L. Nemhauser, and
G. Sigismondi, “The fleet assignment problem: Solving a large-scale integer pro-
gram,” Mathematical Programming, vol. 70, no. 1, pp. 211–232, 1995.

144



[81] R. Dekker and P. A. Scarf, “On the impact of optimisation models in maintenance
decision making: The state of the art,” Reliability Engineering & System Safety,
vol. 60, no. 2, pp. 111–119, 1998.

[82] C. Sriram and A. Haghani, “An optimization model for aircraft maintenance schedul-
ing and re-assignment,” Transportation Research Part A: Policy and Practice, vol. 37,
no. 1, pp. 29–48, 2003.

[83] P. Y. Cho, “Optimal scheduling of fighter aircraft maintenance,” Ph.D. dissertation,
Massachusetts Institute of Technology, 2011.

[84] A. Gavranis and G. Kozanidis, “An exact solution algorithm for maximizing the
fleet availability of a unit of aircraft subject to flight and maintenance require-
ments,” European Journal of Operational Research, vol. 242, no. 2, pp. 631–643,
2015.

[85] Y. Liu, T. Wang, H. Zhang, V. Cheutet, and G. Shen, “The design and simulation of
an autonomous system for aircraft maintenance scheduling,” Computers & Indus-
trial Engineering, vol. 137, p. 106 041, 2019.

[86] M. Pinedo, Scheduling. Springer, 2012, vol. 29.

[87] M. Pinedo, “Stochastic scheduling with release dates and due dates,” Operations
Research, vol. 31, no. 3, pp. 559–572, 1983.

[88] Z. Li and M. Ierapetritou, “Process scheduling under uncertainty: Review and chal-
lenges,” Computers & Chemical Engineering, vol. 32, no. 4-5, pp. 715–727, 2008.

[89] R. K. Chakrabortty, R. A. Sarker, and D. L. Essam, “Resource constrained project
scheduling with uncertain activity durations,” Computers & Industrial Engineering,
vol. 112, pp. 537–550, 2017.

[90] X. Cai, X. Wu, and X. Zhou, “Stochastic scheduling on parallel machines to mini-
mize discounted holding costs,” Journal of Scheduling, vol. 12, no. 4, pp. 375–388,
2009.

[91] R. Ramı́rez-Velarde, A. Tchernykh, C. Barba-Jimenez, A. Hirales-Carbajal, and J.
Nolazco-Flores, “Adaptive resource allocation with job runtime uncertainty,” Jour-
nal of Grid Computing, vol. 15, no. 4, pp. 415–434, 2017.

[92] P. Donti, B. Amos, and J. Z. Kolter, “Task-based end-to-end model learning in
stochastic optimization,” in Advances in Neural Information Processing Systems,
2017, pp. 5484–5494.

145



[93] K. M. Sallam, R. K. Chakrabortty, and M. J. Ryan, “A reinforcement learning
based multi-method approach for stochastic resource constrained project schedul-
ing problems,” Expert Systems with Applications, vol. 169, p. 114 479, 2021.

[94] J. Schulman, F. Wolski, P. Dhariwal, A. Radford, and O. Klimov, Proximal policy
optimization algorithms, 2017. arXiv: 1707.06347 [cs.LG].

[95] H. Mao, M. Alizadeh, I. Menache, and S. Kandula, “Resource management with
deep reinforcement learning,” in Proceedings of the 15th ACM workshop on hot
topics in networks, 2016, pp. 50–56.

[96] H. Mao, M. Schwarzkopf, S. B. Venkatakrishnan, Z. Meng, and M. Alizadeh,
“Learning scheduling algorithms for data processing clusters,” in Proceedings of
the ACM Special Interest Group on Data Communication, ser. SIGCOMM ’19,
2019, pp. 270–288.

[97] Y. Bengio, A. Lodi, and A. Prouvost, “Machine learning for combinatorial opti-
mization: A methodological tour d’horizon,” European Journal of Operational Re-
search, 2020.

