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ABSTRACT

Learning from Demonstration (LfD) is a powerful method for non-
roboticists end-users to teach robots new tasks, enabling them to
customize the robot behavior. However, modern LfD techniques do
not explicitly synthesize safe robot behavior, which limits the de-
ployability of these approaches in the real world. To enforce safety
in LD without relying on experts, we propose a new framework,
ShiElding with Control barrier fUnctions in inverse REinforcement
learning (SECURE), which learns a customized Control Barrier
Function (CBF) from end-users that prevents robots from taking
unsafe actions while imposing little interference with the task com-
pletion. We evaluate SECURE in three sets of experiments. First,
we empirically validate SECURE learns a high-quality CBF from
demonstrations and outperforms conventional LfD methods on sim-
ulated robotic and autonomous driving tasks with improvements
on safety by up to 100%. Second, we demonstrate that roboticists
can leverage SECURE to outperform conventional LfD approaches
on a real-world knife-cutting, meal-preparation task by 12.5% in
task completion while driving the number of safety violations to
zero. Finally, we demonstrate in a user study that non-roboticists
can use SECURE to effectively teach the robot safe policies that
avoid collisions with the person and prevent coffee from spilling.
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Figure 1: This figure shows an example of a person providing
safety demonstrations from which the robot learns a cus-
tomized safety function that shields it from unsafe actions.

1 INTRODUCTION

Recent advances in robot learning have offered the potential to aid
people in a range of applications, including driving [47], manufac-
turing [48], and household tasks [10], like tidying up or serving
someone a drink. Reinforcement learning (RL) has become a ubig-
uitous approach to develop robot controllers; however, defining
the reward function to elicit desired behaviors can be difficult, and
engineered reward functions might overfit to particular RL algo-
rithms [7]. Instead, the field of Learning from Demonstration (LfD)
seeks to empower non-roboticist end-users to teach robots skills
and customized behaviors through demonstrations [13, 14, 23, 39].

Like RL, LfD research has yielded strong results in laboratory
settings [13, 14, 36], but few techniques exist for LfD that enable
robots to learn safe policies, hindering the deployment of LfD with
end-users in the real world. Recently, Brown et al. [8] provided
high-confidence bounds for quality of the inferred human intention
as a proxy of safety. While promising, such approaches do not allow
specifying constraints on the learned policy to explicitly prevent
the robot from taking unsafe actions.

To ensure safety, Control Barrier Functions (CBFs) are a state-of-
the-art method for designing safe robotic controllers that adhere
to explicit safety constraints. CBFs have successfully been applied
in RL and HRI settings [3, 4, 16, 29, 30, 35, 46], and we hypothesize
that CBFs could similarly help learned LfD policies to avoid unsafe
states. However, conventional CBF approaches would still require
experts to formally define and construct such constraints. Instead,
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we aim to enforce safety in LfD settings without relying on experts

by allowing users to define safety via demonstration.

We present SECURE, a novel Safe Learning from Demonstra-
tions (LfD) framework that learns personalized CBFs from end-
user demonstrations. In contrast to approaches solely focusing on
physical safety, SECURE acknowledges the variability in individ-
uals’ safety preferences [24, 38]. This user-centric approach not
only enhances perceived safety but also ensures physical safety, as
demonstrated in a coffee serving task where safety demonstrations
define minimum distance and maximum cup angle to avoid spills
(see Figure 1). Our contributions in this work are four-fold:

(1) We propose a new framework named ShiElding with Control
barrier fUnctions in inverse REinforcement learning (SECURE),
that learns a CBF from human demonstrations. We then develop
two techniques, namely CBF Shield and Adaptive Resampling,
which shield the LfD policy to be safe and enhance the sample
efficiency of SECURE for improved usability in HRI;

(2) We demonstrate SECURE’s ability to learn a high-quality CBF, in
comparison to an expert-designed CBF in 2D Double Integrator
system. Empirical evaluation on simulated robot control tasks
showcases SECURE’s task performance on par or exceeding
Learning from Demonstrations (LfD) baselines, while signifi-
cantly reducing safety constraint violations by up to 100%.

(3) We demonstrate that roboticists can leverage SECURE to syn-
thesize safe policies from demonstrations on a real-world knife-
cutting, meal-preparation task. SECURE outperforms conven-
tional LfD approaches by 12.5% in task completion and elimi-
nates 100% unsafe cases (i.e., “cut” human arms);

(4) We further conduct a user study in which participants first
provide demonstrations in a coffee-cup placing task and then
work on a secondary task in the robot’s proximity. SECURE
can effectively learn user-specific safe policies from provided
demonstrations to enable the robot to complete its task while
being perceived as safe by users operating in its proximity.

2 RELATED WORK

Ensuring safe and reliable robot operation, particularly in interac-
tions with human users, is of paramount importance [9]. In the RL
realm, safety challenges arise due to the learning process’s explo-
ration in unknown environments, where various safety approaches
tailored to RL have emerged, including constrained policy opti-
mization [1, 17, 32, 40, 43], safe exploration [20, 33, 34], learning a
safety critic [5, 41, 44], risk-averse RL [45, 51], and shielding [2, 11].
Shielding, in particular, is a framework that ensures the safety of a
control policy by verifying that each action applied keeps the sys-
tem within a predefined safe set of states [6]. CBFs are mathematical
functions utilized in control theory to enforce safety constraints
by defining a safe set of states [3, 4]. CBFs are a popular technique
to shield robots from unsafe actions, as they enforce the system to
always remain within a set of safe states.

To develop safe controllers, prior work has explored synthesizing
CBFs from data, including expert demonstrations [26, 27, 37, 42].
However, these approaches work with expert demonstrations, lim-
iting their applicability with end-users, which is central in LfD.
Researchers have also explored tuning specific CBF parameters
according to user data [18, 25, 31, 46]. In the context of RL safety,
researchers have investigated the utilization of expert-designed
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CBFs to synthesize control policies that confine the system within
safe states [15, 16, 29, 30, 35]. Recent efforts have also focused on
leveraging data-driven methods to learn CBFs within the RL frame-
work for safety assurance [50]. However, these approaches have
been limited to RL and have not been extended to LfD methods
where robots directly learn from and interact with humans.

While a recent method extended CBF to the domain of imitation
learning [19], it requires a manually-designed CBF to supplement
the Behavioral Cloning (BC) policy, which is not practical for real-
world L{D settings. Castafieda et al. [12] proposes to construct a
CBF from data to detect out-of-safe-distribution cases. Still, the
approach risks being overly conservative. To the best of our knowl-
edge, our study is the first to successfully integrate CBFs with
IRL algorithms and effectively increase policy performance while
mitigating potential safety concerns.

3 PRELIMINARIES

In this section, we introduce three building blocks of SECURE:
Markov Decision Process, Inverse Reinforcement Learning, and
Control Barrier Function.

Markov Decision Process: We model the environment as a Markov
Decision Process (MDP) [49], M = (S, A, R, T,y,po). S and A
denote the state and action space, respectively. R : S — R is the
reward of a given state. T : S X A — & is a deterministic transition
function that gives the next state, s’, for applying the action, a, in
state, s. y € (0,1) is the temporal discount factor. py : S — R
denotes the initial state probability distribution. A stochastic policy
7 : SXA — Risamapping from states to probabilities over actions.
A trajectory, r = (so, ao, - - - ,St, ar, - - - ), is generated by executing
the policy within the environment: so ~ po,ar ~ 7(st),st+1 =
T(st,ar) Vi > 0. The expected discounted return of a policy, 7, is
calculated by J(7) = B¢~y [Z?io th(st)]. The objective for RL is
to find the optimal policy, 7* = arg max . J (7).

Inverse Reinforcement Learning (IRL) infers a reward function, R,
from a set of demonstration trajectories, D = {ri}]i ;- Our method
is based on adversarial IRL (AIRL) [21], which consists of a gen-
erator (i.e., a policy) to imitate the demonstrator and a discrim-
inator to distinguish the generator’s behaviors from the demon-
strator’s. The discriminator D is trained to minimize the cross
entropy loss, Lpiscriminator = _ET~D,(s,a,s')~T [log D(s,a,5")] -
Erory (s.as)~t [log(1 - D(s, a,s"))]. The generator policy, 74 (als),
is trained by optimizing the policy loss, Lyolicy = —Ja(74), to max-
imize the pseudo reward function which is given by ry(s, a,s’) =
log Dg(s,a,s") —log(1 — Dg(s,a,s)).

Control Barrier Functions (CBFs) define a set of safe states, Ss,
and a set of unsafe (or dangerous) states, S;. A CBF, h, needs
to satisfy the following three requirements (R1-R3) [3, 28]: R1:
Vs € S, h(s) = 0; R2: Vs € Sy, h(s) < 0; R3: Vs € {s|h(s) > 0},

w + a(h(s)) > 0, where «(-) is a class-K function,

ie., a(-) is strictly increasing and «(0) = 0. Intuitively, the three
requirements ensure trajectories to stay inside the superset, Cy, =
{s € 8 : h(s) > 0}, and never visit unsafe states where h(s) < 0.
In order to obtain a CBF, A(-), and a safe policy, 74(-), that meet
the three requirements, we formulate an objective similar to Qin
et al. [35], as shown in Equation 1. R1-R3 are satisfied when we
find h(-) and 7y (-) such that y(h, 7g) > 0, i.e., our optimization
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Figure 2: This figure illustrates SECURE’s architecture. End-users contribute demonstrations and near-dangerous states to
train the policy, 7y (-), and CBF, h,,(-). CBF Shield prevents the IRL policy from entering dangerous states while minimizing
interference with task completion. Adaptive sampling introduced in CBF Shield generates safe and task-aware actions efficiently.

objective is to maximize y.
h ;) £ min{ inf h(s), inf —h(s),
y(hmg) £ min{ inf h(s).  inf ~h(s)

h(T (s, 4 (s))) = h(s) (1)

(s1nr20) At : a(h(s))}

4 METHOD

We describe SECURE in three steps: In Section 4.1, we first describe
how SECURE learns a CBF, represented by a neural network, from
user-provided safety demonstrations (Figure 2, top). Second, Sec-
tion 4.2 describes how SECURE utilizes a shielding mechanism
with the learned neural CBF to prevent the robot from entering
dangerous states while still allowing for task completion (Figure 2,
middle). Finally, in Section 4.3, we introduce a novel adaptive sam-
pling method for SECURE that improves the efficiency in finding
safe and task-aware actions (Figure 2, bottom).

4.1 Safe LfD with CBF

To enable end-users to define customized safety boundaries, we
seek to learn user-specific safety constraints, represented by a CBF,
from user demonstrations. To learn the CBF, we need access to
the safe states set, S, and the unsafe states set, S;. While we can
construct the safe state set with demonstrations: Sg = {s|s € 7 €
D}, we should not request demonstrators to take the risk of hurting
themselves to provide unsafe demonstrations. Instead, we define
the near dangerous state set, S,,4, as a set that the robot has to pass
before entering S;, shown in Equation 2.

Vrwithsg € S5, t >0 Bs; €Sy st YoO<t <tsp ¢ Spg (2)

Intuitively, S,; would be a set that “wraps” the actual physically
unsafe states, e.g. collisions. For instance, if a robot helps a person
with serving a cup of coffee, the person can demonstrate near-
dangerous states by moving their arms around the static robot arm

holding the cup of coffee at distances that they perceive as near-
dangerous. Note that one user may define a large distance as “near”
dangerous even if the expected harm may be low, and SECURE
respects such user-defined safety concepts.

Having defined S,,4, we amend the CBF’s second requirement
as R2": For Vs € S,,4, h(s) < 0. As a corollary of the CBF property
introduced in Section 3, if R1, R2’, and R3 are satisfied, the policy
cannot enter S,,4, which further means the policy cannot enter the
dangerous state set, Sy, according to the definition of S,,;. While
R2’ is a stricter requirement than R2, it allows people to personally
demonstrate what they deem as unsafe. We replace Sy in Equation 1
to be S,,4, resulting in Equation 3.

Y (h7g) £ min | inf h(s), Jnf ~h(s)

(©)
h(T (s, 4 (s))) — h(s)
{slhl(r;)zo} At +a(h($))}

Finding a solution of h and 7 for ¢’ > 0 will satisfy CBF require-
ments and ensure that the agent does not enter dangerous states
or near dangerous states. One observation to maximize y is that
the first two terms are only dependent on the CBF, h, while the
third term relies on 7. Although one can jointly optimize h and
74, such an optimization suffers from empirical difficulty because
74 is chasing the moving h. To show this, we conduct an empirical
experiment in the demolition derby domain (see Section 6). Joint
optimization of h and 7 yields a 32.3% + 11.0% success rate with a
high 77.7% + 3.4% occurrence of dangerous cases. SECURE instead
takes a two-stage approach: 1) optimize the CBF, A, to satisfy R1 and
R2’; 2) modulate 74 to satisfy R3 by the CBF shield we introduce
in Section 4.2. As a result, SECURE achieves a high 52.3% + 2.5%
success rate and a low 3.3% + 1.2% occurrence of dangerous cases.

For Stage 1, we formulate the loss function Lp,rier @s shown in
Equation 4, where h,(-) is a neural network parameterized by w.
Intuitively, minimizing Ly, rier provides an Ay, (+) that can discrim-
inate safe states which have positive h values and near-dangerous
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Figure 3: This figure shows that CBF Shield identifies an ac-
tion that is safe and does not hinder task completion.

Algorithm 1: CBF shield Action Choice
Input :Learned CBF hy,(+), Policy 74 (:|s), Current state s,

Sampling batch size M, Safe action percentage
requirement pg

C o e my(ls)

2 {a}, ~ N(p.0)
M

3 while W < po do

4 L U, 0 «— AdaptiveResampling (u, o)

{ai}}), ~ N(p o)

6 a— 35 XM [I(g(a) > 0) - a;]
7 if g(a) > 0 then

| Output:a
s else
9 | @< MiNgeg50,)20p, 12— all
Output:a

states which have negative h values, when trained on the safe and
near-dangerous states specified through demonstrations.

Lharrier (©) = ) max(=hyy(5),0) + > max(hy(s),0)  (4)

s€Ss s€Snd

4.2 Shielding Unsafe Actions

After learning the CBF, h,(-), from human demonstrations for
encoding safe and near-dangerous states, one naive way to avoid
danger is to choose actions with h,, > 0. However, this approach
is myopic which can lead to danger. Consider a scenario where
a fast-moving vehicle approaches unsafe states: merely choosing
actions with h,, > 0 results in the vehicle approaching the unsafe
boundary and inevitably entering an unsafe state. In contrast, CBF
R3 (Equation 5, where a ~ 74 (+|s)) enables SECURE to assess the
gradual decline of h,, from safe to unsafe states, ensuring the agent
never enters unrecoverable states. Therefore, SECURE employs the
CBF Shield to find actions aligned with R3.

he (T (s, ai)t— he(s)) +a(hy,(s)) =0 )

Laerivative ($) = g(a) =
Vs s.t. hy(s) 20

CBF shield directly finds safe actions that satisfy R3, i.e., Lgerivative =
0. We summarize the CBF shield procedure in Algorithm 1. For each
safe action choice, we begin by sampling a batch of actions {ai}?ﬁ 1
from the AIRL policy (lines 1-2). Specifically, the policy output is
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modeled as a Gaussian distribution with p,, (s) and o, (s), and the
action is sampled by a; ~ N (1 (s), 04 (s)). Next, a straightforward
approach could be randomly selecting one safe action from the
batch of actions. However, while the selected action is safe, it is
possible that the action interferes with the task completion (yellow
arrows in Figure 3). Instead, CBF Shield aggregates multiple safe
actions (green arrows in Figure 3) to better reflect the policy’s in-
tention of accomplishing the task. As such, we calculate the ratio

of safe actions within a sampled action batch, p = w,
where M is the sampled batch size. When the ratio p exceeds a
threshold, py, we have more confidence that the average of the
safe actions aligns well with the policy mean output (i.e., aims at
accomplishing the task). Thus, we aggregate safe actions within
this batch (Line 6). When p < py, it suggests that the current batch
does not contain enough safe actions and we resort to the Adaptive
Sampling method (Section 4.3) to explore and find more safe actions
efficiently (Line 4-5).