[98] A. M. Alvarez, Q. Louveaux, and L. Wehenkel, “A machine learning-based ap-
proximation of strong branching,” INFORMS Journal on Computing, vol. 29, no. 1,
pp. 185–195, 2017.

[99] E. B. Khalil, P. Le Bodic, L. Song, G. Nemhauser, and B. Dilkina, “Learning to
branch in mixed integer programming,” in Thirtieth AAAI Conference on Artificial
Intelligence, 2016.

[100] M.-F. Balcan, T. Dick, T. Sandholm, and E. Vitercik, “Learning to branch,” in In-
ternational Conference on Machine Learning, 2018, pp. 344–353.

[101] G. Zarpellon, J. Jo, A. Lodi, and Y. Bengio, “Parameterizing branch-and-bound
search trees to learn branching policies,” arXiv preprint arXiv:2002.05120, 2020.

[102] A. Lodi and G. Zarpellon, “On learning and branching: A survey,” Top, vol. 25,
no. 2, pp. 207–236, 2017.

[103] I. Bello, H. Pham, Q. V. Le, M. Norouzi, and S. Bengio, “Neural combinatorial
optimization with reinforcement learning,” arXiv preprint arXiv:1611.09940, 2016.

[104] F. Scarselli, M. Gori, A. C. Tsoi, M. Hagenbuchner, and G. Monfardini, “The graph
neural network model,” IEEE Transactions on Neural Networks, vol. 20, no. 1,
pp. 61–80, 2008.

146

https://arxiv.org/abs/1707.06347


[105] K. Xu, W. Hu, J. Leskovec, and S. Jegelka, “How powerful are graph neural net-
works?” In International Conference on Learning Representations, 2019.

[106] J. Bruna, W. Zaremba, A. Szlam, and Y. Lecun, “Spectral networks and locally
connected networks on graphs,” in International Conference on Learning Repre-
sentations (ICLR2014), CBLS, April 2014, 2014.

[107] M. Defferrard, X. Bresson, and P. Vandergheynst, “Convolutional neural networks
on graphs with fast localized spectral filtering,” in Advances in neural information
processing systems, 2016, pp. 3844–3852.

[108] T. N. Kipf and M. Welling, “Semi-supervised classification with graph convolu-
tional networks,” in International Conference on Learning Representations (ICLR),
2017.

[109] W. Hamilton, Z. Ying, and J. Leskovec, “Inductive representation learning on large
graphs,” in Advances in neural information processing systems, 2017, pp. 1024–
1034.

[110] Y. Wang, Y. Sun, Z. Liu, S. E. Sarma, M. M. Bronstein, and J. M. Solomon, “Dy-
namic graph cnn for learning on point clouds,” Acm Transactions On Graphics
(tog), vol. 38, no. 5, pp. 1–12, 2019.

[111] Z. Wu, S. Pan, F. Chen, G. Long, C. Zhang, and S. Y. Philip, “A comprehensive
survey on graph neural networks,” IEEE Transactions on Neural Networks and
Learning Systems, 2020.

[112] X. Wang et al., “Heterogeneous graph attention network,” in The World Wide Web
Conference, ACM, 2019, pp. 2022–2032.

[113] C. Zhang, D. Song, C. Huang, A. Swami, and N. V. Chawla, “Heterogeneous graph
neural network,” in Proceedings of the 25th ACM SIGKDD International Confer-
ence on Knowledge Discovery & Data Mining, 2019, pp. 793–803.

[114] X. Fu, J. Zhang, Z. Meng, and I. King, “Magnn: Metapath aggregated graph neural
network for heterogeneous graph embedding,” in Proceedings of The Web Confer-
ence 2020, 2020, pp. 2331–2341.

[115] Z. Liu, C. Chen, X. Yang, J. Zhou, X. Li, and L. Song, “Heterogeneous graph neural
networks for malicious account detection,” in Proceedings of the 27th ACM Inter-
national Conference on Information and Knowledge Management, 2018, pp. 2077–
2085.