To ensure the safety of the executed action, we aggregate the
safe actions by averaging first, a = ﬁ Z?il [I(g(a) = 0) - a;]
(Line 6). If the averaged action (brighter green arrow in Figure 3)
is deemed safe, g(a) > 0 (Line 7), a is returned for execution.
Otherwise, we select the closest action from the safe action set,
a= minae{ai\g(a,-)zo}{‘jl |la — al| (Line 9). In summary, the proce-
dure of CBF shield ensures the satisfaction of R3 (i.e., policy safety)
by always returning an action a such that g(a) > 0 while also being
task-aware, which helps the agent to accomplish the task while
respecting personalized safety definitions.

4.3 Adaptive Resampling

The CBF Shield introduced in the Section 4.2 assumes a minimum
percentage of safe actions to be in the sampled action batch in order
to obtain an action that is both safe and task-aware. However, the
AIRL policy may be overly confident in a task-oriented but unsafe
action, and thus it might not sample an action batch containing even
a single safe action, let alone enough for safe action aggregation.
Therefore, there is a need to devise a strategy for greater exploration
within the action space. To address this, SECURE modifies the
policy action distribution, N (pi, 0,), and conducts resampling
from the modified distribution. To preserve the task completion goal
represented by the action mean, y,, we refrain from modifying it to
avoid disrupting the task. Instead, we amplify the standard deviation
in certain directions. To reduce the probability of generating safe
but undesired actions, we selectively increase the standard deviation
specifically along the directions identified as unsafe.

Algorithm 2 and Figure 4 show how our approach finds unsafe
directions and adjusts the standard deviation. First, we sample N
probing actions (the blue and green arrows in Figure 4) uniformly
from action space (Line 1). To determine the unsafe action direction,
we compute a weighted average of unsafe probing actions (i.e.,
green arrows in Figure 4, identified by h,, () < 0) where the weights
are given by the negative h values (Line 2). We can then adjust the
standard deviation (i.e., the purple lines) by taking a small step with
size @, in the normalized direction of the unsafe actions (Line 3-4).
A new batch of actions is sampled for a subsequent verification
loop conducted by CBF shield. Our Adaptive Sampling approach
provides an efficient way to find safe and effective actions.
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Figure 4: For Adaptive Resampling, we amplify the standard
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Algorithm 2: Adaptive Resampling

Input :Learned CBF h,,, Current state s, Policy output
distribution mean p and standard deviation o,
Probing extent R, Probing batch size N, Action
dimention n, Standard deviation update step size a
@ HY ~ Un(-RRI")

2 Aunsafe < Z?Iﬂ [aj - max(0, —hy, (T (s, aj)))]

3 Ag — %, where | - | denotes element-wise absolute
value and || - || denotes the two-norm
40 —o+aly
Output:y, o’
1°1 Path around Goal
Obstacle,

y (position)

UL Obstacle

0 3 Robot
[ 2

4 6 8 10
x (position)

Figure 5: This figure illustrates the 2-D double integrator do-
main. The robot needs to go to the goal avoiding the obstacle.
The blue curve is a feasible path for the robot.

5 VALIDATION OF SECURE’S LEARNED CBF
Notably, a known ground-truth CBF, defined by h = y[ (x = xopst)? +
(y- yobst)2 - rczybst] +2[ (o = xopst) - % + (Y — Yobst) Y, serves asa
reference to evaluate the performance of learned CBF, where (x, y)
is the current coordinate, (%, 7) is the current velocity vector, and
(Xobsts Yobst> Tobst) Tepresents the obstacle’s position and radius.
We collect a dataset comprising of 800 safe states and 800 unsafe
states by sampling from the state space and labeling each state
with the ground-truth CBF to separate the impact of data quality
and the CBF learning process itself. To test the learned CBF, we
discretize the state space with a grid size of 0.1 within the ranges
[0, 10], [0, 10], [-1.5,1.5], [-1.5, 1.5], for x, y, x, 7, respectively. As
such, we obtain 100 X 100 X 30 X 30 = 9, 000, 000 test states. We
summarize the evaluation results in Table 1, which shows a low
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Table 1: The table shows the means and standard deviations
of the learned CBF’s performance with five different random
seeds for training on the 2D double integrator domain.

. Ground-truth Safe States  Unsafe States
Predicted

Safe States 98.1% (1.0%) 4.1% (2.2%)
Unsafe States 1.9% (1.0%) 95.9% (2.2%)

overly-conservative rate (1.9%) and a low under-conservative rate
(4.1%). We observe that SECURE is effective in learning a high-
quality approximation of the ground-truth CBF with limited data.
Additionally, SECURE strikes a good balance between being over-
conservative and under-conservative.

6 SIMULATION EXPERIMENTS

We evaluate SECURE in the following simulated domains:

Demolition Derby Domain: a car is tasked to reach a target
location while avoiding 16 other randomly moving cars (Figure 6).
We utilize the approach from Qin et al. [35] to collect safe demon-
strations by filtering out trajectories with collisions. We generate
near-dangerous states by collecting states where the distance be-
tween the car and an obstacle is below a predefined threshold.

Panda Arm Push Domain: the objective is to push a block
with a high center of gravity to a target location without toppling
it [22] (Figure 7). We collect demonstrations by teleoperation via a
keyboard. We collect three near-dangerous scenarios that knock
down the block: a) pushing the upper part of the block (count: 442),
b) pushing with high velocity (count: 590), and c) pushing the upper
part of the block with high velocity (count: 444).

The number of safe and near-dangerous states for training the
CBF, the number of demonstrations to train the policy, and the ar-
chitecture of the neural network CBFs is tabulated in Table 2. Please
refer to the supplementary for auxiliary details for the experiments.

6.1 Results

We develop two metrics to evaluate task completion and safety:
“Success Rate," which quantifies the rate of successful task comple-
tion, and “Dangerous Rate,' which is the rate of hazardous scenarios
encountered. We evaluate both metrics across 100 trajectories with
ten random seeds for both domains. Since SECURE is the first
method to address safety issues for IRL, there is no existing bench-
mark tailored for the same task. Therefore, we select two baselines:
1) behavior cloning (BC), as BC remains a prevalent approach; 2)
the state-of-the-art IRL approach, AIRL, as it has strong capability
to imitate demonstrated behaviors.

The results are summarized in Table 3, showcasing the excep-
tional performance of SECURE. With BC displaying the lowest
performance, our results analysis focuses on comparing SECURE
and AIRL. In the demolition derby domain, AIRL and SECURE have
similar success rates (two one-sided t-test with bound=10, p < .01)
but SECURE achieves significantly less dangerous cases (71.2% less,
Mann-Whitney U = 0, p < .001). In the Panda Arm Push domain,
SECURE not only eliminates all instances of the block toppling over
(comparing with AIRL, Mann-Whitney U = 0, p < .001) but also
achieves a 43.7% improvement in the successful rate, significantly
outperforming AIRL (Mann-Whitney U = 99.5, p < .001).
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Table 2: Number of safe and near-dangerous states for CBF training, number of task demonstration states for policy learning,
and neural network CBF’s architecture in simulated and real-robot domains. CNN refers to Convolutional Neural Networks
and FC refers to Fully-Connected networks with hidden layer node numbers specified in the parentheses.

Demolition Derby Panda Arm Push Coffee Placing Knife-cutting
Safe states 1024 1476 2500 (per participant) 450
Near-dangerous states 1024 1476 2500 (per participant) 450
Task demo states 52612 246 ~2000 (per participant) 2000
(user demonstration lengths vary)
CBF NN CNN akin to [35] FC (32, 128, 128, 256, 256, FC (64, 64) FC (32, 128, 128, 256, 256

256, 256, 128, 128, 32) 256, 256, 128, 128, 32)

Camera for | I 1'
Human Arm
Tracking

Robot Manipulator
holding a Knife

Figure 8: This figure shows the setup
for the real-robot banana-cutting task.

Figure 7: This figure illustrates the
Panda Arm Push domain.

Figure 6: This figure shows the Demo-
lition Derby domain.

Table 3: This table shows the comparison of SECURE (ours) with BC and AIRL in three domains. The standard deviation is
calculated with ten runs of different random seeds for each algorithm. Bold denotes best performing algorithm.

BC AIRL  SECURE (ours) SECURE Comparison with AIRL
Demolition Derby Domain Success Rate 17.9%  46.8% 49.2% +2.4Z
(Evaluated on 100 Episodes) (Stdev) (3.6%) (4.7%) (5.6%) (TOST p < .01 with bound=10)
Dangerous Rate | 65.7%  75.4% 4.2% -71.2%
(Stdev) (4.1%)  (4.9%) (1.2%) (Mann-Whiteney U = 0, p < .001)
Panda Arm Push Domain Success Rate 22.7%  52.9% 96.6% . +43.7%
(Evaluated on 100 Episodes) (Stdev) (3.2%) (22.6%) (5.3%) (Mann-Whiteney U = 99.5, p < .001)
Dangerous Rate | 72.3%  31.3% 0.0% -31.3%
(Stdev) (3.5%) (17.9%) (0.0%) (Mann-Whitney U = 0, p < .001)
Kitchen Cutting Domain Success Rate 70% 80% 90% +10%
(Evaluated on 10 Episodes) | Dangerous Rate | 100%  100% 0% -100%

6.2 Ablation Study of Resampling Method

To evaluate each component’s contribution in SECURE, we conduct
ablation studies in simulated domains. In the first ablation study,
to examine the importance of averaging the safe actions within
the shield, we randomly select a safe action from the batch instead
of averaging all safe actions. For the second ablation study, we
removed the adaptive resampling approach. Instead, we keep re-
sampling with the policy output until a predetermined resampling
limit is reached, upon which a random action is selected. The second
ablation allows us to assess the effect of not adapting for resampling.

The results of the ablation study are presented in Figure 9, show-
ing the significant impact of CBF Shield and the adaptive resampling.
In the demolition derby domain, SECURE achieves a significant
improvement (18.0% and 68.2%) in safety with respect to the two
ablations (Kruskal-Wallis H(2) = 16.25, p < .001; pairwise posthoc

comparisons using Dunn’s test indicates SECURE significantly
outperforms both ablations with p < .01 and p < .001, respec-
tively), while maintaining similar or higher task performance. In
the Panda Arm Push domain, SECURE eliminates all unsafe execu-
tions (Kruskal-Wallis H(2) = 17.33, p < .001, DUNN posthoc shows
SECURE significantly outperforms both ablations with p < .01
and p < .001, respectively) as well as achieves a significant task
performance gain of 28.2% and 43.8% with respect to the two abla-
tions (Kruskal-Wallis H(2) = 14.56,p < .001, Dunn posthoc shows
SECURE significantly outperforms both ablations with p < .01 and
p < .001, respectively). These findings validate our design.

6.3 Sensitivity Analysis

Due to the data-driven nature of SECURE, performance can be im-
pacted by the data size and quality. As such, we conduct sensitivity
analysis for SECURE from three perspectives: 1) dataset size; 2)
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Figure 9: This figure shows the result for the ablation study.
The error bars represent standard deviation. ** denotes p <
.01. *** denotes p < .001.

label imbalance; and 3) noisy labels, and show SECURE is robust to
non-ideal data.

Dataset Size: In the dataset size sensitivity test, we reduce the
overall dataset size for CBF learning while preserving the ratio of
safe and unsafe states. We observe SECURE is robust to dataset size
in easier tasks, such as Demolition Derby, even with only 1% of
the original dataset. The performance drops for harder tasks (e.g.,
Panda Arm Push) when the dataset size is reduced to 10%.

Label Imbalance: In the label imbalance test, we reduce the num-
ber of unsafe states in observance of the relative difficulty in col-
lecting near-dangerous demonstrations. The results demonstrate
that SECURE is empirically robust to a data imbalance ratio of 1:2
in Demolition Derby and a ratio of 1:4 in Panda Arm Push. Beyond
these ratios, the learned CBF becomes under-conservative due to
the overwhelming number of safe states within the dataset.
Noisy Data: In the noisy data test, we consider the possible noisy
data collection process with naive user by flipping safe/unsafe labels
within the dataset to examine SECURE’s robustness. The results
show SECURE is robust to noisy data in both domains, exhibiting
strong performance even when up to 50% of the labels are wrong.

7 REAL-ROBOT EXPERIMENTS

We conduct two real-robot experiments to demonstrate SECURE’s
applicability to roboticists and users, respectively. In the first case
study, we (roboticists) provide demonstrations for a knife-cutting
task and evaluate the success of SECURE in avoiding cutting our
arms. In the second user study, we ask users to demonstrate in a
coffee placing task and show SECURE’s success on users’ ratings on
task completion, safety, and perceived safety. The number of safe
and near-dangerous states for training the CBF for each domain,
along with the number of demonstrations used to train the policy,
and the size of the neural network CBF are tabulated in Table 2.

7.1 Demonstration with Roboticists

In this demonstration, we compare SECURE with benchmarks in a
tofu-cutting task in close proximity to a human. We (roboticists)
provide a set of safe demonstrations via kinesthetic teaching. Be-
cause of the possible danger the knife may pose, we collect 450 near
dangerous states of close proximity of the robot and human arms
from experimenters, ensuring they adhere to all necessary safety
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(c) SECURE (ours): Robot yields for human arm, then safely continues.

Figure 10: Timelapse of execution of SECURE and baselines
on kitchen cutting task. Unlike baselines, SECURE is able to
succesfully finish the task without cutting the nearby human.

\

Person reaching
for a book
tora

Robot serving
hot coffee

Figure 11: Setup for user study. Robot is tasked to place coffee
to pink square, and human is tasked to get a book and turn
to certain chapters.

precautions. Following previous CBF literature [35], we assume the
robot’s forward kinematics model is available.

Similar to the simulated domain experiments, we evaluate SE-
CURE against BC and AIRL with ten episodes and calculate the
success rate and dangerous rate metrics. In this cutting task where
avoiding collision is of utmost importance, SECURE achieves zero
collision cases and 9 successful episodes, surpassing the baseline
methods, BC and AIRL (Table 3 and Figure 10). The results demon-
strate the safer execution of SECURE, effectively eliminating col-
lisions without compromising task completion. Recordings of SE-
CURE’s execution can be found in the supplementary video.