147



[116] E. Seraj, Z. Wang, R. Paleja, M. Sklar, A. Patel, and M. Gombolay, “Heterogeneous
graph attention networks for learning diverse communication,” arXiv preprint arXiv:2108.09568,
2021.

[117] E. Seraj et al., “Learning efficient diverse communication for cooperative hetero-
geneous teaming,” in Proceedings of the 21st International Conference on Au-
tonomous Agents and Multiagent Systems, 2022, pp. 1173–1182.

[118] A. Sherstinsky, “Fundamentals of recurrent neural network (RNN) and long short-
term memory (LSTM) network,” CoRR, vol. abs/1808.03314, 2018. arXiv: 1808.
03314.

[119] M. Sundermeyer, R. Schlüter, and H. Ney, “Lstm neural networks for language
modeling,” in Thirteenth annual conference of the international speech communi-
cation association, 2012.

[120] A. Graves, S. Fernández, and J. Schmidhuber, “Bidirectional lstm networks for
improved phoneme classification and recognition,” in International conference on
artificial neural networks, Springer, 2005, pp. 799–804.

[121] A. Bérard, O. Pietquin, C. Servan, and L. Besacier, “Listen and translate: A proof of
concept for end-to-end speech-to-text translation,” arXiv preprint arXiv:1612.01744,
2016.

[122] Y. Wu et al., “Google’s neural machine translation system: Bridging the gap be-
tween human and machine translation,” arXiv preprint arXiv:1609.08144, 2016.

[123] P. Malhotra, A. Ramakrishnan, G. Anand, L. Vig, P. Agarwal, and G. Shroff, “Lstm-
based encoder-decoder for multi-sensor anomaly detection,” arXiv preprint arXiv:1607.00148,
2016.

[124] A. Ycart and E. Benetos, “A study on lstm networks for polyphonic music sequence
modelling,” in ISMIR, 2017.

[125] Y. Yu, X. Si, C. Hu, and J. Zhang, “A review of recurrent neural networks: Lstm
cells and network architectures,” Neural Computation, vol. 31, no. 7, pp. 1235–
1270, 2019.

[126] Z. Lu, W. Lv, Z. Xie, B. Du, and R. Huang, “Leveraging graph neural network
with lstm for traffic speed prediction,” in 2019 IEEE SmartWorld, Ubiquitous In-
telligence & Computing, Advanced & Trusted Computing, Scalable Computing &
Communications, Cloud & Big Data Computing, Internet of People and Smart City
Innovation (SmartWorld/SCALCOM/UIC/ATC/CBDCom/IOP/SCI), 2019, pp. 74–
81.

148

https://arxiv.org/abs/1808.03314
https://arxiv.org/abs/1808.03314


[127] C. Si, W. Chen, W. Wang, L. Wang, and T. Tan, “An attention enhanced graph con-
volutional LSTM network for skeleton-based action recognition,” CoRR, vol. abs/1902.09130,
2019. arXiv: 1902.09130.

[128] N. Sesti, J. J. G. Luis, E. F. Crawley, and B. G. Cameron, “Integrating lstms and
gnns for COVID-19 forecasting,” CoRR, vol. abs/2108.10052, 2021. arXiv: 2108.
10052.

[129] C. Heyer, “Human-robot interaction and future industrial robotics applications,” in
2010 IEEE/RSJ International Conference on Intelligent Robots and Systems, IEEE,
2010, pp. 4749–4754.

[130] I. Tsamardinos and M. E. Pollack, “Efficient solution techniques for disjunctive
temporal reasoning problems,” Artificial Intelligence, vol. 151, no. 1-2, pp. 43–89,
2003.

[131] C. H. Papadimitriou and K. Steiglitz, Combinatorial optimization: algorithms and
complexity. Courier Corporation, 1998.

[132] B. Piot, M. Geist, and O. Pietquin, “Boosted bellman residual minimization han-
dling expert demonstrations,” in Joint European Conference on Machine Learning
and Knowledge Discovery in Databases, Springer, 2014, pp. 549–564.