7.2 User Study

We conducted a user study to understand non-roboticist users’ abil-
ities to provide helpful demonstrations for SECURE. In this study,
we create a context where the user needs to prepare for a lecture
by reaching for one out of four books and turning to certain pages,
while the robot serves coffee for the user (Figure 11). In the first ses-
sion of the experiment, human participants first demonstrate how
to serve the coffee (i.e., the task) via kinesthetic teaching. The user
then provides demonstrations for safe/unsafe human arm positions
with respect to the robot and safe/unsafe cup tilt angles. Specifi-
cally, to collect safe and unsafe demonstrations, we replay the user’s
kinesthetic teaching trajectory on the robot, pause at four states,
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Table 4: This table shows the task (out of 105), safety (out
of 42), and perceived safety (out of 42) ratings in the user
study for four conditions. The ratings are reported as mean
(standard error). Bold denotes the highest score condition.

Data Policy Individual Grouped

For CBF Individual ~Grouped Individual Grouped
Task 733 (5.35) 77.1(4.61) 81.6(5.68) 73.6(5.72)

Metric Safety  31.3 (3.31) 33.3(2.74) 354 (2.20) 353 (2.48)
Perceived

Safety

33.2(2.92) 35.4(2.14) 36.4(1.83) 35.8(2.04)

and invite the participant to provide safe/unsafe demonstrations
for arm positions by moving their arm around the robot and for cup
tilts by changing the robot end effector tilt angles which is holding
the cup. We collect five kinesthetic teaching trajectories and the
entire session lasts less than one hour for each participant. As such,
we obtain task demonstrations and the user’s defined safe/unsafe
demonstrations in the first session of the experiment.

Once we finish the demonstration collection in the first session
with all participants, we prepare four different setups of data to
train SECURE’s policy and CBF. In order to see how different com-
ponents within SECURE respond to amount of data available and
whether data is personalized for each user, we consider a 2 by 2
within-subject design with the two factors being policy training
data (grouped vs. individual) and CBF training data (grouped vs.
individual). The grouped condition represents pooling all partici-
pants’ data for training, while the individual condition means only
using one participant’s own data for training. As such, we obtain
two behavior-cloning trained policies and two CBFs.

In the second session of the experiment, the participant is tasked
to accomplish the task to reach for a book while the robot places
the coffee. We test twelve episodes with each participant, with
three episodes corresponding to each of the four conditions. After
each episode, the participant evaluates the robot’s task completion,
safety, and perceived safety via a 10-item Likert Scale. We depict
the experiment procedure in the supplementary video for a better
visual understanding of the setup.

The user study was approved by the Institutional Review Board
and we recruited twelve participants (ten male, two female, three
within age range 18-25 and seven within age range 26-35). We sum-
marize the results in Table 4. In all four conditions, we demonstrate
SECURE successfully accomplishes the task (i.e., coffee placing)
while being safe with the human subjects who reach for books and
have close interaction with the robot, evidenced by the high ratings
in task, safety, and perceived safety. Comparing the four conditions,
the grouped policy and individual CBF yields the highest ratings on
all three metrics. We hypothesize the result may suggest the utility
to learn policy from larger number of task demonstrations as well
as the value of personalized training for CBF. Users commented on
executions with individual CBF as “P10: exactly how I defined my
comfort zone” and “P12: it is not unsafe nor overly safe” compared
with their comments regarding grouped CBF as “P7: it felt like the
robot was aiming the coffee cup to my face” and “P2: the robot is
overly safe - as long as my arm is visible, it tries to avoid me even
if there is large distance”. However, due to the limited number of
subjects in our study, we could not reach a conclusion regarding the
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performance of grouped vs. individual SECURE without obtaining
statistical significance, but we believe our study still demonstrates
that that SECURE is successful in the hands of users.

8 DISCUSSION AND LIMITATIONS

The success of SECURE shown in previous sections is grounded in
the novel integration of neural CBFs, IRL, and adaptive sampling.
SECURE enables the robot to acquire an effective barrier function,
which plays a crucial role in shielding the system from dangerous
states. By incorporating CBF Shield, SECURE ensures that the sys-
tem remains within a safe state and avoids potential hazards, and
that the action executed is in line with the task objective. Further-
more, our adaptive sampling increases the efficiency in finding safe
actions. Overall, the proposed SECURE method stands out among
all the ablations and design choices and presents a promising par-
adigm for empowering end-users to teach robots new behaviors
while maintaining their definition of safety.

SECURE operates under a foundational set of assumptions. SE-
CURE assumes all states within the task demonstrations are safe,
which could be invalid if the user provides demonstrations con-
taining undesirable behaviors. Additionally, SECURE assumes that
users can provide a collection of undesired states. Nonetheless, we
acknowledge that this presumption might not be feasible in certain
domains (e.g., autonomous driving, where demonstrating undesir-
able states could jeopardize human safety). Therefore, the proposed
algorithm, SECURE, offers empirical safety assurances rather than
absolute safety guarantees. Additionally, SECURE relies on access
to the transition dynamics of the domain to assess the safety of
proposed actions. We recognize that establishing these transition
dynamics in complex domains can present considerable challenges.

In future work, we aim to explore methods to enable active in-
quiries about uncertain regions, opening up possibilities for proac-
tive learning and further enhancing safety. Another future direction
is to investigate user’s perception towards grouped vs. individual-
ized policies and safety modules in a larger-scale user study.

9 CONCLUSION

We introduce a novel Safe LfD framework, SECURE, which com-
bines Control Barrier Functions (CBF) with Inverse Reinforcement
Learning (IRL) methods to learn a safe policy from demonstrations.
By integrating a learned CBF function from human demonstrations,
SECURE establishes a CBF Shield that ensures the IRL policy avoids
unsafe regions. Through empirical evaluations in two simulated
domains and two real robot tasks, we demonstrate the effectiveness
of SECURE. SECURE achieves comparable or superior task per-
formance compared to traditional IRL methods while significantly
reducing the number of unsafe cases.
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1 VISUALIZATION FOR SECURE'’S CBF

The control barrier function h(-) learned in our method plays a
crucial role in filtering safe actions. To validate that SECURE can
accurately learn a CBF from demonstrations, in the main paper
Section 5, we conduct a computational study in a 2D Double In-
tegrator domain. Here, we visualize the learned CBF against the
ground-truth CBF on the 2D space of x and y with a fixed x and §
in Figures 1 and 2. It can be seen that SECURE learns a really close
approximation of the ground-truth CBF using a small dataset of
safe and unsafe states.

We further visualize the learned h(-) for both simulated domains
(main paper Section 6). In the demolition derby domain, we visually
represent the safety aspects through a heatmap, as illustrated in
Figure 3, which exhibits darker regions where A(s) < 0, indicating
close proximity between the agent and the obstacles. For Panda
arm push task, we visualize h(s) in a three-dimensional space. As
depicted in Figure 4, the regions situated behind the block are desig-
nated as dangerous areas (indicated by the red color). Furthermore,
the size of the hazardous region above the block is larger than
that below it, as pushing the upper part can result in more unsafe
scenarios. The qualitative evidence supports that SECURE is able
to learn high-quality CBFs from data.