[133] A. Paszke et al., “Automatic differentiation in PyTorch,” in NIPS Autodiff Work-
shop, 2017.

[134] D. P. Kingma and J. Ba, “Adam: A method for stochastic optimization,” arXiv
preprint arXiv:1412.6980, 2014.

[135] H. Hellerman, “Some principles of time-sharing scheduler strategies,” IBM Systems
Journal, vol. 8, no. 2, pp. 94–117, 1969.

[136] S. Wilson et al., “The robotarium: Globally impactful opportunities, challenges,
and lessons learned in remote-access, distributed control of multirobot systems,”
IEEE Control Systems Magazine, vol. 40, no. 1, pp. 26–44, 2020.

[137] G. Tang and P. Webb, “Human-robot shared workspace in aerospace factories,”
Human-robot interaction: safety, standardization, and benchmarking, pp. 71–80,
2019.

[138] I. Essafi, Y. Mati, and S. Dauzère-Pérès, “A genetic local search algorithm for min-
imizing total weighted tardiness in the job-shop scheduling problem,” Computers
& Operations Research, vol. 35, no. 8, pp. 2599–2616, 2008.

149

https://arxiv.org/abs/1902.09130
https://arxiv.org/abs/2108.10052
https://arxiv.org/abs/2108.10052


[139] I. Tsamardinos, “Reformulating temporal plans for efficient execution,” Master’s
thesis, University of Pittsburgh, 2000.

[140] D. B. Johnson, “Efficient algorithms for shortest paths in sparse networks,” Journal
of the ACM (JACM), vol. 24, no. 1, pp. 1–13, 1977.

[141] P. Veličković, G. Cucurull, A. Casanova, A. Romero, P. Lio, and Y. Bengio, “Graph
attention networks,” arXiv preprint arXiv:1710.10903, 2017.

[142] M. Gombolay, R. Wilcox, and J. Shah, “Fast scheduling of multi-robot teams with
temporospatial constraints,” in Robotics: Science and System, 2013, pp. 49–56.

[143] Z. Wang and M. Gombolay, “Learning to dynamically coordinate multi-robot teams
in graph attention networks,” arXiv preprint arXiv:1912.02059, 2019.

[144] A. Paszke et al., “Pytorch: An imperative style, high-performance deep learning li-
brary,” in Advances in Neural Information Processing Systems 32, 2019, pp. 8024–
8035.

[145] M. Wang et al., “Deep graph library: Towards efficient and scalable deep learning
on graphs,” ICLR Workshop on Representation Learning on Graphs and Manifolds,
2019.

[146] M. C. Gombolay, R. A. Gutierrez, S. G. Clarke, G. F. Sturla, and J. A. Shah,
“Decision-making authority, team efficiency and human worker satisfaction in mixed
human–robot teams,” Autonomous Robots, vol. 39, no. 3, pp. 293–312, 2015.

[147] K. Kreeger, “The learning curve,” Nature Biotechnology, vol. 21, no. 8, pp. 951–
952, 2003.

[148] Z. Wang and M. Gombolay, “Learning scheduling policies for multi-robot coor-
dination with graph attention networks,” IEEE Robotics and Automation Letters,
vol. 5, no. 3, pp. 4509–4516, 2020.

[149] Z. Wang, C. Liu, and M. Gombolay, “Heterogeneous graph attention networks
for scalable multi-robot scheduling with temporospatial constraints,” Autonomous
Robots, vol. 46, no. 1, pp. 249–268, 2022.

[150] R. S. Sutton, S. Singh, and D. McAllester, “Comparing policy-gradient algorithms,”
IEEE Transactions on Systems, Man, and Cybernetics, 2000.

[151] A. Paszke et al., “Pytorch: An imperative style, high-performance deep learning
library,” in Advances in Neural Information Processing Systems, H. Wallach, H.
Larochelle, A. Beygelzimer, F. d’Alché-Buc, E. Fox, and R. Garnett, Eds., vol. 32,
Curran Associates, Inc., 2019.

150



[152] M. Wang et al., Deep graph library: A graph-centric, highly-performant package
for graph neural networks, 2020. arXiv: 1909.01315 [cs.LG].

[153] D. P. Kingma and J. Ba, Adam: A method for stochastic optimization, 2017. arXiv:
1412.6980 [cs.LG].

[154] ATA, ATA MSG-3 Operator/Manufacturer Scheduled Maintenance Development.
Air Transport Association of America Inc., 2007.

[155] M. Gombolay et al., “Robotic assistance in the coordination of patient care,” The
International Journal of Robotics Research, vol. 37, no. 10, pp. 1300–1316, 2018.

[156] C. Stenström, P. Norrbin, A. Parida, and U. Kumar, “Preventive and corrective
maintenance–cost comparison and cost–benefit analysis,” Structure and Infrastruc-
ture Engineering, vol. 12, no. 5, pp. 603–617, 2016.

[157] R. Yam, P. Tse, L. Li, and P. Tu, “Intelligent predictive decision support system
for condition-based maintenance,” The International Journal of Advanced Manu-
facturing Technology, vol. 17, no. 5, pp. 383–391, 2001.

[158] F. F. Oberweger, G. R. Raidl, E. Rönnberg, and M. Huber, “A learning large neigh-
borhood search for the staff rerostering problem,” in International Conference on
Integration of Constraint Programming, Artificial Intelligence, and Operations Re-
search, Springer, 2022, pp. 300–317.

[159] M. Gombolay, T. Golen, N. Shah, and J. Shah, “Queueing theoretic analysis of
labor and delivery,” Health Care Management Science, vol. 22, no. 1, pp. 16–33,
2019.

151

https://arxiv.org/abs/1909.01315
https://arxiv.org/abs/1412.6980

	Title Page
	Acknowledgments
	Table of Contents
	List of Tables
	List of Figures
	Summary
	1 | Introduction
	Scheduling Robots with Graph Attention Networks
	Heterogeneous Graph Attention Networks for Scalable Multi-Robot Scheduling
	Recurrent Schedule Propagation for Coordinating Human-Robot Teams
	Failure-Predictive Maintenance Scheduling using Heterogeneous Graph-Based Policy Optimization

	2 | Related Work
	Multi-Agent Task Scheduling
	Uncertainty in Stochastic Scheduling
	Policy Learning for Combinatorial Optimization
	Graph Neural Networks
	Recurrent Neural Networks for Sequence Prediction
	Summary

	3 | Scheduling Robots with Graph Attention Networks
	Introduction
	Problem Statement
	Representation: Graph Attention Networks
	Learning Scheduling Policies from Expert Demonstrations
	Experimental Results
	Robot Demonstration
	RoboGNN Discussion
	Summary

	4 | Heterogeneous Graph Attention Networks for Scalable Multi-Robot Scheduling
	Introduction
	Problem Overview
	Heterogeneous Graph Attention Network
	Experimental Results on Homogeneous Robots
	Experimental Results on Heterogeneous Task Completion
	Robot Demonstration
	ScheduleNet Discussion
	Summary

	5 | Recurrent Schedule Propagation for Coordinating Stochastic Human-Robot Teams
	Introduction
	Human-Robot Team Scheduling Problem
	HybridNet Scheduling Policy
	Heterogeneous Graph Encoder
	Recurrent Schedule Propagator
	Learning Stochastic Scheduling Polices
	Experimental Results
	HybridNet Discussion
	Summary

	6 | Failure-Predictive Maintenance Scheduling using Heterogeneous Graph-Based Policy Optimization
	Introduction
	Aircraft Maintenance Environment
	Stochastic Scheduling with Graphs
	Stochastic Policy Learning Methods
	Experimental Results
	Summary

	7 | Conclusion and Future work
	Conclusion
	Limitations and Future Work

	References