2 DOMAIN DETAILS

2.1 Demolition Derby Domain

The demolition derby domain is based on a simulation environ-
ment introduced in [3], which involves a multi-agent setting where
agents navigate towards their respective goals from individual start
points. In our adaptation, we designate one agent as our car and the
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remaining agents as obstacles. The state space comprises the car’s
position, velocity, and the positions and velocities of the nearest
12 obstacles. The car’s actions determine its acceleration. The car
starts at the bottom-left corner of the environment, with the goal
located at the top-right corner. Demonstrations are collected using
the codebase from Qin et al. [3], filtering out collisions to ensure
collision-free states in the data. Additionally, we programmatically
generate a set of near-dangerous states, denoted as S,,4, by collect-
ing 1024 states where the distance between the car and an obstacle
falls below a predefined threshold. This dynamic navigation task
allows us to effectively evaluate the safety and task completion
capabilities of SECURE.

2.2 Panda Arm Pushing Domain

The panda arm pushing domain is simulated using the Panda-Gym
environment [1]. The goal is to push a block with a high center
of gravity to a target location without causing it to topple. The
state space includes the position and velocity of the end-effector,
as well as the position, velocity, and angular velocity of the block.
Actions are defined as movements of the end-effector in Cartesian
coordinates.

To collect demonstrations, we teleoperate the panda arm’s end-
effector using a keyboard. The program interprets user input of
direction and movement size signals, which correspond to specific
actions executed by the end-effector. Table 1 provides a summary
of the input signals and their meanings. To gather near-dangerous
states, we teleoperate the arm and record states where it interacts
with the block in specific ways. This includes scenarios such as
pushing the upper part of the block, pushing the block with exces-
sive velocity, and pushing the upper part of the block with high
velocity, as depicted in Figure 5.

Table 1: Panda Arm pushing domain keyboard teleoperation
control signals

Input Signal Effect
D Positive X
A Negative X
Q Positive Y
E Negative Y
w Positive Z
S Negative Z
1~10 Movement Size
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Figure 1: Visualization of the learned CBF in contrast with
the ground-truth CBF at x = = 0.
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Figure 3: Heatmap visualization of /(-) for the demolition
derby task, obtained by fixing the obstacle positions and
allowing the agent to explore different states.

\l II \l

a) Pushing upper part  b) Pushing block with c) Pushing upper part
of the block high velocity with high velocity

Figure 5: Illustration of near-dangerous scenarios in the
Panda Arm Pushing domain.

2.3 Real-Robot Domain

2.3.1 System Setup. For both our real-robot tasks, we utilize a 7
degree-of-freedom Jaco Gen 2 robotic arm from Kinova robotics.
The arm is equipped with a gripper holding a knife or a cup, and we
incorporate a ZED 2 stereo camera into the setup. Communication
between the vision system and the robotic arm, as well as control of
the arm, are facilitated through the Robot Operating System (ROS).
Control commands are sent to the arm at a frequency of 5 Hz. The
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Figure 2: Visualization of the learned CBF in contrast with
the ground-truth CBF at x = § = 0.5.
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Figure 4: Visualization of h(-) for the Panda Arm Push Task.
The learned CBF marks the regions in the upper half of the
block as unsafe.

state space for this domain encompasses the joint positions of the
robot arm, the pose of the cutting knife, the pose of the human
arm (if present in the scene), and the position of the tofu sitting
on the table top or the target cup position. Actions are defined as
changes in each joint’s position, and each episode terminates after
200 timesteps.

2.3.2 Vision System. To detect the presence of the human arm
in the scene, we mount a ZED 2 stereo camera above the robot’s
workspace. Calibration of the camera’s position with respect to the
robot is accomplished using April Tags. Once calibrated, we utilize
the built-in body tracking module provided by ZED to track the
location of the human arm. The module detects key-points on the
human body, and we specifically utilize the wrist and elbow key-
points to determine the location of the human forearm. A cylinder
is then drawn around the detected position of the arm, as illustrated
in Figure 6.

2.3.3  Roboticists Demonstration Collection. For the kitchen cutting
task, we employ kinesthetic teaching to obtain the demonstration
data. This involved recording five trajectories of the robot arm cut-
ting tofu. To simulate different scenarios, each of these trajectories
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Figure 6: Vision system for detecting and estimating the pose
of the human arm in the scene.

was replayed twice: once with the human arm present in the scene
but not obstructing the robot’s path, and once with the human arm
in the robot’s way. In the latter case, the trajectory playback was
paused until the human arm moves out of the way, ensuring safe
operation. This data collection process results in ten trajectories in
total: five with pauses to accommodate the human arm, and five
without pauses as the human arm was not obstructing the robot’s
movement. To capture a set of potentially dangerous states S;,q, we
expand upon the recorded trajectories from kinesthetic teaching.
We randomly positioned the robot arm within these trajectories,
and then manipulate the position of the human arm relative to the
knife held by the robot.

2.3.4 Additional Experiments in Tofu-cutting. In addition to the
scenarios mentioned in the main text, we conduct two additional
experiments to further evaluate the effectiveness of SECURE. Firstly,
we evaluate a scenario where the human arm enters the scene
but did not obstruct the path of the robot. In such cases, SECURE
correctly ignores the presence of the human arm and seamlessly
continues the execution of the task, showcasing its ability in per-
sonalized safety. Secondly, we evaluate a scenario where the human
arm repeatedly obstructs the path of the knife held by the robot.
Even in this challenging scenario, SECURE remains effective in
ensuring safety and maintaining task execution. The time-lapse of
these additional experiments is depicted in Figure 7.

3 FURTHER ABLATION STUDIES

We conduct ablation studies to evaluate the effectiveness of the CBF
Shield and Adaptive Resampling components of SECURE in the two
simulated environments.

3.1 Effect of Action Averaging in CBF Shield

We examine the impact of not using action averaging inside the CBF
Shield by randomly selecting one safe action from the batch. Results
in the Ablation Study in the main text show that this substitution
leads to an increased number of dangerous cases in both simulated
domains.

To aggregate safe actions within the action batch, we employ a
simple averaging method. In order to showcase the effectiveness of
this approach, we compare it against two Q-function-based methods
for selecting the ultimate safe action from the available pool.
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M-0: Select the action with the highest Q-value among all safe
actions, utilizing the Q-function provided by AIRL.

M-1: Sort all safe actions based on their corresponding Q-values
and calculate the average of the top r% actions. In our exper-
iments, we set r to 70.

Table 2: Comparison between our method and the two Q-
function-based action selection methods. Each method is
evaluated on 100 episodes and mean (standard deviation) is
reported.

Success Rate (Stdev) | Dangerous Rate (Stdev)
Ours 96.6% (5.3%) 0.0% (0.0%)
M-1 29.5% (24.0%) 0.6% (0.9%)
M-2 92.4% (9.9%) 0.1% (0.3%)

We evaluate the performance of our method by comparing it to
the two Q-function-based approaches on the panda arm pushing
domain. The test results, summarized in Table 2, clearly demonstrate
that our method achieves a higher number of successful episodes
and alower number of dangerous cases compared to the Q-function-
based methods.

To gain deeper insights into the inferior performance of the Q-
function-based methods, we visualize the trajectories of our method
(SECURE), M-1, and M-2. For each timestep along the trajectory of
our method, we compare the actions selected by M-1 and M-2. We
then plot the action values of each method in three dimensions (x,
y, and z) over time. Figure 8 illustrates the results, demonstrating
that the curves for all three methods exhibit similar patterns in
the x and z dimensions. However, in the y dimension, the actions
generated by M-1 and M-2 consistently deviate from zero, while our
method’s actions remain closer to zero. This observation indicates
that the learned Q-function introduces a bias on the y dimension
in M-1 and M-2. Over time, this bias accumulates and increases the
chance of task failure.

3.2 Effect of not Increasing Standard Deviation
during Resampling

We study the impact of not increasing the standard deviation (o) of
actions during resampling. In this approach, if the resampling num-
ber reaches a maximum threshold and a safety criterion is not met,
we randomly select one action. The results in the Ablation Study
in the main text show that this substitution leads to an increased
number of dangerous cases in both simulated domains, indicating
the importance of increasing o for finding task-aware safe actions.

3.3 Effect of Increasing Standard Deviation
along Unsafe Direction

Additionally, we explore the impact of not specifically increasing
o along the unsafe direction according to Adaptive Resampling. In-
stead, we uniformly increase ¢ across all dimensions, denoted as
0’ « o+ a[1]". The results in Table 3 show this ablation’s com-
parable number of success cases and dangerous cases to SECURE
in the demolition derby domain. This suggests that in a relatively
easier learning environment, the interference with task completion
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b) Human arm enters scene twice, robot stops both times

Figure 7: Time-lapse of two scenarios: a) Human arm enters scene without obstruction b) Human arm obstructs robot twice.
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Figure 8: Visualization of action profile in Panda Arm Push domain. Each column represents a trajectory, and each row
corresponds to one of the three dimensions (x, y, and z). The horizontal axis denotes the timestep within a trajectory, while the
vertical axis represents the action value in the respective dimension.

can be mitigated. However, in the Panda Arm Push domain, this
substitution leads to an increased number of dangerous cases. This
emphasizes the importance of adaptively increasing o along the
unsafe direction for ensuring safe task completion. For instance, an
undesired but safe action, such as moving the end-effector back-
ward instead of forward to push the block, can result in unobserved
states that both the learned CBF and AIRL policy are unfamiliar
with, leading to unexpected behaviors.

4 HYPERPARAMETERS

Table 4 summarizes the hyperparameters used for training the AIRL
policy. Table 5 lists the hyperparameters for training the CBF. The
hyperparameters for the CBF Shield are provided in Table 6.

5 SENSITIVITY ANALYSIS DETAILS

In this section, we conduct a comprehensive series of experiments to
analyze the sensitivity of SECURE to various aspects of demonstra-
tion quality and quantity. Our investigation encompasses multiple
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Table 3: Results for Increasing ¢ Uniformly. Each method is
evaluated on 100 episodes and mean (standard deviation) is
reported.

SECURE Without o Along
(ours)  Unsafe Direction

Demolition Success Rate 49.2% 45.4%
Derby Domain (Stdev) (5.6%) (3.4%)
Dangerous Rate 4.2% 6.4%

(Stdev) (1.2%) (3.9%)

Panda Arm Success Rate 96.6% 45.8%

Push Domain (Stdev) (5.3%) (28.1%)
Dangerous Rate 0.0% 54.2%

(Stdev) (0.0%) (28.1%)

Table 4: Hyperparameters for training AIRL Policy

Demolition | Panda Arm | Kitchen
Derby Push Cutting
Learning Rate le-3 le-3 le-3
Fusion Number 2000 2000 2000
Max. KL Divergence 0.01 0.0001 0.0001
Discriminator Train 10 10 10
Iterations
Generator Train
Iterations 10 10 10

Table 5: Hyperparameters for training CBF

Demolition | Panda Arm | Kitchen

Derby Push Cutting
Learning Rate le-4 le-4 le-4
Batch Size 32 64 64

Table 6: Hyperparameters for CBF shield

Demolition | Panda Arm | Kitchen

Derby Push Cutting
o 0.1 0.1 0.1
Probing Extent 0.01 0.2 0.4

factors, including dataset size, the balance between safe and unsafe
states, and the presence of label noises. Through these experiments,
we aim to gain insights into the robustness and effectiveness of
SECURE’s CBF learning. Furthermore, we extend our analysis to
explore the data requirements for training SECURE in comparison
to the baseline AIRL policy. By examining the number of demonstra-
tions needed for successful training, we provide valuable insights
into the efficiency and advantages offered by SECURE’s safety-
driven learning approach.

5.1 Impact of Dataset Size on the Learned CBF

To assess the impact of dataset size on the learned CBF, we conduct
an experiment on the two simulation domains. In the experiment,
we reduce the dataset size used for training the CBF, varying from
100% to 1%, and the results are detailed in Table 7. In the demolition
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Table 7: Impact of reduced dataset size on the effectiveness
of SECURE

Demolition Derby Panda Arm Push
Success Collision Success Fall
Rate Rate Rate Rate
Reduction | 46.0% (2.2%) | 14.0% (9.1%) | 64.3% (14.4%) | 15.3% (18.3%)
Ratio 0.01
Reduction | 42.7% (3.7%) | 8.3% (2.9%) | 91.0% (113%) | 8.7% (11.6%)
Ratio 0.1
Reduction | 44.3% (1.7%) | 5.7% (3.1%) | 98.7% (05%) | 1.3% (0.5%)
Ratio 0.25
Reduction | 45.7% (3.1%) | 11.7% (9.5%) | 96.3% (1.7%) 13% (0.5%)
Ratio 0.5
SECURE 53.2% (4.1%) | 3.3% (1.2%) | 99.3% (0.9%) | 0.0% (0.0%)

derby domain, a reduction in dataset size does not substantially
decrease the performance of the learned CBF. Notably, even with
a dataset as small as 1% of the original size, only a minor perfor-
mance drop is observed, indicating the potential effectiveness of
CBF learning with limited data in this specific domain.

In contrast, for the panda arm push domain, we observe a perfor-
mance drop when the dataset size is reduced to 10% of the original.
A larger performance decrease happens when the dataset size is
further reduced to 1%.

5.2 Impact of Imbalanced Dataset on the
Learned CBF

In most practical scenarios, it is often easier to acquire safe states
compared to dangerous or near-dangerous states. Consequently,
we investigate the influence of dataset imbalance on the learned
CBF. By progressively reducing the ratio of unsafe to safe states
in the dataset, from 1:1 to 1:10, we evaluate the performance of
the learned CBF in two simulated domains. To gauge the learned
CBF’s effectiveness, we test its predictions on a test set comprising
of safe and unsafe states, and we report the over-conservative rate
(labeling safe states as unsafe) and under-conservative rate (labeling
unsafe states as safe) metrics. Additionally, we report the success
and failure rates achieved by SECURE when using the respective
CBF. The results are summarized in Table 8.

In the demolition derby domain, the analysis reveals that the
learned CBF remains effective up to an imbalance ratio of 1:2.
However, beyond this point, the learned CBF’s performance drops
rapidly (under-conservative rate is 100%, meaning h > 0 for all
states) due to the imbalanced data, resulting in a jump in collision
rate. In the panda arm push domain, the learned CBF’s ability to
accurately predict safe and unsafe states on the test set diminishes
notably as the imbalance ratio reaches 1:10. This decline in learned
CBF performance aligns with a marked decrease in the success rate
achieved by the policy at an imbalance ratio of 1:10. Consequently,
the learned CBF’s resilience to dataset imbalance appears to be
environment-dependent. Nevertheless, the collective observations
from these two domains suggest that the learned CBF is capable of
accommodating a notable level of dataset imbalance.

5.3 Impact of Noisy Data on the Learned CBF

We aim to assess the impact of noisy data labels on the efficacy of
the learned CBF. To examine this effect, we introduce label noise by
flipping the safe/unsafe labels in the dataset by 10%, 25%, and 50%
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Table 8: Impact of an imbalanced dataset on the learned CBF and SECURE

Demolition Derby Panda Arm Push
Success Collision Under Over Success Fall Under Over
Rate Rate Conservative | Conservative Rate Rate Conservative | Conservative
Imbalance Ratio 1:10 | 49.6% (4.5%) | 73.7% (2.1%) 100% 37.7% 35.7% (27.8%) | 37.0% (33.7%) 0% 37%
Imbalance Ratio 1:4 49.6% (4.5%) | 73.7% (2.1%) 100% 37.7% 98.7% (0.5%) 1.3% (0.5%) 1% 13%
Imbalance Ratio 1:2 | 44.3% (1.2%) | 5.0% (3.6%) 0% 39.2% 77.0% (19.8%) | 1.3% (0.5%) 0% 22%
SECURE (1:1) 53.2% (2.5%) | 3.3% (1.2%) 07 39.0% 99.3% (0.9%) | 0.0% (0.0%) 0.6% 11%

Table 9: Impact of noisy data on learned CBF and SECURE

Demolition Derby Panda Arm Push
Success Collision Success Fall
Rate Rate Rate Rate
Flip Ratio 0.5 42.77% (5.8%) | 53% (2.5%) | 64.7% (42.4%) | 3.0% (4.2%)
Flip Ratio 0.25 483% (2.1%) | 4.0% (1.6%) | 32.0% (34.0%) | 1.7% (1.71%)
Flip Ratio 0.1 44.0% (43%) | 8.3% (2.9%) | 77.6% (13.4%) | 17.0% (17.5%)
SECURE 52.3% (2.5%) | 3.3% (1.2%) | 99.3% (0.9%) 0.0% (0.0%)

Table 10: AIRL’s performance in the demolition derby do-
main across different numbers of demonstrations

Success Rate
Using 1000 demonstrations 57%
Using 500 demonstrations 34%
Using 100 demonstrations 41%
Using 10 demonstrations 29%

for the two simulated domains. The results of this investigation are
presented in Table 9. Flipping labels does not have a strong effect
on the performance of the learned CBF, particularly evident in the
panda arm push domain and thus SECURE demonstrates resilience
to noisy labels.

5.4 Number of Demonstrations Required for
AIRL

In this experiment, we explore the data requirements for training
SECURE in comparison to the baseline AIRL policy. We focus on
demolition derby domain and assess the success rate achieved by
AIRL using different numbers of demonstrations episodes: 10, 100,
500, and 1000. The results are summarized in Table 10. The results
show that SECURE does not require additional demonstrations than
what is required for training an AIRL policy, which underscores
SECURE’s ability to maintain high policy performance without
imposing the need for a larger dataset.

6 OTHER DESIGN CHOICES IN OPTIMIZING
CBF REQUIREMENTS

We conduct a set of supplementary experiments to affirm the va-
lidity of our design decision to independently learn the CBF h
and policy 7 and present supplementary metrics that highlight
SECURE’s enhanced ability to produce a safer policy in comparison
to the baseline AIRL method.

6.1 Joint Training of CBF and Policy

In this section, we substantiate our decision to independently train
the CBF h and the policy 7 within the SECURE framework. We

Table 11: Effect of jointly optimizing CBF h and policy 7 in
demolition derby domain

SECURE
52.3% (2.5%)
3.3% (1.2%)

Optimize jointly AIRL
32.3% (11.0%) 49.3% (6.1%)
77.7% (3.4%) 72.3% (0.5%)

Success Rate
Collision Rate

compare the performance of SECURE with an alternative approach
that jointly optimizes both the CBF A and the policy 7 in the demo-
lition derby domain. The result of this comparison is presented in
Table 11. We observe a significant contrast in collision rates: when
jointly optimizing the barrier function and policy, the collision rate
dramatically increases to 77.7%, in contrast to the 3.3% collision rate
achieved by SECURE. We posit that this discrepancy arises due to
the inherent challenge of tuning the relative weights between the
LfD objective and the safety objective for the policy. Introducing
a dynamic CBF function h into this learning process introduces
additional complexity, further contributing to the instability of the
learning dynamics and hindering the learning of a robust policy.

6.2 Gradient Ascent to Find Safe Action

In this section, we perform an additional experiment to assess the
efficacy of our proposed resampling approach. Rather than em-
ploying our adaptive resampling technique, we substitute it with
an alternate method: optimizing for the closest safe action when
the policy output is deemed unsafe, achieved through gradient
ascent on the learned CBF. For the demolition derby domain, we
present the outcomes of this ablation experiment in Table 12. We
observe that this alternative approach exhibits inferior performance
compared to SECURE across both evaluation metrics. We hypothe-
size this is due to local optimum existing in the learned CBF and
the gradient ascent approach is stuck. This finding reaffirms the
significance of SECURE’s safe-action-batch averaging operation,
underscoring its role in achieving superior performance.

6.3 Additional Safety Metrics for SECURE

We extend our evaluation to incorporate additional safety metrics,
assessed across 100 trajectories in both the demolition derby and
panda arm push domains. In the demolition derby domain, we
compute the minimum distance of the agent to an obstacle along its
trajectory, serving as an indicator of potential safety concerns. For
the panda arm push domain, we measure the maximum angle of
the block, with a higher angle indicating an elevated risk of block
instability.

The outcomes of this expanded assessment are presented in
Table 13. Notably, SECURE consistently demonstrates a greater
“minimum distance to obstacles” and a reduced “maximum fall
down angle” in comparison to AIRL. These findings reaffirm our
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Table 12: Effect of using gradient ascent to find closest safe
action in demolition derby domain

Demolition Derby
Success Rate | Collision Rate
Gradient Ascent 7.7% (8.7%) 81.0% (2.9%)

AIRL 49.3% (6.1%) 72.3% (0.5%)

SECURE 52.3% (2.5%) 3.3% (1.2%)

Table 13: Comparative safety metrics of AIRL and SECURE
policies in the demolition derby and panda arm push do-
mains

AIRL SECURE

Demolition Derby
(minimum distance to obstacles)
Panda Arm Push
(maximum fall down angle)

0.004 (0.001) | 0.013 (0.001)

0.34 (0.03) 0.06 (0.03)

claim that SECURE consistently produces a safer policy than the
baseline AIRL approach.

7 CBF NEURAL NETWORK

We empirically choose different Neural Networks to represent the
CBF across various domains. In Demolition Derby, we employ a
4-layer 1D CNN, akin to [3], configured with respective numbers
of output filters set as [64, 128, 64, 1]. In Panda Arm Push and
Kitchen Cutting, we utilize a GaussianMLP [2], a model represented
by a Gaussian distribution that is parameterized by a multilayer
perceptron, with hidden layers of size [32, 128, 128, 256, 256, 256,
256, 128, 128, 32]. In Coffee Serving, we also use the GaussianMLP,
but with hidden layers of size [64, 64].

8 SCALABILITY OF CBF LEARNING FROM
DEMONSTRATION

As shown in Table 3-4 of the main paper, SECURE’s CBF learning
generally requires 1000 safe and unsafe states across domains of
varying complexity. In our user study, this takes 45-60 minutes for
each user. Importantly, the IRL itself requires more demonstrations
than SECURE’s CBF learning. We hypothesize that a more complex
domain or safety specification may require more data for CBF learn-
ing but is likely to have a minor effect compared to the number of
demonstrations required by IRL algorithms.

9 COMPUTATIONAL COST AND TIME TO
FIND SAFE ACTIONS

SECURE finds safe action batches that exceed pg safe action rate
with a 100% success rate for the Demolition Derby and Panda Arm
domains, requiring only an average time of 0.061s (standard devia-
tion: 0.162s) and 0.077s (standard deviation: 0.026s) of computation
per action for the Demolition Derby and Panda Arm domains, re-
spectively, on an AMD Ryzen 9 5900.

The worst-case computational cost of one action is O(K (1 +t2 +
M)) where K is the number of retries in finding safe actions, M
is the CBF Shield sampling batch size, and #; and t; are the time
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complexity for a forward pass of the policy network and the CBF
network, respectively. We note that the forward pass of CBF for a
batch in the Adaptive Resampling procedure is parallelizable and,
thus, has a constant cost for computation.
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